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Even though transitivity is a central structural feature of social networks, its influence on epidemic spread on
coevolving networks has remained relatively unexplored. Here we introduce and study an adaptive susceptible-
infected-susceptible (SIS) epidemic model wherein the infection and network coevolve with nontrivial proba-
bility to close triangles during edge rewiring, leading to substantial reinforcement of network transitivity. This
model provides an opportunity to study the role of transitivity in altering the SIS dynamics on a coevolving

network. Using numerical simulations and approximate master equations (AMEs), we identify and examine a
rich set of dynamical features in the model. In many cases, AMEs including transitivity reinforcement provide
accurate predictions of stationary-state disease prevalence and network degree distributions. Furthermore, for
some parameter settings, the AMEs accurately trace the temporal evolution of the system. We show that higher
transitivity reinforcement in the model leads to lower levels of infective individuals in the population, when
closing a triangle is the dominant rewiring mechanism. These methods and results may be useful in developing
ideas and modeling strategies for controlling SIS-type epidemics.

DOI: 10.1103/PhysRevE.99.062301

I. INTRODUCTION

In recent years, the study of dynamical processes on
complex networks has received significant attention in the
mathematical modeling of epidemics [1,2]. There exist three
distinct approaches to modeling epidemic spread as a dynam-
ical process on networks. In the first, each node is allowed
to change its state with no evolution of the underlying net-
work structure through time, while in the second the net-
work structure coevolves with the state of the nodes [3,4].
A third and more complex approach involves combining the
inherent (disease-independent) evolution of social networks
with the epidemic dynamics [5–8]. The second approach is
more realistic for modeling epidemic spread in cases where
the state of being infected influences the presence of contact
over which the infection can spread. Pragmatically, the details
of the network evolution incorporate potentially several social
processes. It is a common observation that healthy individuals
avoid contact with individuals suffering from an infectious
disease. A recent study shows that humans can identify sick
individuals through olfactory-visual cues; furthermore, the
human immune system appears to use these cues to motivate
healthy individuals to avoid contact with infective individuals
[9], reducing the risk of contagions and increasing the biolog-
ical fitness. Another mechanism that leads to the severing of
ties between healthy and infective individuals is the practice
of quarantine, often enforced by public health agencies to stop
the spread of communicable diseases. Such a preference in
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attachment between individuals changes the social network
and thus influences the spread of the infection. Studying this
interplay between the infection spread and the coevolving
network structure has the potential to provide insights into the
processes of disease spread.

The features of an underlying social network can gov-
ern the propagation of an infectious disease [10–14], and
there is extensive literature exploring the impact of network
structure on the dynamics of epidemic spread on static net-
works [10–18]. For instance, Ref. [16] shows that clustering
in networks could raise the epidemic threshold and degree
correlations can alter the epidemic size. However, results
obtained using static network models ignore effects due to
the underlying social networks evolving in response to the
spread of a disease. Coevolutionary network systems, also
called adaptive networks, model the dynamics of node states
(e.g., susceptible vs infected) together with rules for rewiring
network edges in response to the observed states, providing
a more general setting to model disease dynamics. Numer-
ous studies have explored different aspects of the interplay
between coevolving networks and epidemic spread [19,20],
including extensions to signed networks [21]; nevertheless,
a variety of open problems and challenges still exist despite
increased understanding of coevolving systems [22–24].

A common problem across many coevolving network
systems is that they often employ edge rewiring rules that
ignore transitivity, a fundamental structural property of most
networks, wherein friends of friends are more likely to be
friends. For example, the typical random-rewiring rule would
randomize any given network and destroy most closed trian-
gles present in the initial conditions; this rule is very unlikely
to create new triangles in the network and yields a trivial
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transitivity level corresponding to that expected under edge
independence assumptions. Some recent attempts have been
made to explore the influence of transitivity in coevolving
voter models [25–27]. However, the effect of transitivity on
coevolving network epidemics remains unstudied, despite the
known importance of transitivity in the static network setting.

In this paper we introduce an adaptive susceptible-infected-
susceptible (SIS) model on a coevolving network which in-
corporates a rewiring rule that reinforces transitivity similar to
that employed in [26,27]. The most straightforward strategy to
deal with an infectious disease is to sever all the links between
susceptible and infected individuals. However, humans are
social animals and need a certain amount of social relation-
ships to function. Therefore, only discarding the infected-
susceptible links without compensation is not pragmatic in all
settings. Under the mechanism considered here, susceptible
individuals break links to their infected neighbors, rewiring
those links to either a random individual in the network or a
neighbor’s neighbor. The latter rewiring will lead to reinforce-
ment of transitivity (increased clustering coefficient) in the
system. While transitivity is a critical property of social net-
works, studies of epidemic dynamics on coevolving networks
have mostly neglected this property. Our model thus provides
an opportunity to study the role of transitivity in epidemic
dynamics in coevolving network systems. This rewiring rule
includes a parameter that governs the preferential rewiring
to close triangles. We study the impact of this transitivity
reinforcement on the spread of the infection and on the details
of the network using numerical simulations of the process
as well as an approximate master equation framework (see
[28,29]). In Sec. II we describe our model and in Sec. III
we present results obtained through numerical simulations,
highlighting the dynamical features observed in the model. In
Sec. IV we present a derivation of our semianalytical method,
confirming results obtained from numerical simulations. Sec-
tions III and IV also include identification and analysis of
bifurcations in the system dynamics. We conclude in Sec. V
with further discussion.

II. MODEL

We employ the classical setting of the SIS model [30,31].
We consider a network with N nodes and M undirected edges
(both constant), with M = 〈k〉N/2, where 〈k〉 is the average
degree. At a given time, each node is either in a susceptible (S)
or infected (I) state. Infected individuals infect each of their
susceptible neighbors at rate β while recovering (change to
susceptible) at rate α. Meanwhile, each susceptible individual
breaks each edge it has with an infected neighbor at rate γ ,
rewiring this link to a susceptible node.

Generalizing previously studied models, the new link cre-
ated during rewiring is made with probability η to a suscep-
tible node at distance 2, that is, a neighbor of a neighbor
to whom the given node is not already connected. Other-
wise (i.e., with probability 1 − η) the rewiring is made to
another susceptible node selected uniformly at random from
the network outside its immediate neighborhood [that is, self-
loops and repeated links (multiedges) are prohibited]. Under
the latter situation, uniform rewiring, there remains nonzero
probability of randomly picking a neighbor of a neighbor,

but this probability becomes vanishingly small for larger
networks. In the event that there is no available susceptible
node to rewire to (e.g., there are no distance-2 susceptible
nodes), the rewiring attempt fails and the original link to
the infected neighbor remains. Importantly, rewiring to a
neighbor’s neighbor closes a triangle between the three nodes,
directly reinforcing transitivity, whereas rewiring uniformly at
random tends to decrease transitivity.

III. NUMERICAL SIMULATION

Unless stated otherwise, our numerical results of the adap-
tive SIS system presented here are for networks with N =
25 000 nodes and M = 25 000 edges (that is, mean degree
〈k〉 = 2), and 1000 simulations of the process are produced
for each configuration of parameters. We performed Monte
Carlo simulations with the help of LARGENET, a C++ library
that has been widely used for simulations of large adaptive
networks [32,33]. We used LARGENET with fixed step size
1/N , asynchronously updating one randomly selected node at
a time.

Following Ref. [34], we consider the following three initial
degree distributions: the Poisson distribution

pP
k = 〈k〉ke−〈k〉

k!
, (1)

approximating the distribution of an Erdős-Rényi model for
large N ; a truncated power law distribution

pTPL
k =

{
1
C k−τ , 0 < k � kc

0, k > kc,
(2)

with τ = 2.161 and kc = 20 in order to make the mean degree
〈k〉 = 2 (we also study the effect of different cutoff degrees in
the Appendix A 1); and the degree regular distribution

pDR
k = δk,k0 , (3)

where δ is the Kronecker delta indicating every node has the
same initial degree k0 = 2. We observe that at large enough
time t , the system approaches a statistically stationary state
with features of interest such as the clustering coefficient and
disease prevalence fluctuating around mean values. For the
purposes of identifying this state numerically, we determine
the stationary state to be reached when the level of disease
prevalence I (expressed as a fraction of nodes) between two
consecutive integer times differs by at most 10−5. Under this
definition, we find that in practice networks with the above
three initial degree distributions reach their stationary states
before t = 5000 for η < 1. In contrast, when η = 1 we do
not observe convergence to stationary states, even after a long
time; rather, we appear to have a long, progressively slowing
decay of the disease prevalence (as we will see below in
Fig. 8).

To highlight the main differences between our model and
previous work without reinforced transitivity [34], we first
confirm that our model leads to nontrivial transitivity. We
explore two closely related measures of transitivity here. The
first measure is the average local clustering coefficient C =
1
N

∑N
i=1 Ci, where the local clustering coefficient Ci of vertex

i is Ci = Ti/τi, with Ti and τi the number of closed triplets
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FIG. 1. The level of transitivity varies with time t and the proba-
bility η of rewiring steps made to susceptible neighbors of neighbors.
The (a) average local clustering coefficient C and (c) transitivity T
are shown versus time t for simulations with initially Poisson degree
distribution with mean degree 〈k〉 = 2. The other parameters of the
system are β = 0.04, γ = 0.04, α = 0.005, and ε = 0.1. Also shown
are (b) C and (d) T at t = 5000 versus η for networks with the
same mean degree 〈k〉 = 2 but different initial degree distributions
[pP

k (Poisson), triangle; pTPL
k (truncated power law), circle; and pDR

k

(degree regular), square]. Plotted data correspond to mean values
computed over 30 Monte Carlo simulations. In (a) and (c), all cases
except η = 1 appear to reach stationarity by time t = 5000.

(triangles) and the total number of triplets centered at vertex
i, respectively [35]. The second measure is the transitivity
T (often called global clustering coefficient) [36], defined as
T = 3T /τ , where T and τ are, respectively, the total number
of closed triangles and the number of triplets in the network.
Figures 1(a) and 1(c) show the temporal evolution of the
average local clustering coefficient C and the transitivity T
in our model, with varying η from 0 to 1 in steps of 0.2,
keeping all other parameters fixed and choosing the initial
degree distribution to be Poisson. When η = 0, there is no
reinforcement of transitivity, i.e., C ≈ 0 (T ≈ 0) for all time
and we are in the same regime studied in Ref. [34]. For
nonzero η, the clustering coefficients rapidly increase and then
slowly converge to nonzero values, except in the case η = 1,
where we do not observe this convergence, and C (as well
as T ) appears to continue to grow with a diminishing rate.
We treat η = 1 as a special case in our model and will study
this case separately later. We also explored the influence of
initial degree distributions on the final clustering coefficient.
In Figs. 1(b) and 1(d) we observe that networks with the
regular degree distribution initially achieve higher clustering
coefficients compared to networks with the other two initial
distributions. Moreover, networks with initial Poisson and
truncated power law degree distributions show indistinguish-
able final clustering coefficients for η < 1. Finally, in Fig. 2
we examine the local clustering coefficient C grouped by
susceptible nodes S and infected nodes I at time t = 5000
for networks with Poisson degree distributions initially and
with different values of η. As η increases, susceptible nodes
typically achieve higher values of local clustering coefficient
C compared to the infected nodes.

Given that our model demonstrates nontrivial transitivity,
we now explore how the reinforced transitivity influences
the evolution of disease prevalence I . In Fig. 3 we plot the

FIG. 2. Local clustering coefficients C grouped by susceptible
nodes S and infected nodes I at time t = 5000 for (a) η = 0.2,
(b) η = 0.4, (c) η = 0.8, and (d) η = 1. The initial degree distribu-
tion is Poisson. The other parameters of the system are β = 0.04,
γ = 0.04, α = 0.005, ε = 0.1, and 〈k〉 = 2. At time t = 5000, all
cases except for η = 1 reach their stationary states. Each box plot
is obtained from a single Monte Carlo simulation of network size
N = 25 000. The notch of the box indicates the median (mostly
zero), the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively, whiskers extend to the most extreme
data points not considered as outliers, and the outliers are plotted
individually (the +’s).

observed disease prevalence at long times in the (γ , η) pa-
rameter space, fixing the infection rate β = 0.04 and recovery
rate α = 0.005 as in Ref. [34]. The phase diagram in Fig. 3 in-
dicates that for large enough γ the system eventually becomes
disease-free, presumably because susceptible nodes can easily
rid themselves of infected neighbors by rewiring these edges,
thus effectively quarantining the infection. When γ = 0, there
is no rewiring process, the network does not change, and
hence η has no effect. A more interesting behavior occurs for
γ � 0.05, with large values of disease prevalence that depend

FIG. 3. Phase diagrams in parameter space (γ , η) for the ob-
served disease prevalence I at time t = 10 000 on networks with
initial degree distributions that are (a) Poisson, (b) truncated power
law, and (c) degree regular. We set here β = 0.04, α = 0.005, and
ε = 0.1. At the selected time t = 10 000 all cases except η = 1 ap-
pear to have converged to their stationary states. Results are averaged
over 30 simulations at each set of parameters. These diagrams are
generated through bilinear interpolation from results on a regular
grid, leading to some apparent grid artifacts.
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FIG. 4. (a) Number of components Ns and (b) largest component
fraction s1 versus η at t = 5000. The initial degree distributions of
the networks are Poisson (P), truncated power law (TPL), and degree
regular (DR) with mean degree 〈k〉 = 2. The other parameters in the
system are γ = 0.04, β = 0.04, α = 0.005, and ε = 0.1. Every point
in the figure corresponds to the mean value computed over 30 simula-
tions. In these simulations, the mean number of components at t = 0
for Poisson, truncated power law, and degree regular distributions
are 666.17, 3348.27, and 6.03, respectively, and the mean largest
component fraction at t = 0 for Poisson, truncated power law, and
degree regular are 0.7971, 0.6828, and 0.7452, respectively. All cases
except η = 1 reach stationarity by time t = 5000.

on η in a complex manner. Since this parameter regime is most
interesting for our present study, in the rest of our simulations
we fix γ = 0.04 and vary η to investigate the influence of
transitivity reinforcement.

Another critical phenomenon that typically occurs in co-
evolving network models is the fission of the underlying
network as the system evolves. In Fig. 4 we explore the
number of connected components (Ns) and the fraction of
nodes in the largest component (s1) at t = 5000 for the three
initial settings of the degree distribution. We fix the mean

degree 〈k〉 = 2, γ = 0.04, β = 0.04, α = 0.005, and ε = 0.1
and then compute Ns and s1 at t = 5000. Varying η from
0 to 1, we observe the increase in Ns and decrease in s1,
indicating that higher η leads to more fragmented networks in
the stationary states. Interestingly, the results corresponding to
the Poisson and the truncated power law degree distributions
still overlap except when η = 1.

To further explore the dynamics of the system, we plot bi-
furcation diagrams in Fig. 5. The rows in Fig. 5 correspond to
different initial degree distributions with columns for different
values of η. When η < 1, for all three initial distributions there
exists a small bistable region near β

.= 0.16. The sudden jump
of I∞ around the critical β when η = 0 (the first column of
plots) implies that the transition might be discontinuous when
η = 0. This discontinuity appears to shrink as η increases. For
η = 0.8, the transition appears to be continuous. While we do
not conclusively confirm the nature of the transitions here, we
will investigate the transitions in more detail in Sec. V. We
emphasize the separation of figures corresponding to η = 1,
with the y axis labeled as I and not I∞, highlighting the fact
that for η = 1 the system does not reach a stationary state in
the observed time.

IV. APPROXIMATE MASTER EQUATIONS

We further study this system with approximate semiana-
lytical techniques, defining appropriate systems of ordinary
differential equations and then solving those systems numeri-
cally. The moment-closure frameworks of pair approximation
(PA) and approximate master equations (AMEs) have both
been used effectively in similar settings [1,28,37]. In PA, the
different counts of contact pairs are used to approximate the
density of triplets, thus closing the system of equations [28].
In contrast, the AME framework considers the populations
of nodes according to their state, degree, and the states of

FIG. 5. Bifurcation diagrams of the disease prevalence in the stationary state I∞ versus β at different values of η. Each row of plots
corresponds to a specific degree distribution: The first row is Poisson, the second row is truncated power law, and the third row is degree
regular. Each column of plots corresponds to a particular value of η, as indicated at the top of the column. Every point represents a mean of
30 realizations of the system at t = 10 000. The last column belongs to the η = 1 case, noting that the y axis is labeled I (cf. I∞) because
the simulations have not reached stationarity. The other parameters of the system are γ = 0.02 and α = 0.005. (We also study the effect of
different ε in initially Poisson networks; see the Appendix A 2.)
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their immediate neighbors, approximating other quantities
from these populations. The AME is an annealed mean field
approximation that deterministically approximates stochastic
systems. We note in particular that with the additional vari-
ables and corresponding differential equations in AMEs, the
triplet counts are precisely accounted for (cf. the closure ap-
proximations necessary to obtain triplet counts in PA) and that
the AME typically provides a more accurate approximation of
such dynamics and can be highly stable around the critical
point of the dynamics [1,28,34,37,38] (see also [28,37,39]
for comparisons between the AME and PA). We note that
Ref. [38] further extended this approach to classify links
according to the states, numbers of neighbors, and numbers of
infected neighbors at both ends of the links. This link-based
approach can further improve on the accuracy of the AME
method; however, it increases the system size from O(k2

max)
to O(k4

max) equations, where kmax is the maximum degree. As
such, we restrict our attention here to the AME method.

We employ an approach similar to that used in Ref. [34],
extending the equations to include the effect of transitivity re-
inforcement. Let Skl (t ) and Ikl (t ) be the fraction of susceptible
and infected nodes, respectively, of degree k with l infected
neighbors at time t [see the diagram in Fig. 6(a)]. Following

the notation in Ref. [34], we define the zeroth-order moments
of the Skl (t ) and Ikl (t ) distributions by

S ≡
∑

kl

Skl , I ≡
∑

kl

Ikl ;

the first-order moments by

SS ≡
∑

kl

(k − l )Skl , SI ≡
∑

kl

lSkl ,

IS ≡
∑

kl

(k − l )Ikl , II ≡
∑

kl

lIkl ;

and the second-order moments by

SSI ≡
∑

kl

(k − l )lSkl , SII ≡
∑

kl

l (l − 1)Skl .

It is worth noting that while node states and network topolo-
gies coevolve, some quantities are conserved. For example,
S + I = 1, since the number of nodes is fixed. Similarly,
SS + SI + IS + II = 〈k〉, because of the conservation of edges.
We then have the following ordinary differential equation
(ODE) governing the time evolution of the Skl compartment:

dSkl

dt
= αIkl − βlSkl + α[(l + 1)Sk(l+1) − lSkl ] + β

SSI

SS
[(k − l + 1)Sk(l−1) − (k − l )Skl ] + γ [(l + 1)Sk(l+1) − lSkl ]

+ γ η

{[
l

k − 1

IS
1
2 II + IS

SI

S
+ k − l − 1

k − 1

1
2 SS

1
2 SS + SI

SI

S

]
S(k−1)l −

[
l

k

IS
1
2 II + IS

SI

S
+ k − l

k

1
2 SS

1
2 SS + SI

SI

S

]
Skl

}

+ γ (1 − η)
SI

S
[S(k−1)l − Skl ]. (4)

Similarly, the ODE for the Ikl compartment is

dIkl

dt
= −αIkl + βlSkl + α[(l + 1)Ik(l+1) − lIkl ] + β

(
1 + SII

SI

)
[(k − l + 1)Ik(l−1) − (k − l )Ikl ]

+ γ [(k − l + 1)I(k+1)l − (k − l )Ikl ]. (5)

To describe the AME derivation, we will focus on ex-
plaining the Skl equation, as the derivation of corresponding
terms in the Ikl equation involves similar arguments. The terms
premultiplied by α and β in the first line of Eq. (4) account
for the center node and its neighbors recovering from and
becoming infected. The term premultiplied by γ on the first
line describes the center class in state S dismissing one of its
state I neighbors and rewiring to a random node with state S.
For a more detailed discussion of the derivation of these terms,
we refer the reader to Ref. [34].

The second line of Eq. (4), premultiplied by γ η, is new
to the present work, accounting for a center class with state S
and its distance-2 neighbors with state S, breaking links to one
of their I neighbors and rewiring to the center node (see the
diagrams in Fig. 6). To better understand the derivation of this
line, we note that only S nodes can rewire and be rewired to in
this model (whereas I neighbors are only dropped by the ac-
tion of S nodes). Supposing the center node is of class S(k−1)l ,
then it has l

k−1 proportion of its neighbors infected neighbors,

and we describe the number of SI edges among them as
IS

1
2 II +IS

SI
S , making assumptions about independence to close the

equations with this approximation. Similarly, the same center
node class S(k−1)l has k−l−1

k−1 proportion of its neighbors sus-
ceptible, with the number of SI edges among them described

by
1
2 SS

1
2 SS+SI

SI
S . Therefore, the rate associated with the transition

S(k−1)l to Skl is l
k−1

IS
1
2 II +IS

SI
S + k−l−1

k−1

1
2 SS

1
2 SS+SI

SI
S . Following the

same arguments, we find that the corresponding rate for a node

leaving the Skl class is l
k

IS
1
2 II +IS

SI
S + k−l

k

1
2 SS

1
2 SS+SI

SI
S .

The last line of Eq. (4), premultiplied by γ (1 − η), is the
effect of a center class with state S rewired to a random
node in the network with state S. For the Ikl compartment
in Eq. (5), the center class can only lose edges due to
rewiring and the value of η does not change the rate at
which edges to I nodes are rewired. Therefore, the equa-
tion lacks terms premultiplied by γ η and γ (1 − η). The
resulting system of coupled ordinary differential equations

062301-5
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FIG. 6. Illustration of an S node rewiring to a neighbor’s neigh-
bor. (a) Before the rewiring, the center nodes in the diagram are of
class Skl and Ikl , respectively. Consider the two S nodes involved
when an SI edge is rewired to a distance-2 neighbor: the active node
doing the rewiring and the passive node receiving the newly rewired
edge. (b) Diagram representing the case when the center is passively
rewired by the action of a distance-2 neighbor, with the center node
moving to class S(k+1)l . (c) Diagram representing the case when the
center actively rewires to a distance-2 neighbor and the center node
becomes class Sk(l−1). The other processes of the adaptive SIS system
can be similarly diagramed.

contains 2(kmax + 1)2 equations, where kmax is the maximum
degree.

To determine the initial conditions for the above equations,
initially a fraction ε of randomly chosen nodes is infected,
independent of node degree. This gives us the set of initial
conditions

Skl (0) = (1 − ε)pk (0)

(
k

l

)
εl (1 − ε)k−l

Ikl (0) = εpk (0)

(
k

l

)
εl (1 − ε)k−l , (6)

where pk (0) is the degree distribution at t = 0. We proceed to
numerically solve the AME system of equations (4) and (5). In
the preceding section we presented an overview of the general
behavior of the model via explicit simulations of the model.
We now carry out a detailed comparison between the sim-
ulations and AME results, confirming the accuracy of the
AMEs and furthering our understanding of the adaptive SIS
dynamics with reinforced transitivity.

FIG. 7. Disease prevalence I at time t . The initial degree distribu-
tions are Poisson (diamonds) [at t = 0; see Eq. (1)], truncated power
law (squares) [at t = 0; see Eq. (2)], and degree regular (circles) [at
t = 0; see Eq. (3)]. Markers correspond to means computed over
1000 simulations and lines are the semianalytical AME results. The
parameters used are β = 0.04, γ = 0.04, α = 0.005, ε = 0.1, and
〈k〉 = 2, with (a) η = 0, (b) η = 0.2, (c) η = 0.4, and (d) η = 0.6.

V. EXPLORING THE SYSTEM THROUGH
SIMULATIONS AND AMES

First we plot the disease prevalence I against time t with
different η’s and different initial degree distributions in Fig. 7.
Note that η = 0 [Fig. 7(a)] is the case where our model
reduces to that studied in Ref. [34]. Networks with different
initial degree distributions converge to different stationary
disease prevalences. In the Poisson and the truncated power
law cases, the disease prevalence I approaches a nonzero
value, i.e., the system attains an endemic state. However, in
the degree regular case, I gradually approaches 0, i.e., the
system approaches a disease-free state. The thick lines in
Fig. 7 represent results derived from the AME approach, while
symbols are simulation results.

Most importantly, AME captures the stationary disease
prevalence in all the cases shown in the figure. Second, for
small η, AME approximates the temporal evolution of the
disease prevalence with a high level of accuracy, even in the
initial transient states, and correctly predicts the direction of
the changes with η. However, the differences between simu-
lations and the AME increase at larger η and are particularly
obvious for the truncated power law case, but the AME still
captures the overall shape of the temporal evolution of disease
prevalence. (To further highlight these elements, in Fig. 21
in the Appendix A 3, we provide a zoomed-in view for the
transient dynamics t ∈ [0, 1000] for some of the panels of
Fig. 8.)

To study the above results in greater detail, we allow η to
vary from 0 to 1 while keeping all other parameters fixed
and focusing on the initial Poisson degree distribution. We
compare simulation and AME results in Fig. 8, illustrating one
of the critical features of our model: the disease prevalence
decreases with increasing η. That is, we observe that sys-
tems with a stronger preference for transitivity have smaller

062301-6



SOCIAL CLUSTERING IN EPIDEMIC SPREAD ON … PHYSICAL REVIEW E 99, 062301 (2019)

FIG. 8. (a) Disease prevalence I at time t . The initial degree
distribution is Poisson. Different values of η are indicated by color.
The other parameters of the system are β = 0.04, γ = 0.04, α =
0.005, ε = 0.1, and 〈k〉 = 2. Circles correspond to means computed
over 1000 simulations. Lines are AME results. (b) Observe that for
η = 1 the simulations exhibit slow convergence and the AME fails
to capture the correct timescale for this convergence. (c) Plot of the
corresponding clustering coefficient C and transitivity T at t = 5000
for different η.

numbers of infected individuals, all else being equal. The
thick lines in Fig. 8(a) for the AME results accurately capture
the final disease prevalence and roughly describe its temporal
evolution for η < 0.8. For 0.8 � η � 1, the AME underes-
timates the stationary disease prevalence I but still captures
qualitative features of the evolution. Remarking again that
η = 1 is a special case, we note that the system does not
reach a well-defined stationary state in our simulations, with
I continuing to decrease. In Fig. 9 we further explore the
temporal evolution of I when η = 1 while varying 〈k〉 from
2 to 10. We identify a slow power law decay in I for 〈k〉 = 2;
using the curve fitting in MATLAB®, we find that the disease
prevalence I for η = 1 and 〈k〉 = 2 scales as I = 1.9t−0.173

(also shown in Fig. 9), with I appearing to slowly approach a
disease-free state. As the mean degree increases, the observed
decay with t becomes even slower, to the point that we cannot
claim anything about the functional form of the long-time

t
104 105 106

I

0.5

1

k = 2; I = 1.83t−0.168

k = 4; I = 6.75t−0.215

k = 6; I = 6.55t−0.188

k = 8; I = 4.38t−0.138

k = 10; I = 2.66t−0.088

FIG. 9. Scaling of disease prevalence I with time when η = 1.
As the average degree 〈k〉 becomes greater than 4, the scaling
exponent appears to decrease in magnitude, suggesting that this
phenomenon may depend on the level of sparsity of the underlying
network. The parameters here are β = 0.04, γ = 0.04, α = 0.005,
ε = 0.1, and N = 25 000. Markers correspond to means computed
over 30 simulations.

FIG. 10. Disease prevalence in the stationary state I∞ versus
η. The I∞’s were calculated at time t = 10 000. The initial de-
gree distributions are Poisson (diamonds) [at t = 0; see Eq. (1)],
truncated power law (squares) [at t = 0; see Eq. (2)], and degree
regular (circles) [at t = 0; see Eq. (3)]. Markers correspond to means
computed over 30 simulations and the lines are AME results. The
other parameters are β = 0.04, γ = 0.04, α = 0.005, ε = 0.1, and
〈k〉 = 2.

decay from the figure; nevertheless, we provide power law
fits to the late times in the figure for comparison. Although
the AME prediction for the temporal evolution for η = 1 is
qualitatively very different, it does appear to predict a correct
I∞ = 0 disease-free stationary state (see Fig. 8).

To summarize, we plot simulation results (markers) and
AME-based estimates (lines) of I∞ versus η for different
initial degree distributions in Fig. 10. The AME predictions
and simulation results agree very well. The role of reinforced
transitivity is clear: The final disease prevalence decreases
with increasing transitivity reinforcement for networks start-
ing with Poisson and power law degree distributions. (The
degree regular cases are already disease-free at stationarity for
these parameters.)

In addition to predictions of disease prevalence, the AME
approach contains and thus predicts the degree distributions
of the coevolving networks. In Fig. 11 we plot the stationary
joint distributions of node states and degrees for η = 0.4
for the three different initial distributions; that is, the degree
distributions of the susceptible S and infected I nodes are
indicated separately with normalization corresponding to the
respective fraction of nodes in each state. Markers and lines
in Fig. 11 represent the simulations and AME results, respec-
tively, demonstrating that the AME provides a good estimate
in each case. Note that in Fig. 11(c) the fraction of infected
nodes is very close to but not exactly zero. This is because
we stopped the numerical experiments when there are no SI
edges in the system; however, there are still a few II edges
and isolated infected nodes and as a result we still see infected
nodes with different degrees in the stationary states.

To determine how η impacts the degree distribution, we
plot the initial and stationary degree distributions for different
η’s in Fig. 12. As in previous figures, markers are simulations
and lines are AME results, which appear to be in good
agreement. Different colors represent different values of η,
with the interesting result that η appears to have only a small
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FIG. 11. Joint distributions of node states (S and I) and degrees at stationarity. The initial degree distributions are (a) Poisson, (b) truncated
power law, and (c) degree regular. Markers correspond to means computed over 200 simulations. Dashed and solid lines are the AME
predictions for the S and I states, respectively. The parameters used are β = 0.04, γ = 0.04, α = 0.005, ε = 0.1, η = 0.4, and 〈k〉 = 2.

effect on the total stationary degree distribution, even though
we have seen before that η does affect the disease prevalence.
Indeed, for both the initial Poisson and truncated power law
cases, the stationary degree distribution appears to be close
to Poisson with mean degree 〈k〉 = 2 [see the thick gray
line in Figs. 12(a) and 12(b)]. This observation implies that
the stationary states resulting from this process have both a
Poisson degree distribution and nonzero transitivity. We recall
that the model includes two kinds of rewiring: at random to
any susceptible node and to a distance-2 neighbor. Neither
of these has direct preference to rewire to vertices with a
particular degree, except that rewiring to a distance-2 neighbor
cannot rewire to a singleton. That is, both rewiring mecha-
nisms are essentially similar to random rewiring in ignoring
node degree, which leads to a Poisson degree distribution.
Hence, we expect the initial degree distributions to converge
to Poisson-like distributions in stationary.

Similar to Fig. 5 in Ref. [34], we plot (Fig. 13) bifurcation
diagrams of stationary disease prevalence level I∞ versus

infection rate β with an initial Poisson degree distribution and
with different mean degrees 〈k〉 = 2, 4, and 8. The other pa-
rameters here include γ = 0.02 and α = 0.005. We obtained
the average stationary disease prevalence level I∞ at each
value of β from 30 Monte Carlo simulations for each initial
infected proportion ε = 0.001, 0.01, 0.05, 0.99, and 0.999.
We call attention to the range of the infection rate β plotted
in Fig. 13, ranging from 0 to 0.04 in Figs. 13(a)–13(d) for
〈k〉 = 2, from 0 to 0.02 in Figs. 13(e)–13(h) for 〈k〉 = 4, and
from 0 to 0.008 in Figs. 13(i)–13(l) for 〈k〉 = 8. As evident
in the figure, our AME calculation reasonably predicts the
stationary disease prevalence level I∞, including its phase
transition and the bistability near that transition.

We observed that varying η (the probability of closing
triangles during rewiring) can lead to the transition of the
system from endemic to a disease-free state with a very slow
timescale when η = 1 (see Fig. 9). To further investigate
whether the nature of these transitions might be a finite-size
effect, in Fig. 14 we plot the susceptibility χ = N (〈I2

∞〉 −

k
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10−4
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100
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(b) 
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Final

k
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(c)
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η

0  0.4 0.8
k ke− k
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FIG. 12. Degree distributions in stationary states. The initial degree distributions are (a) Poisson, (b) truncated power law, and (c) degree
regular. Asterisks in each plot are the initial degree distributions. We plot results for η = 0, 0.2, 0.4, 0.6, and 0.8, as indicated by the color
bar, though in many cases the results at one value of η are obscured by those at other values. The other parameters are β = 0.04, γ = 0.04,
α = 0.005, ε = 0.1, and 〈k〉 = 2. We plot results at t = 5000, with all systems at these η reaching their stationary states by this time. (Note that
we did not plot η = 1.0 here.) Markers correspond to means computed over 200 simulations. Lines are the AME predictions for the stationary
degree distributions. The thick gray line in the background is the reference Poisson distribution expected for a network with 〈k〉 = 2. Observe
that for both the initial Poisson and truncated power law the stationary state degree distribution falls on this thick line, implying that the final
degree in both these cases is Poisson (at least approximately).
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FIG. 13. Bifurcation diagrams of stationary disease prevalence level I∞ versus infection rate β on adaptive networks with an initial Poisson
degree distribution, with 〈k〉 = 2 for the top row, 〈k〉 = 4 for the middle row, and 〈k〉 = 8 for the bottom row. In each row, we plot the case when
η = 0, 0.2, 0.4, and 0.6. The other parameters in the system are γ = 0.02 and α = 0.005. Solid lines are the predictions of our semianalytic
method and the markers represent the average of 30 simulations. We ran these Monte Carlo simulations for each value ε = 0.001, 0.01, 0.05,
0.99, and 0.999. For each run, the initial transient was discarded and the prevalence at stationarity was averaged over at least 10 000 time steps.

〈I∞〉2)/〈I∞〉, as defined in [40], for different network sizes N .
With the peak of the susceptibility identifying the transition,
the results in the figure show that for η < 1 the network size
N does not greatly change the transition location in β, except
in the smallest networks. However, we again see a qualitative
difference for η = 1, making a definitive conclusion in this
case more difficult.

In Fig. 15 we consider a complementary test of possible
finite-size effects: Keeping the average degree fixed (with
initial Poisson degree distributions), we vary the network size
from N = 10 000 to N = 50 000 while considering different
values of η from 0 to 1. Fixing the average degree, the
final disease prevalence level appears to be almost constant
across network sizes. Nevertheless, we note that the β values
considered in Fig. 15 are clearly above the transition between
disease-free and endemic cases, though the β used with
〈k〉 = 4 in Fig. 15(b) is much closer to the transition than that
in Fig. 15(a). Combined with Fig. 14, where the susceptibility
χ and phase transition seem to not depend on the network
size, these findings suggest that, in general, the stationary
disease prevalence level I∞ does not change appreciably with
the size of the system here. While we acknowledge that the
precise details in and immediately around the transition in
β might be expected to be more sensitive to system size,
such an exploration would involve an even more intensive
numerical investigation simultaneously considering variations
in N , β, and η. Meanwhile, the above results together appear
to support the hypothesis that the qualitative nature of the

transitions observed herein at various parameter settings are
not likely to be consequences of finite system sizes.

Furthermore, to demonstrate the influence of η on the tran-
sitions, in Fig. 16(a) we plot a phase diagram for the observed
stationary disease prevalence I∞ in the parameter space (β, η).
We observe that as η increases, the critical value of β where
the system changes from disease-free to endemic decreases.
To supplement the phase diagram, in Fig. 16(b) we plot the
numerically computed derivative of disease prevalence along
the β direction, dI∞/dβ, observing only a narrow range with
a large positive value near the transition points apparent in
Fig. 16(a). Also, the jump in dI∞

dβ
occurs at a lower β as η

increases, again showing the dependence of the transitions on
η. Finally, when η = 1, we see no jumps of I∞ when β varies,
further suggesting that the system behavior at η = 1 might be
qualitatively different. The observed transitions might also de-
pend on other parameters in the system. In the Appendix A 2,
we study the influence of ε (initial fraction of infected nodes)
on the transitions, and the effect of η remains.

Finally, we study the effect of η on the observed bifurca-
tions while varying the fraction of initial infections ε. Instead
of using a fixed value of ε (we recall ε = 0.1 in Figs. 14–16),
we consider ε to be 0.001, 0.01, 0.2, 0.4, 0.6, 0.8, 0.99,
and 0.999. We run simulations to t = 10 000 and once again
observe stationary states for η < 1. In Fig. 17 we show that
the AME predicts the disease prevalence curves for the three
different initial degree distributions. Figure 17 also illustrates
the effect of ε on the system. For example, in the degree
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FIG. 14. Susceptibility χ versus infected rate β in adaptive
networks with Poisson initial degree distributions with different
network size N at time t = 10 000 for various values of η: (a) η = 0,
(b) η = 0.2, (c) η = 0.4, (d) η = 0.6, (e) η = 0.8, and (f) η = 1.
Except for the case η = 1, all networks reached their stationary
disease prevalence I∞. The other parameters of the system are γ =
0.02, α = 0.005, ε = 0.1, and 〈k〉 = 2. Lines with different colors
correspond to means computed over 30 Monte Carlo simulations of
different network sizes.

regular case, the infection becomes endemic only for ε > 0.1,
whereas in the truncated power law case every ε leads to an
endemic state. In contrast, the Poisson case is more involved:
The system appears to be bistable, with larger ε yielding an
endemic infection and smaller ε typically reaching a disease-
free state. Even so, we note that the ε = 0.001 points in the
figure include points on both the disease-free and endemic
branches for the Poisson case.

We further investigate this behavior with calculations at
ε = 0.000 04, so on average we expect to initially see only
one infected node, and with probability (1 − 0.000 04)25 000 .=
37% the networks start with no infected nodes. We performed
30 Monte Carlo simulations for this ε, finding that 80% of
the networks lead to a disease-free state for the Poisson initial
condition; on the other hand, 60% of the networks lead to a
disease-free state for the truncated power law initial condition.
We observe that when ε is small enough, the system can
converge to either an endemic or disease-free state. The AME
is unable to predict this bistability from a fixed ε. However, in
the cases where the system exhibits only one type of stationary
state, then our AME system gives a good prediction of the sta-
tionary disease prevalence I∞. In the degree regular case [see

FIG. 15. Stationary disease prevalence level I∞ (as measured at
stopping time t = 20 000) versus network size on adaptive networks
with an initial Poisson degree distribution with (a) 〈k〉 = 2 and (b)
〈k〉 = 4. In (a) the infected and rewiring rates chosen are:β = 0.04
and γ = 0.04. In (b) the infected and rewiring rates chosen are
β = 0.01 and γ = 0.02. The other parameters in the system are α =
0.005 and ε = 0.1. Circles (and error bars) represent the mean (and
standard deviation) of outcomes from 30 Monte Carlo simulations.
We vary η from 0 to 1, recalling that η = 1 does not reach stationarity
by t = 20 000. We note that I∞ is consistent across network sizes in
the region tested in this paper.

Fig. 17(c)], there is an additional horizontal line indicating
that the AME can capture the state when I∞ = 0 for ε � 0.1.
In Fig. 17 there is greater variability near η = 1 because
the system does not converge to a stationary state for the
simulated times. Figure 17 also shows that for large enough
ε, I∞ becomes independent of the initial degree distribution,
with the results falling on the same universal curve.

FIG. 16. (a) Phase diagram in parameter space (β, η) for the
observed disease prevalence I at time t = 10 000 on the networks
with Poisson initial degree distributions. (b) Derivative of disease
prevalence with respect to β, i.e., dI∞

dβ
. The jump in dI∞

dβ
with positive

values implies a possible discontinuity of dI∞
dβ

. Except for the case
η = 1, all networks reached their stationary disease prevalence I∞.
We here fix the parameters of the system as γ = 0.02, α = 0.005,
ε = 0.1, and 〈k〉 = 2. Each pixel corresponds to the mean computed
over 30 Monte Carlo simulations.
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FIG. 17. Bifurcation diagrams of the disease prevalence I versus η on networks with initial degree distributions that are (a) Poisson,
(b) truncated power law, and (c) degree regular. The parameters of the system are β = 0.04, γ = 0.04, α = 0.005, and 〈k〉 = 2. Lines are the
AME predictions and symbols are the means from 30 simulations. We run simulations for each value ε = 0.001, 0.01, 0.2, 0.4, 0.6, 0.8, 0.99,
and, 0.999 and plot them with different colors. We set t = 10 000, with all parameters with η not close to 1 reaching their stationary states by
this time.

VI. DISCUSSION

We have introduced a model variant for the spread of dis-
ease on a coevolving network with reinforcement of transitiv-
ity, a quintessential property of social networks. Transitivity in
the model is controlled by a combination of the rewiring rate
γ and an additional parameter η for the probability of closing
triangles. This model provides an opportunity to study the role
of transitivity in altering the dynamics of disease spread.

We explored the parameter space of γ and η with three
different initial degree distributions. We have identified that
higher values of η lead to lower disease prevalence. In other
words, increased reinforcement of transitivity can decrease the
disease prevalence. This finding suggests a possible general
mechanism for controlling SIS-type epidemics, intuitively
encouraging healthy individuals to focus their contacts to
healthy individuals within a close social circle, and this will
typically do better than building contacts to random people,
in the sense of leading to lower endemic rates. The viability
of this general intuition beyond the specific setting of direct
closure of triangles may be important for future study.

We carried out a bifurcation analysis to understand the
properties of the systems at equilibrium. Figure 5 and the
Appendix A 2 imply that the phase transition from disease-
free to epidemic states as β varies might be discontinuous
when η < 1 and continuous when η = 1. Validating the nature
of this change is a promising potential direction for further
studies.

We extended the AME method to include the effect of tran-
sitivity reinforcement. We showed that for η < 0.8, our AME
system predicts the disease prevalence in the stationary state.
Furthermore, we illustrated the accuracies of the stationary
degree distributions predicted by the AME. This success of
the AME further supports its use to study a variety of binary
state dynamics on coevolving networks, accurately predicting
properties of large networks at a manageable computational
cost. We remark that the high AME accuracy observed here
for nonzero η may be surprising, in that a key assumption
of the AME method is that the networks are locally treelike,
but this assumption will seemingly become less valid as local
clustering increases with increasing η. Nevertheless, our AME
method appears able to provide good predictions; the possible

reasons for such accuracy remain a potential area for future
exploration. (See, e.g., Ref. [41] for other settings where
theoretical models remain good predictions in the presence of
significant local clustering.)

The behavior of this model at η = 1 (i.e., only rewiring
to close triangles) is different from the η < 1 cases. When
η = 1, the system evolves very slowly and does not converge
to a stationary state in our simulated times, with the disease
prevalence appearing to decay as a small inverse power of t .
We surmise that the system is slowly approaching a disease-
free state. In this case, the AME is not able to quantitatively
describe the temporal evolution of the system; however, it
appears to still correctly predict the final disease-free state.
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APPENDIX

1. Different cutoff degrees of truncated power-law distribution

Truncated power laws depend on an additional parameter,
known as the cutoff degree, kc [see Eq. (2) above for details].
Here we examine the effects of kc on the variable I (disease
prevalence level) at time t (see Fig. 18). Specifically, we
keep the mean degree 〈k〉 = 2 and vary the cutoff degree kc

from 20 to 60. We found that a different cutoff degree of
the truncated power law distribution yields a different level
of disease prevalence level temporarily, but they have the
same level of disease prevalence and degree distribution at
stationarity.
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FIG. 18. Disease prevalence I at time t with different cutoff
degrees kc in networks with a power law degree distribution at the
start of the simulation [see Eq. (2)]. Markers correspond to means
with standard deviations computed over 30 simulations. The param-
eter used are γ = 0.04, β = 0.04, α = 0.005, η = 0.2, and ε = 0.1.
Different cutoff degrees in the truncated power law distribution have
different levels of disease prevalence temporarily; however, as t
increases, they lead to the same level of disease prevalence.

2. Bifurcation diagrams with different ε

Here we revisit the bifurcation diagram in Fig. 5 and let the
initial infected ratio ε vary from 0.001 to 0.999. In Fig. 19 we
can see that the critical region of transition also depends on ε.

3. The AME and the transitory dynamics

To investigate how the AME describes the temporal evo-
lution of the system dynamics, especially the transitory

I
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0.8 (a) (b)

P at t = 0
TPL at t = 0
DR at t = 0

t
0 400 800

I
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0.8 (c)
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FIG. 20. Early evolution of the disease prevalence I in adaptive
networks with Poisson, truncated power law, and degree regular
initial degree distributions. The other parameters of the system are
β = 0.04, γ = 0.04, α = 0.005, ε = 0.1, and 〈k〉 = 2. Different
values of η are chosen to be (a) η = 0, (b) η = 0.2, (c) η = 0.4, and
(d) η = 0.6. Symbols and error bars correspond to means computed
over 1000 Monte Carlo simulations and the solid lines are the AME
predictions.

dynamics in the early periods, we first present in Fig. 20
a zoomed-in version of Fig. 7 for the region t ∈ [0, 1000].
Overall, the AME is able to reproduce the general shape
of the time trajectories of the transitory dynamics. In
particular, we note that the AME performs well when

FIG. 19. Bifurcation diagrams of the disease prevalence in the stationary state I∞ versus β at various values of η and ε. Each column of
plots corresponds to a particular value of η and each row of plots corresponds to a particular value of ε. As in Fig. 5, every point represents
a mean of 30 realizations of the system at t = 10 000. The last column belongs to the η = 1 case, noting that the y axis is labeled I (cf. I∞)
because the simulations have not reached stationarity. The networks have a Poisson degree distribution initially. The other parameters of the
system are γ = 0.02 and α = 0.005.
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FIG. 21. Time evolution of the disease prevalence I , the fraction of SI links SI , the effective branching factor κS
IS , and the average number of

connections that susceptible nodes share with other susceptible nodes CSS , for (a)–(d) η = 0 and (e)–(h) η = 0.4. Diamond markers correspond
to means computed over 200 Monte Carlo simulations (error bars would be smaller than the markers here) and the solid lines are the AME
predictions. The initial degree distribution is Poisson and other parameters of the system are β = 0.04, γ = 0.04, α = 0.005, ε = 0.1, and
〈k〉 = 2.

initially the network is degree regular, regardless of η. For
the other two initial degree distributions, the AME per-
forms well when η is not too large, with the discrepancy
between simulations and AME approximations becoming
larger as η increases, especially for the truncated power law
cases.

Moreover, inspired by Ref. [34], in Fig. 21 we include the
evolution of the fraction of SI links SI , the effective branching
factor κS

IS ≡ SSI/SI , and the average number of connections
that susceptible nodes share with other susceptibles CSS ≡
SS/(SS + SI ) as well as the AME approximation for these
quantities. In an SIS model, SI measures the level of links that
could potentially pass the disease, κS

IS measures the average
number of susceptible neighbors that the infected end of a SI
link has, and CSS measures the fraction of susceptible neigh-
bors of a susceptible node. In Fig. 21 we observe that the AME
captures the qualitative behavior of the temporal evolution of
the different quantities, but again the discrepancy between

simulations and AME approximations becomes larger as η

increases.
Having shown at multiple places in the main text that

the AME accurately predicts the stationary level of disease
prevalence and various quantities of interest, we also note
here the level of agreement between the AME and simulation
for the stationary levels of the quantities in Fig. 21, with
good agreement at η = 0 and increased error for η = 0.4.
On the other hand, the differences between simulations at
different η are not particularly large for η up to around 0.6
and with qualitative differences only for η = 1 (see Figs. 8
and 10). The changes in the stationary levels predicted by the
AME do not vary greatly with η either, but they appear to
do so in the correct direction for these quantities here. While
the AME does not capture the system dynamics well when
η is large, it nevertheless provides good predictions for the
stationary disease prevalence (Figs. 10, 13, and 17) and degree
distributions (Figs. 11 and 12) for η not too close to 1.
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