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Abstract Aesthetic defects are a violation of quality attributes that are symp-toms 
of bad interface design programming decisions. They lead to deteriorating the 
perceived usability of mobile user interfaces and negatively impact the Users 
eXperience (UX) with the mobile app. Most existing studies relied on a subjective 
evaluation of aesthetic defects depending on end-users feedback, which makes the 
manual evaluation of mobile user interfaces human-centric, time-consuming, and 
error-prone. Therefore, recent studies have dedicated their effort to focus on the 
definition of mathematical formulas that each targets a specific structural quality of 
the interface. As the UX is tightly dependent on the user profile, the combi-nation 
and calibration of quality attributes, formulas, and users characteristics, when 
defining a defect, is not straightforward. In this context, we propose a fully 
automated framework which combines literature quality attributes with the users 
profile to identify aesthetic defects of MUI. More precisely, we consider the mobile 
user interface evaluation as a multi-objective optimization problem where the goal 
is to maximize the number of detected violations while minimizing the detection 
complexity of detection rules and enhancing the interfaces overall quality in means
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of guidance and coherence coverage. We conducted a comparative study of several 
evolutionary algorithms in terms of accurately identifying aesthetic defects. We 
reported their performance in solving the proposed search-based multi-objective 
optimization problem. The results confirm the efficiency of the Indicator-Based 
Evolutionary Algorithm (IBEA) in terms of assessing the developers in detecting 
typical defects and also in generating the most accurate detection rules.

Keywords Mobile user interface · Aesthetic quality · Evaluation

1 Introduction

The mobile environment has been advancing towards being the leading medium for 
the worlds global network [97]. As a consequence, the tremendous growth of mo-

bile applications offered to users a wide variety of applications (apps) with similar 
functionalities.This huge evolution of mobile apps induce to increasing attention to 
mobile user interfaces as the graphical part of the mobile device that allows the user 
to interact with the devices apps, features, content and functions. The quality of 
Mobile User Interfaces (MUIs) is a key factor in the mobile application effec-

tiveness and the user satisfaction. In addition, according to [96], the user interface 
represents an important part of the application.So, assessing the MUI helps to 
evaluate the interaction and usability of the overall system. Furthermore, user in-

terface level represents 50% of software code [64,70] which proves the importance of 
this level in the correctness and the effectiveness of the mobile application. [42] 
reported that MUI-related defects have a significant impact on the end users of the 
mobile applications. He has shown that 60% of defects can be traced to code in the 
Graphical User Interface (GUI), and 65% of GUI defects resulted in a loss of 
functionality. Therefore, evaluating a MUI is a very important phase in the 
development to decrease the maintenance cost of mobiles applications. In fact, 
detecting the aesthetic defects help the evaluator to quickly enhance the quality of 
MUIs as the aesthetic represents the beauty or the pleasing appearance of user 
interfaces of a mobile app that underlines a vital sub-characteristic of the overall 
usability [99]. Recently, reviews on the state of the art about evaluation methods for 
GUI have been tackled by several researchers [34,94,104]. However, there is no 
consensus on how mobile user interface should be assessed.

Various studies [25,51,19,36,86] have focused on the optimization of User In-

terface (UI) quality mainly by identifying aesthetic design defects. These defects

are violations of the structural design principles, defined in the literature [54,30,

12,83,11]. These approaches define each defect through a combination of struc-

tural metrics, extracted from UIs, and search for their appropriate threshold that,

combined, become problematic. For instance, a defect like overloaded MUI may

be identified by a large number of interactive objects in a UI, with respect to

its alignment points, or by a high value of UI complexity. Unfortunately, the de-

tection and correction of aesthetic design defects in non-trivial software systems

can be very challenging: The generation of detection rules for these defects, using

structural metrics, tends to be subjective and user-specific. For instance, there
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are multiple ways to correlate overloaded UI with structural metrics. Also, the

thresholds for these metrics differ from one user to another. For the example of

overloaded UI, what is considered to be an abnormal number of interactive objects

differs from one user to another, as some users are more familiar with loaded in-

terfaces and others tend to opt for a more simplistic design [65]. The optimal way

to tackle this problem, is to generate all possible combinations of metrics, with

their corresponding possible threshold values, for each defect, and evaluate it for

each type of user. As the number of possible combinations of metrics, correlated

with possible user profiles, tends to be very large, the exhaustive approaches tend

to be impractical. Based on these considerations, we suggest solving the detection

of defects process as a multi-objective optimization problem, where we search for

the trade-off of generating detection rules while maximizing their correctness and

minimizing their complexity.

In the area of HCI, several studies analyzed the quality of GUIs using the

manual definition of what is considered to be a bad design decision, the detection

of such patterns use the declarative rule definitions [88,57,58]. These rules are

manually defined to identify defects using combinations of quantitative metrics

and context criteria (user experience, user motivation, age, etc.). These evaluation

metrics are based on a set of interface attributes (number of interface components,

the number of the alignment point, the number of colors, etc.). More specifically,

in an exhaustive scenario, the number of possible metrics to deploy and the num-

ber of context criteria used to manually design rules tend to be vast. Moreover,

a calibration effort is needed for finding the best threshold for evaluation metrics

and/or context criteria that constitute each rule. In fact, it is very difficult to gen-

eralize these rules for all mobile interfaces when taking into account heterogeneous

user profiles. Another interesting observation is that translating defects into rules

is not straightforward because there is no consensus on what can be seen as a de-

fect on the GUI according to calculated metrics without a manual validation from

the user. Moreover, the same mobile user interface attributes could be associated

with multi-evaluation metrics. When consensus exists, the same evaluation metrics

could be related to multi-defect types. In addition, the majority of existing work

proposes to manually define the detection rules [88,57,26]. This task is complex,

time-consuming and subjective.

In addition, it was a challenge for developers to provide users with a better user

experience. The importance of involving user profiles in the design and evaluation

of Graphical User Interfaces (GUIs) has been advocated in the recent studies [35,

59,62]. However, and to the best of our knowledge, no previous study has explored

the evaluation of GUIs quality in function of users characteristics. In this context,

our goal is to assist developers when designing Mobile User Interfaces (MUI) by

evaluating their quality based on the nature of potential users of their apps. Most

of the existing tools and frameworks are mainly testing the apps from a functional

perspective, along with helping developers in automating code- reviewing, debug-

ging, and code design smells. Only few studies assess the quality of the apps GUI

design, while taking into account the users profile, yet GUIs are critical in influ-

encing the users perception of the app and its functionality [56,20,53]. Therefore,

the design of an adequate GUI enhances the users satisfaction regarding the high
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number of competing applications that are continuously growing in several app

stores and mobile apps markets.

To our best knowledge, there are no multi-objective evaluation solutions dedicated

to evaluating the quality of GUIs within mobile apps, and taking into account user

characteristics. For this purpose, this research focuses on studying the popular

metrics, generally used in evaluating GUIs, and adapted them to the context of

mobile apps based on the following main properties:

Structural design metrics Mobile GUIs are a family of a larger category of event-

driven graphical interfaces. Consequently, just like any software system, they share

design characteristics that can be measured and evaluated through the static anal-

ysis of the GUIs source code. In other terms, several metrics such as complexity,

symmetry and repartition of components, once combined, can be used as indica-

tors of good or bad design decisions when placing components within an interface.

Focused interfaces The regular applications rely on training and documentation to

provide guidance for users to use them. However, mobile apps, are expected to be

more intuitive. In fact, these apps are used in smaller sized input mediums that are

still able to accept more diverse user gestures and commands. More concretely, the

GUI has not only to adequately respond to most, if not all, gestures that may look

evident to common users, but also it is expected to be intuitive while accommo-

dating a vast variety of potential users and to close the gap between generations.

To this end, typical context criteria, such as age, experience, and motivation etc.

are used to classify users into families and guide the app architect into deciphering

what is expected to be in the GUI from the user’s perspective.

Since the end-users are the final judges of UI design choices, it is impractical to

coin UI design defects without taking into account their profile as a part of the

definition. Due to the diversity of target app audience, and the large number of

design properties of GUI, there is a difficulty to express the defects of user inter-

faces. Consequently, our work focuses on how to combine these two dimensions to

model the symptoms of GUI quality deterioration.

Thus, one of our contributions is the automation of the generation of rules

instead of the manual process. Various types of structural aesthetics metrics have

been adopted to evaluate the quality of GUIs. Using our approach as a develop-

ment support tool, developers can take as input the user’s feedback on their UIs,

along with their characteristics, to automatically generate rules for what users have

considered to be problematic for in the UI design. To build on existing studies, we

gathered the structural aesthetics metrics to cover the visual com- plexity and the

visual aesthetics of the GUI [95,84,66,12]. As found out by the experimental study

done by Riegler and Holzmann [77], any variation of elements sizes, text fonts, or

colors will increase the complexity of the MUI. As these parameters represent some

visual aspects of the MUI, we will categorize them under what we call a visual

complexity to avoid using the nomination of complexity that undertakes another

attributes of the GUIs. This research aims to address these issues by proposing a

GUI evaluation approach that takes as input from one dimension a set of quality

metrics, context criteria and defect types and from another dimension the users

feedback of their usage to a given set of GUIs and it will automatically generate
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detection rules of what users saw as problems in the GUIs. Due to the stochastic

nature of the rules generation, we considered it as an optimization problem. Con-

sequently, a comparative study of several search-based algorithms was conducted.

The validation of this work shows that we were able to automatically generate

rules that can replicate the defects identified by the users. These rules can be used

to potentially evaluate GUIs in the upcoming app releases and prevent the leaking

of any GUI defect.

To summarize, the main explored problem in this study centers around the 
automation of the MUI aesthetics quality evaluation process. Precisely, we tack-led 
the relationship between the MUI structural design and user’s perception. We 
considered five user’s profile demographics attributes to find a trade-off between 
how each type of users perceive the aesthetics quality of the MUI. We mainly con-

tribute to the research community and to the area of HCI with a set of evaluation 
rules that considers different types of addressed final users. Our proposed approach 
differs widely from the previous proposed approaches, as we consider the formula-

tion of the evaluation rules as an optimization problem, where we automatically and 
genetically produce a set of heuristics rules that efficiently map between the user 
profile, metric and defect. In order to assure the maximum rules coverage, we 
compared four genetic algorithms NSGA-II, MOAD,SPEA2 and IBEA. The Users 
data has been collected through an experimentation where 200 MUIs have been 
evaluated by 20 students. To perform our approach we, proceeded in the following 
way:

– We studied the state-of-art metrics, widely used in the HCI, to evaluate UIs
and we adapted them to the context of GUIs. We implemented a plug-in that 
calculates these metrics through the static analysis of the GUIs source code 
called PLAIN.

– We automatically combined the structural metrics with the user context crite-
ria to generate detection rules for UI defects.Due to its stochastic nature, we 
defined rules generations as a multi-objective optimization problem.Our objec-

tive is to generate rules that adequately represent the user’s perspective of a bad 
UI while minimizing the number of metrics involved in this definition to reduce 
the detection complexity.

– We conducted a comparative study between several search-based algorithms,
and we reported their performance in terms of convergence towards an optimal 
state i. e., identifying the defects previously reported by the users. The algo-

rithms performance was tested from a functional perspective i.e., their ability 
to generate correct, yet simpler rules, and from an evolutionary perspective 
i.e., the ability of search heuristics to converge towards near-optimal solutions.

– A quantitative and qualitative evaluation of this approach on several real-
world mobile apps has shown its efficacy in detecting defects in particular and 
enhancing the GUI quality in general.

The results confirm the efficiency of the Indicator-Based Evolutionary Algorithm in 
terms of assessing the developers in detecting typical defects and also in generating 
the most accurate detection rules.
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The rest of the paper is organized as follows: Section 2 presents the necessary

background of GUI evaluation and demonstrates the problems tackled in this

research with regard to the description of context modeling, a set of quality metrics

and a set of defects. Section 3 describes the definition of rules generation as an

optimization problem. Results discussion of the comparative study is elaborated

in section 4. The threats to validity of our study is reminded in section 5. Section

6 details existing studies in evaluating quality of UIs. Finally, Section 7 gathers

our conclusions along with some pointers to future work.

2 Background: Graphical User Interface

2.1 Evaluation principle

In the literature, several authors [78,10] define the interface evaluation as the soft-

ware unity which improves its interaction with a user by the construction of users

model based on its crossed interactions with this user. The mobile user interfaces

must reach the users needs more easily, faster and with a higher level of satisfac-

tion. Such evaluation is very subjective to the users overall usage. According to [3],

usability is defined as the effectiveness, efficiency, and satisfaction with which a set

of users can achieve a set of tasks in a defined environment. According to [28,44]

user-centered evaluation aims to verify the quality of user interface, detect defects

and propose recommendation. More precisely, every evaluation includes identify-

ing and predicting the obstacles facing the users that are preventing them from

easily reaching out to system functionalities. For the evaluators, the construction

of the model is guided by gathering as much information as possible about the

users characteristics, in order to create a context of use, based on these character-

istics; that is to say, the identification of problematic properties that deteriorate

the interface quality does not only depend on structural properties but also on

target users characteristics. These properties are the utility and usability [21,24,

32]. To summarize, GUI diagnosis consists in ensuring that the system provides

to a user with relevant information via an interface on two levels:

– At the content and services level: ensuring that services proposed by the system

correspond to user requirements. This evaluation is out of the scope of our work.

– At the user interface level: it verifies how successful the interfaces are (style of

display, components distribution, etc.) in coping with user preferences.

The main objective of this paper is to analyze and automate such a non-functional

evaluation.

2.2 Context modeling

Several studies emphasize the importance of incorporating the users in the loop in

several engineering tasks such as modeling [73], testing [46] and bug triage [103].

However, taking into account the contexts characteristics is a support for GUI

evaluation. For instance, a GUI can be considered as plastic or multi-platform
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graphical user interface and be adapted to the user, the platform, and the envi-

ronment by respecting its usability [93,38,39]. The concept of context was defined

by [29] as follows: Context is any information that can be used to characterize

the situation of an entity. The entity can be a person, place, or object that is con-

sidered relevant to the interaction between a user and an application, including

the user and applications themselves. For this paper, we have retained the defini-

tion presented in [93]. This definition of the context based on three dimensions:

user, platform, and environment. When evaluating a GUI, each one of the con-

texts dimension can be characterized by several elements. Thus, the user could be

characterized by:

– Age.

– Interest: is a feeling of a user whose attention, concern, or curiosity is particu-

larly engaged when interacting with the GUI, etc. [31].

– User experience: which is computer skills of the user, etc., [80,100,55,92,81].

– Motivation: which is a factoring motivated to act or accomplish that stimulate

desire and energy in user or having a strong reason to be continually interested

and to make an effort to achieve a goal.

The platform could be divided into two sub-parts (hardware and software):

– The hardware: which is all platforms specific technical aspects including all the

interaction possibilities, screen size, memory, etc. [98,90,14,91].

– Software: which is the set of applications installed on the platform including

an operating system, virtual machine,. [81,90,75].

The environment could be characterized by:

– Time: the year, month, day, morning, evening, public holiday, etc. [52,15,43,

74].

– Geographical element: GPS coordinates or the type of space like a station or

a store,... [31,71,43].

– Physical environment or environment condition like luminosity, noise, weather,

... [80,55,92,81,75]. For example, the luminosity which is a measurement of

brightness or light can involve a change at the level of the used colors. It can

be changed suddenly when the user passes from the shade to the sun such as

the luminosity of the screen, the back-lighting of the keyboard.

In our experiments, we use just five context criteria which are: age, interest, mo-

tivation, education level and user experience.

2.3 Aesthetics Defects of GUI

In the literature, we find a large list of aesthetic defects of user interface. In our

study, we focus on the following eight defects presented in table 1 and proposed

by [47]:
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Table 1 List of Aesthetic Defects

Aesthetics Defects Description

Incorrect layout of widgets It is related to the incorrect arrangement of
MUI components. [54]

Overloaded MUI It is a bad density of MUI. In other words,
users find the mobile interface too dense and
so difficult to read. [30]

Complicated MUI It is related to the MUI that includes too many
widgets and features which cannot meet the
users’ needs.[12]

Incorrect data presentation It is the incorrect extraction of information
and their display on the mobile screen.[83]

Lack of Cohesion in MUI It is the lack of the interrelatedness of MUI
components.[11]

Difficult navigation It is the of lack descriptive labels that can be
used to define the additional information.[4]

Ineffective appearance of wid-
gets

It occurs when MUI widgets follow an unex-
pected layout.[30]

Imbalanced MUI It is an unequal distribution of the quantity of
interactive objects of a MUI.

2.4 Adaptation of evaluation metrics for a mobile user interface

Several metrics have been used in HCI for the purpose of evaluating GUIs. In

this work, we use a set of evaluation metrics that were previously validated using

several ergonomic criteria proposed by [87]. In fact, these structural metrics are

adapted to evaluate the structural aspect of GUI. In this study, we used metrics

proposed by [87] that can be classified into two criteria: (1) guidance (2) coherence.

– Guidance: User guidance refers to the means available to advise, orient, in-

form, interact, and guide the users throughout their interaction with the com-

puter (message, alarm, label, etc.). This criterion is subdivided into four met-

rics: regularity, composition, sorting, and complexity.

Regularity

The regularity metric allows a GUI to have a consistent spacing between all

its components while minimizing the number of rows and columns of these

interfaces (alignment points). The purpose of this metric is to arrange the GUI

components in order to preserve their structure. This metric has an influence

on user criteria such as age, motivation, etc. In addition, the regularity of the

GUI offers users the opportunity to satisfy their needs more easily.

In the context of mobile applications, the interfaces that have a high level of

regularity are the most relevant. We use the following formula to measure this

metric.

RM = 1− (
Nav +Nah +Nsp

3n
) ∈ [0, 1] (1)

Where:

Nav:the numbers of vertical alignment points (number of rows).
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Nah:the numbers of horizontal alignment points (number of columns).

Nsp:the number of distinct distances between column and row starting points.

n:the number of the component of the mobile user interface. An example of

this metric is shown in figure 1.

Fig. 1 An example of regularity metric calculation.

Composition

This metric serves to increase the visual clarity of the GUI by the meaningful

arrangement of the interface components.The primary objective of this metric

is the visual and semantic grouping of these components that are related in

the same border (the line, the color, the shape, etc.).These metric counts the

number (number) of objects that have a clear boundary by the group. Gener-

ally, GUI composition helps younger or older users with low computer skills to

interact with the system. In fact, this kind of user prefers GUI with the high

composition. To measure this metric, we use the following formula:

COM = 1− (
G+ UG

2n
) ∈ [0, 1] (2)

Where:

G:the number of groups with clear boundary by line, background, color, or

space.

UG:the number of ungrouped objects

n:the number of the component of the mobile user interface. An example of

this metric is shown in figure 2.



10 Makram Soui et al.

Fig. 2 An example of composition metric calculation.

Sorting

It ranks the GUI components according to the eye movement that moves se-

quentially from a dark to a lighter area, from big to little objects, etc. However,

it arranges the component in a logical and sequential ordering that refers to the

users needs. In fact, it helps the user throughout their interaction with the mo-

bile user interfaces by offering to the elderly users an ordered interface with a

high level of sorting. We propose the following formula to calculate this metric:

SM = 1− (
(
∑

j=UL,UR,LL,LR(qj
∑n

i=1Ni,j))

4n
) ∈ [0, 1] (3)

Where:

UL: upper-left

UR: upper-right

LL: lower-left

LR: lower-right

Ni,j : is the number of object on the quadrant j.

Each quadrant is given a weighting in qj . So,qUL==4,qUR=3,qLL=2,qLR=1.

An example of this metric is shown in figure 3.

Complexity

Complexity metric aims to keep up not only an optimal number of interactive

objects in GUI but also a minimal number of alignment points. It offers to the

user only the relevant information that satisfies their needs and expectation.

In fact, novice users usually prefer an interface with a low level of complexity

while users having higher education level prefer MUI with a high level of com-

plexity. In our work, we calculate the complexity metric as follows:
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Fig. 3 An example of sorting metric calculation.

CM = (
Nvap +Nhap

2n
) ∈ [0, 1] (4)

Where:

Nvap= number of vertical alignment points.

Nhap= number of horizontal alignment points.

n = number of object on the mobile user interface.

An example of this metric is shown in figure 4.

Fig. 4 An example of complexity metric calculation.
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– Coherence It supplies how good the interaction between users and mobile

user interfaces is, and secures the efficient use of the MUI. This criterion is

subdivided into four metrics: integrality, density, repartition, and symmetry.

Integrality

Integrality metrics arranges all GUI components in order to seem to be a

one piece. In fact, the screen size of the smartphone is not the same as of a

computer that is why it is necessary to adapt the information quantities and

form of information. it is the extent to which the components are correlated

with the size, number of space between groups and margins. A good integrality

is obtained by using the optimum number of size component (minimize the uses

of different sizes in the mobile interface) and leaving less space between objects.

When the level of integrality increases, the mobile interface is not centered as

well. The formula of This metric is given as follow:

IM = 1− (0.5

[
|Nsize − 1|

n
+
|asc +

∑n
i ai|

2aMUI

]
) ∈ [0, 1] (5)

Where:

Nsize = the number of various sizes belong into used objects.

n = the number of objects.

aMUI= the area of the mobile interface.

asc = the area of the screen.

ai = the area of the interactive object i.

An example of this metric is shown in figure 5.

Fig. 5 An example of integrality metric calculation.
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Density

This metric aims to minimize the number of component in an MUI. The level

of this metric depends on the motivation, experience, interest of users and the

type of target platform. In fact, a user with a low motivation prefers an MUI

with a low-density level. We can calculate it as follow:

DM = 0.5

∣∣∣∣∑n
i ai

aMUI
+
aMUI

asc

∣∣∣∣ ∈ [0, 1] (6)

Where:

ai= area of the interactive object i.

asc= area of the screen of interactive platform.

n= number of interactive object.

aMUI= the area of the mobile user interface.

An example of this metric is shown in figure 6.

Fig. 6 An example of density metric calculation.

Repartition

This metric aims to provide an equal arrangement of all component of GUI

among the four quadrants (upper left, upper-right, lower-left, lower-right). It

calculates the numbers of different ways that objects can be organized in the

four quadrants of GUI, compared to an optimal distribution. In fact, for a GUI

with N components, there are n! different ways to arrange them. However, the

optimal distribution is obtained when the N objects are uniformly distributed
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in the four quadrants of the GUI. For example, a GUI should propose an

optimal distribution for novice users in order to help them to navigate through

it. The formula of this metric (RM) is given as follow:

RM =
(n
4 !)4

nUL!nUR!nLL!nLR!
∈ [0, 1] (7)

Where:

n: is the number of object on the mobile user interface.

nUL: is the number of object on the upper-left.

nUR: is the number of object on the upper-right.

nLL: is the number of object on the lower-left.

nLR: is the number of object on the lower-right.

An example of this metric is shown in figure 7.

Fig. 7 An example of repartition metric calculation.

Symmetry

Symmetry aims to distribute uniformly the number of the component on the

right and the left columns of a GUI while duplicating it on the left, right, and

radical of GUI center-line. It avoids the imbalance in the different part of GUI.

For example, this metric adjusts the GUI for users with low motivation in order

to stimulate their interests. In our work, we use the formula proposed by [66].

SYM = −|SYMvertical|+ |SYMhorizontal|+ |SYMradial|
3

∈ [0, 1] (8)
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Symvertical, Symhorizontal, Symradial = The vertical , horizontal and radial

symmetries with :

Symvertical =
|Θ′LL −Θ

′
LR|+ |R

′
UL −R

′
UR|+ |R

′
LL −R

′
LR|

|B′UL −B
′
UR|+ |B

′
LL −B

′
LR|+ |Θ

′
UL −Θ

′
UR|+

|Y ′LL − Y
′
LR|+ |H

′
UL −X

′
UR|+ |H

′
LL −H

′
LR|+

|X′UL −X
′
UR|+ |X

′
LL −X

′
LR|+ |Y

′
UL − Y

′
UR|+

12

Symhorizontal =
|Θ′LL −Θ

′
LR|+ |R

′
UL −R

′
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Xj =
∑nj

n=i|Xij −Xc|

Yj =
∑nj

n=i|Yij − Yc|

Hj =
∑nj

n=i hij

Bj =
∑nj

n=i bij

Θj =
∑nj

n=i|
Yij−Yc

Xij−Xc
|

Rj =
∑nj

n=i

√
(Xij −Xc)2 + (Yij − Yc)2

with j ∈ {UL,UR,LL,LR}Where UL, UR, LL, and LR are respectively: Upper-

Left, Upper-Right, Lower-Left, and Lower-Right.

Xj : is the total x-distance of quadrant j.

Yj : is the total y-distance.

Hj : is the total height.

Bj : is the total width.

θj : is the total angle.

Rj : is the total distance.

(xij ; yij): the coordinates of the centres of object i on quadrant j.
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(xc; yc): the coordinates of the frame.

bij : the width of the object.

hij : the height of the object.

nij : the total number of objects on the quadrant.An example of this metric is

shown in figure 8.

Fig. 8 An example of symmetry metric calculation.

3 Approach

We propose an automatic approach that uses the metrics mentioned above to

define possible GUI bad decisions, based on any knowledge from previous GUIs

evaluations.

The proposed approach is called AQUA (Assessing the quality of Mobile User

Interfaces).As depicted in Figure 9, our approach has three phases:

1) collection of defects examples (A1)

2) the extraction of evaluation rules (A2)

3) the evaluation of GUI quality through defects detection (A3).
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Fig. 9 Approach overview.

3.1 Data Collection

3.1.1 Extraction of defect examples

This phase consists of the construction of a base of defects examples that will

guide the extraction of evaluation rules. It includes two steps: the first one is the

collection of users opinion. The base of examples can be seen as a pair of the users’

profile, which is defined by several properties that characterize the user and its

context of use, and the second step captures his/her opinion about any problems

identified in the GUIs. The subjects were invited to fill a questionnaire that aims

to evaluate user interfaces of the studied projects. This questionnaire was divided

into two parts:

– User profile: Contains the profile of the suggested user.

– User evaluation: Contains the answer of the user to the demanded questions

after testing the project.

In this context, the subjects were first asked to fill out the first part of the ques-

tionnaire that contains seven questions. Then, we collect the profile of all the

users. Moreover, we propose for each user the appropriate interface according to

his profile. We used five context criteria ( age, motivation, education level, user

experience and interest) that can take three values (Low, Medium, and High).

However, the subjects have different values for the criterion age. So, we classify

the user according to their age into three intervals: the first is in [18,30], the sec-

ond is in [30,55] and the third is in [55,80], and we accord the values low, medium

and high respectively. After answering the first part, the subjects should test their

appropriate interface and evaluate in order to detect the quality defects such as

overloaded of GUI, incorrect layout of widgets, complicated GUI, interface lack of

cohesion, imbalance GUI. The subjects are asked to express their satisfaction after

testing their appropriate interface. So, they are invited to select for each question

one of the possibilities: ”Yes”, ”No”, or ”Maybe” (if not sure).Their evaluation

results are reviewed by two observers and an expert in mobile user interface de-

sign.This questionnaire is distributed among the subjects in a pre-experimental



18 Makram Soui et al.

setup. Since we collect the result of evaluation from the questionnaire, we orga-

nize it into a survey(trace) to validate the evaluation rules generated from our

approach. Figure 10 shows an example of an evaluated interface labeled prefer-

ences extracted from a mobile app called lirbi, and the revealed problems by the

evaluators. As explained in the survey, this interface has been identified as difficult

navigation defect (low composition) by a user with medium motivation while the

same interface has not been seen defective by another user with higher motivation.

Fig. 10 Evaluation traces example of lirbis preferences mobile interface.

It is important to note that retrieving such information is not trivial, users may

or may not share some of their personal information which makes profiling them a

difficult task. In addition, users are not supposed to know all defects types in the

GUIs. To mitigate this, users opinions about any possible defects in the code can be

extracted either explicitly through surveys like previous studies that have been con-

ducting such human-intensive evaluation, or through semi-automated user opinion

mining techniques that rely on natural language processing and deep learning to

automatically extract the users opinion from comments and reviews left that can

be located in the apps market. For our study, we surveyed to obtain the defects,

which can be seen as the bottleneck of our approach,but this can be mitigated

by using one of the opinion extraction approaches (questionnaire, interviews, ect.)

[60, 61, 62]. Moreover, the main contribution of this work is to generate detection

rules for a base of manually detected defects, so this manual detection is out of the

scope of the papers contributions. However, all structural measures of the GUIs

are done by our tool that we developed as a Java plug-in called PLAIN(PLugin for

predicting the usAbility of mobile user INterface) which helps evaluator to parse

the source code of GUI [87].

3.1.2 Parsing the GUI source code

This step takes as inputs the GUIs to evaluate and generates as output the evalu-

ation metrics values. It consists of two sub-steps: 1) GUI properties extractor and

2) evaluation metrics calculator.
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GUI properties extractor

This sub-step consists of parsing the GUI source code of the studied MUI to

populate the evaluation metrics using the Java plug-in PLAIN. PLAIN is used

to parse the source code of GUI in order to extract the graphical properties of

each component of the GUI (such as the width, the height, and the alignment

coordinates etc). PLAIN manages the distribution of elements in the GUI by

gathering information regarding their width as the horizontal measurement taken

at right angles to the left ones. The height is calculated by determining the distance

from the bottom to the top of a mobile object standing upright. The alignment

is the number of columns and rows used in the GUI. As an illustrative example,

we are interested in extracting the properties of preferences, the previously shown

GUI. Figure 11 reports its graphical properties in terms of components placements.

These graphical measurements would be then used to calculate the metrics by the

application of predefined formulas of each metric.

Fig. 11 properties values extracted from lirbis preferences mobile interface.

Evaluation metrics calculator

This sub-step aims to calculate the quality metrics values according to our formu-

las mentioned above (see section 2.4). It has as input the values of components

properties and generates as output the measures of quality metrics for each GUI.

The evaluation metrics are regularity, composition, sorting, complexity, integrality,

density, symmetry and repartition. Figure 12 shows the values of these evaluation

metrics generated by the plug-in.

These values are taken as inputs to the evolutionary algorithm in order to

generate evaluation rules. In this context, we need to classify the GUI problems

according to the metrics values in order to extract interesting evaluation rules. In
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Fig. 12 Evaluation metrics values.

our study, we consider eight types of problems that correspond to each metric of

GUI basing on the threshold of this metrics values. Thus, a mobile user interface

with a value of the metrics lower or higher than the threshold is considered as an

interface which has problems. For example, if the density metrics of an GUI has

a value superior to 0.5 then the problem of this GUI is the overloaded interface.

Once evaluation rules are adapted to the current GUI to evaluate, the problems

can be detected.The plug-in (PLAIN) uses the adjusted evaluation rules in order to

extract the quality defects of the evaluated GUIs. If a GUI has a quality problem,

the detected problems can take values (high, low) according to the evaluation

metrics that report this problem. However, PLAIN is a plug-in that analyzes the

source code of GUIs and defects related to the quality of GUI. First, the plug-

in generates all components properties for each GUI. Second, these properties

are used to calculate quality evaluation metrics measures. Third, based on these

measures our plug-in adjusts the evaluation rules based on the box plot technique.

Finally, PLAIN analyzes the evaluation rules in order to provide a final decision

about the mobile user interface to detect the problems.

3.2 Extraction of evaluation rules

The process of the extraction of evaluation rules combines randomly these inputs

in order to generate interesting rules. Thus, due to a large number of context

criteria, a large list of evaluation metrics and its equivalents of defect types, the

creation of detection rules has become a difficult task. Therefore, it is not possible

to use a determinist approach to solve this problematic [33,18,17,16,8,9,5–7]. To

this end, we propose to create randomly these rules based on a heuristic search.

The rule generation process aims to find the best combination between k context

criteria, m quality metrics and p possible problems (defects). The number N of

possible combinations is very large. With a being the number of all context crite-

ria, b is the number of quality metrics and c is the number of possible defect types.
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An exhaustive search cannot be used within a reasonable time frame to explore

this huge number of combinations. The optimal solution in this huge search space

is a set of rules that detect the maximum of defects (through the combination

of context criteria with an associated metric) and contains the minimum of rules

with the maximum number of guidance and coherence metrics. Thus, we consider

the rules generation as a multi-objective optimization problem. This phase con-

sists of generating evaluation rules. It includes four steps: 1) construction of initial

population of evaluation rules (A3.1), 2) selection of best individuals (A3.2), 3)

crossover of parents (A3.3) and 4) mutation of parents (A3.4). These steps per-

formed iteratively in order to generate evaluation rules.The algorithm terminates

when it reaches the last iteration accordding to the stopping criteria which is the

maximum number of generation. In this phase, we need to choose a multi-objective

algorithm to perform the process of evaluation rules extraction. In this context,

we will compare four evolutionary algorithms: MOEA/D, NSGAII, IBEA, and

SPEA2, in order to choose the appropriate algorithm that reaches the purpose of

our study by satisfying the four conflicting criteria. This phase takes as inputs:

– The base of examples: contains the profiles of the users that are invited to test

the GUIs and report the detected problems of GUI.

– List of context criteria: contains the various context criteria of users (age,

motivation, education level, user experience, interest, etc.), the platform prop-

erties (screen size, memory, etc.) and the characteristics of the environment

(luminosity, time, weather, etc.) and the possible values of each criterion.

– List of defects: contains the different type of GUI problems detected by the

users.

– Metrics values: contains the values of quality metrics for each GUI calculated

by the plug-in.

Besides, the quality of this solution is calculated by the fitness function that

compares the different generated rules based on the base of examples. Figure 13

presents the steps of this phase.

Fig. 13 Extraction of evaluation rules.
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3.2.1 MOEA/D algorithm overview

MOEA/D is a multi-objective evolutionary algorithm based on decomposition. It

decomposes a multi-objective optimization problem (MOP) into many single ob-

jective optimization sub-problems and optimizes them simultaneously. According

to [65], MOEA/D has several features. In fact, it introduces the decompositions

approaches into the multi-objective evolutionary computation. Besides, it solves

multi issues of a multi-objective evolutionary algorithm such as fitness assignment

and diversity maintenance because it optimizes multi subproblems rather than a

whole problem. MOEA/D has multi advantages than the others evolutionary algo-

rithm regarding complexity and solution quality. It can incorporate the objective

normalization technique. The development of MOEA/D takes place around three

successive stages that are selection, crossover, and mutation. In fact, it starts with

the selection stage which aims to allow the best individuals of a population to

reproduce. It compares them based on the values of their fitness functions. Then,

the crossover stage takes place to allow the transmission of the characteristics of

the best individual parent to the new individuals children by replacing the ran-

domly chosen dimensions of the individual parent with those of another individual

parent to obtain two different children. After that, there is the mutation operator

that allows the modification, with a certain probability, of one or several nodes

of the selected individual, to introduce some variability into the population [66].

To convert these multi-objective problems to subproblems, MOAE/D required the

Tchebyche approach to reach this goal. In this approach, the objective function of

the subproblem has the following form [66]:

minimize gte(X|λ,K∗) = max1<i<m(λi|fi(X)−K∗i |) (9)

Where:

i is the subproblem.

m is the number of subproblems.

X is the solution to the subproblem i.

K is the reference point which is the vector composed of all the desired values of

the objective.

λ is the weight vector.

for all i = 1,..,m λi = 1

During every generation, the population is a collection of the best solution

found for every sub-problem. The optimal solutions of two neighboring sub-problems

should be similar. Every sub-problem is optimized basically on information re-

ceived from its neighboring sub-problems.

3.2.2 NSGAII overview

The non-dominated sorting genetic algorithm (NSGA-II) is a powerful heuristic

search optimization method inspired by the Darwinian theory of evolution [67].

The basic idea is to explore the search space by making a population of candidate

solutions, evolve toward a good solution for a specific problem. NSGA-II starts
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with creating randomly the initial population P0 of individuals. Then, a child

population Q0 is generated from the parent population P0 using genetic operators

such as crossover and mutation. After that, a set of parents and its offsprings are

assembled and a subset of individuals is selected based on the dominance principle

to create the next generation. This process will be repeated until attaining the last

iteration according to the stop criteria. The algorithm terminates when it reaches

the stop criteria. In each iteration i, an offspring population Qt is generated from a

parent population Pt using genetic operators (selection, crossover and mutation).

Then, Qt and Pt are merged in order to create a global population Rt. Besides, each

solution Si in the population Rt is evaluated using our four objectives (maximize

the number of detected defects, minimize the solution size, maximize the guidance

coverage and maximize the coherence coverage. After calculating these functions,

all solutions will be sorted out in order to obtain a list of non-dominated fronts

F = F1; F2; ..., with F1 is the set of non-dominated solutions, F2 the set of

solutions dominated only by solutions in F1, etc. Then, the next population Pt+1

is created using the half top-ranked individuals. When the half is achieved inside a

front Fi, individuals of Fi, with the same dominance, are sorted using a normalized

average of the two objectives. After that genetic operators (selection, crossover,

and mutation) are applied to produce the set of individuals Qt+1 to produce

the population Rt+1. The algorithm terminates when it reaches the last iteration

according to the stop criteria. The output of the algorithm is the set of best

individuals, i.e., those in the Pareto front of the previous iteration.

3.2.3 IBEA overview

Indicator-Based evolutionary Algorithm (IBEA) is proposed by [68]. It aims to

estimate the hypervolume of solution (which is the volume in the objective space

covered by members of a non- dominated set of solutions). This algorithm uses

binary tournaments to fill the temporary mating pool P. It implements environ-

mental selection by iteratively removing the worst individual from the population

and updating the fitness values of the remaining individuals. Initially, IBEA gen-

erates a population P of size s and sets the generation size to 0. Then, it calculates

the fitness functions of individuals in P to choose an individual x from P with the

smallest fitness value, and it removes x from the population and updates the fitness

values of the remaining individuals. If a stopping criterion (generation size=max

generations) is satisfied, then it sets x to the set of the nondominated individuals

in P. Otherwise, it applies crossover and mutation operators to the mating pool

P and adds the resulting offsprings to P. Then, it increments the generation size

and returns to the environmental selection step.

3.2.4 SPEA2 overview

Strength Pareto Evolutionary Algorithm was proposed by [69]. SPEA uses a reg-

ular population and an archive. It starts with an initial population and an empty

archive and repeatedly performs the following steps. First, it copies all non domi-

nated population individuals to the archive; and deletes any dominated or dupli-

cates individuals from the archive. Afterward, fitness values are assigned to both
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archive and population members in which each i in the archive is attached to a

strength value S (i) in [0; 1], which at the same time represents its fitness value

F(i). S(i) is the number of population members j that are dominated by or equal

to i concerning the objective values, divided by the population size plus one. The

fitness F(j) of an individual j in the population is calculated by summing up the

strength values S(i) of all archive members i that dominate or are equal to j and

adding one at the end. The next step represents the mating selection phase where

individuals from the union of population and archive are selected using binary

tournaments. Finally, after crossover and mutation, the old population is replaced

by the resulting offsprings population.

3.2.5 Adaptation of the multi-objective evolutionary algorithm

The four following subsections describe our adaptation of the evolutionary al-

gorithm to our problem that generates a set of evaluation rules for mobile user

interfaces.

Individual representation

Our work aims to extract detection rules for GUI evaluation. We can consider

that our population is composed of a set of solutions (collection of rules). Our rule

is presented as a set of IF-THEN rule form. Consequently, a detection rule has

the following representation: IF (Context = ValueContext) AND (Metric (< / >)

ValueMetric) THEN Defect type. The IF clause corresponds to the combination

of a context criterion (age, motivation, etc.) with its following possible values

(low, medium, high), and an evaluation metric with its threshold value using the

logic operator AND. Besides, the THEN clause highlights the type of the detected

defect related to the GUI quality. To present our individual, we use a vector-

based solution coding. Each vector contains one rule. An example of individual

representation is given in figure 14.

Fig. 14 Individual representation.
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Generation of an initial population

The input of this stage corresponds to the list of context criteria (age, motiva-

tion, etc.), the evaluation metrics calculated by the parser (regularity, density,

complexity, etc.), the base of examples and the list of possible problems types.

Each attribute of the context criteria can take several values (low, medium and

high) and the evaluation metrics can take a value between 0 and 1. In this stage,

we extract randomly an initial population of rules from a possible combination

of inputs. The used algorithm needs to encode the structure of detection rules in

order to facilitate the generation of the initial population. Thus, the population is

constituted of a random number of solutions, where each solution is also composed

by a random set of rules.

Selection of population

At this level, we select the best solutions from the initial population in order to

discover the pertinent rules. The selection phase is based on the calculated values

of the fitness function. The quality of the generated solutions is evaluated using

the fitness function F(x) and it is normalized in the range [0, 1]. The idea is to

improve the quality of evaluation rules by reaching the four following objectives

of the problem:

1. Maximizing the number of defects: we consider the best solution is the solution

containing rules that maximize the number of defects.

Q(P): is the rate of problem by solution and it is calculated as follows:

Q(P ) =
n∑

i=1

R(Pi)

n
(10)

where R(P i) is the Number of occurrence of problem i in solution j divided by

the number of occurrence of problem i in the base of examples.

2. Minimizing the number of rules: This objective aims to minimize the rules

complexity by reducing the number of rules by the solution. A high number

of rules by solution does not mean that generated solution is optimal. To this

end, we consider the best solution that has a minimum number of rules.

3. Maximizing the guidance coverage: we consider the best solution is the solution

that maximizes the GUI guidance by satisfying the metrics related to guidance

criteria (regularity, composition, sorting, complexity) by the solution.

GuidanceCoverage =
n∑

i=1

(
nb∑
j=1

aj) (11)

Where: {
a(j) = 1 if the rule has a guidance metric

a(j) = 0 otherwise
(12)

n=is the number of rules by solution.

j=complexity,regularity,composition,sorting
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4. Maximizing the coherence coverage: we consider the best solution is the so-

lution that maximizes the GUI coherence by satisfying the metrics related to

coherence criteria (integrality, density, symmetry, repartition) by the solution.

CoherenceCoverage =
n∑

i=1

(
nb∑
j=1

aj) (13)

Where: {
a(j) = 1 if the rule has a guidance metric

a(j) = 0 otherwise
(14)

n=is the number of rules by solution.

j=integrality, density, symmetry,repartition.

In our work, we consider the generation of evaluation rules as a multi-objective

technique objective problem where the goal is to find the best rules maximizing

the number of detected problems, minimizing rules- complexity, maximizing the

coverage of GUI guidance, maximizing the coverage of GUI coherence. To this

end, we will compare four evolutionary algorithms (MOAE/D, NSGAII, IBEA,

and SPEA2) in order to choose the best one for automatic generation of the inter-

esting detection rules satisfying the four conflicting criteria. Our fitness function

is calculated using the following equation :

F (x) =


Minimizef1(x) = min(nb1, nb2, ..., nbn)

Maximizef2(x) = Q(P )

Maximizef3(x) = GuidanceCoverage

Maximizef4(x) = CoherenceCoverage

(15)

Where x is the decision variables of the problem.

N: number of solutions by population.

nb i: number of rules by solution i.

Guidance Coverage: the number of rules that satisfied the guidance metrics by

solution.

Coherence Coverage: the number of rules that satisfied the coherence metrics by

solution.

To illustrate our fitness functions, we consider 20 evaluated mobile user inter-

faces in which we detect three problems (workload, complex interface and regular

interface). These problems occurred in the trace respectively (20 times, 15 times

and 30 times). During the first generation, we have a population containing three

solutions which have respectively (100 rules, 150 rules, 300 rules). The first solution

has 50 rules satisfying the guidance metrics and 50 rules satisfied the coherence

metrics. The second solution has 80 rules satisfying the guidance metrics and 70

rules satisfying the coherence metrics. The third solution has 200 rules satisfying

the guidance metrics and 100 rules satisfying the coherence metrics. So we can
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calculate our fitness function as below:

F (x) =


Minimizef1(x) = min(100, 150, 300)

Maximizef2(x) = Q(P )

Maximizef3(x) = max(80, 50, 200)

Maximizef4(x) = max(50, 70, 100)

(16)

The Q (P) of the first solution is calculated according to the following Table

2:

Table 2 Solution example

Aesthetics Defects Solution
1

Solution
2

Solution
3

base of examples

Overloaded MUI 16 55 20 20
Complicated MUI 70 95 80 15
Difficult navigation 14 0 200 30

Q(P1) =
(16
20 ) + (70

15 ) + (14
30 )

3
= 1, 97 (17)

3.3 Evaluation of MUI quality defects

This phase takes as input the evaluation rules generated by IBEA algorithm as the

best algorithm compared to other algorithms (MOAE/D, NSGAII, and SPEA2)

using the same number of objectives, and it generates as output the list of de-

tected problems (defects). It is based on a java plug-in called PLAIN (Plug-ing

for predicting the Adaptation quality of user INterface). It includes two steps: 1)

evaluation rules adjustment (A3.1), 2) defects detection of MUI (A3.2). Figure 15

presents the structure of this phase.

3.3.1 Evaluation rules adjustment

The evaluation quality metrics are quantification mechanisms that support the

examination of interface component characteristics. They are important means

used to achieve the identification of quality problems of MUIs. Thus, evaluation

rules combine metrics with logical operators and thresholds (see section 3.2.3.1).

We assess the MUIs based on a set of evaluation rules generated by MOEA/D.

In fact, the evaluation metrics measures of MUIs can be interpreted as certain

symptoms of one or more defects. In the defects detection process, we need to

compare these measures with an adequate threshold value. However, it is difficult

to generalize these rules for all MUIs that are very different in term of a number of

interfaces by application, the number of components by MUI, etc. Also, the used

threshold provides no universal definition of our rules. In addition, the process of
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Fig. 15 Evaluation of MUI quality defects phase.

detection problems will vary depending on the selected value threshold. Increasing

the value too much will cause false negatives, while decreasing it in excess will cause

more false positives. So, the use of quality metrics in the problem detection process

needs an adjustment mechanism to improve accuracy of proposed approach. Thus,

the aim of this phase is to adjust the evaluation rules using box-plot technique.

According to [45], the box-plot is a very popular graphical tool to visualize the

distribution of data. Thus, it determines information about the location and the

spread of the data by means of the median and the inter quartile range. In our

work, box-plot takes as input the measures of quality metrics and generates as

output the median of each metric that should be considered as a threshold. Figure

16 shows an example of box-plot distribution.

Fig. 16 The box-plot distribution of project Duolingo.
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4 Validation

We conducted a set of experiments based on 24 mobile applications to measure the

performance of evolutionary algorithms (MOAE/D, NSGAII, IBEA, and SPEA2)

with variously given criteria. In this section, we first present our research questions

and then we describe and discuss the obtained results. For the replication of our

study, an implementation of the four multi-objective algorithms to detect the

quality defects of mobile user interfaces can be found in [2].

4.1 Research Questions

We assess the performance of our approach by finding out whether it could gen-

erate meaningful sequences of rules that improve the quality of interfaces while

reducing the number of rules needed. Our validation is conducted by addressing

the following research questions outlined below. We also explain how our experi-

ments are designed to address these questions:

Research Question 1: How do the studied evolutionary algorithms perform

in comparison to the exhaustive search?

Research Question 2: To what extent can the evaluation rules cover all type

of users?

Research Question 3: To what extent can the proposed approach maximize

the number of detected problems of mobile user interfaces?

Research Question 4: To what extent can the proposed approach minimize

the number of evaluation rules?

Research Question 5: What is the most appropriate evolutionary algorithm

to use based on the performance of the four deployed algorithms (MOEA/D, NS-

GAII, IBEA, SPEA2)?

To answer Research Question 1, we emphasize the reason behind using a meta-

heuristic to solve the problem of generating the best evaluation rules for mobile

user interfaces. To do so, we simulate the growth of our input problem i.e. number

of mobile interfaces, and we increase the number of possible evaluation metrics to

use and then we compare the performance of the exhaustive search against the four

evolutionary algorithms (MOEA/D, NSGAII, IBEA, SPEA2) in terms of runtime

needed to generate the rules.

To answer Research Question 2, we classify user according to the values of

their context criteria into 15 category. Then we calculate the number of different

rules that cover each category.
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To answer Research Question 3, we evaluate the performance of the used al-

gorithms (MOEA/D, NSGAII, IBEA, SPEA2) on the detection of eight different

types of problems for the four studied projects by calculating the coverage of each

studied project problem for each evaluated evolutionary algorithm.

To answer Research Question 4, we compare the results of the used algorithms

(MOEA/D, NSGAII, IBEA, SPEA2), in order to extract the best algorithm which

reaches the second objective (minimizing the number of used rules). We investi-

gate the possibility of empirically achieving the same results with less number of

used rules.

To answer Research Question 5, we experiment the benefit of using a multi-

objective algorithm by comparing the performance of the used algorithms: MOEA/D,

NSGAII, IBEA, SPEA2 in terms of assessing the developers in detecting typical

defects that deteriorate the quality of interfaces.

4.2 Studied Projects

We challenge our approach by its ability to identify defects that were manually

verified. To reach this purpose, the validation is being conducted over the evalua-

tion of a benchmark of 24 open source android applications. We have chosen these

projects because of their medium to large size; they considered the most popular

application and can be used as input to our approach. They contain also multiple

MUIs using relative techniques which make the interfaces adjusted to the screen

size.

4.2.1 Experimental Setting

The evaluation of the mobile user interfaces of the studied projects should improve

the quality of their applications and enhance the satisfaction of their users.

4.2.2 Subjects

The study was conducted in the Higher Institute of Management in Gabes, Tunisia.

20 students with different age, experience, and level of education, were invited to

this evaluation study (55% females, 45% males). 60% are bachelor degree students

and 40% are master students. The data that were collected about the participants

show that only 40% of subjects have experience with software quality evaluation.

However, all students have experience in using mobile applications.

4.2.3 Scenario

In our study, we use 24 mobile applications which contain 200 mobile user interfaces

to evaluate. We rate it according to the user rate giving by users. The different

mobile user interfaces are rated using a 7-point Likert scale. We consider that all

metrics have the same importance (the weight is equal to 1).
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Table 3 Properties of the studied software systems.

Mobile applications Release Number of interfaces

Duolingo v3.21.0 30
Accuweather v4.1.0 9
Easyloan calculator v1.7.2 8
HandicraftWomen v1.0 20
OfficeSuite v4.0 12
transia v1.2.1 4
Accordion v2.4 20
Pedometre v2.0.0 16
RangeMaker v3.0.2 23
Resound v1.0.5 17
VakiBank v1.0.2 31
Video Editing v1.0.1.40 52
VLC v6.0.0 9
Pediatric v2.0.1 10
Openshop v1.1 18
AMetro v2.0.1.4 26
AntennaPod v1.6.1.2 24
Arzneimittel pocket v1.4 15
Moss v1.0 13
Math superstar v1.0.2 11
lirbi reader v2.3 17
Kontalk v3.1.10 20
foodForKids v1.0 22
ConnectBot v1.8.6 23

4.2.4 Parameter setting

The parameter setting influences significantly the performance of search algorithms

on a given search problem. It is usually difficult to preemptively set the best tuning

setting. For this reason, we perform a set of experiments using several population

sizes: 10, 20, 40, 80, 160, and 320 for our 4 objectives.

The maximum number of generations used is 100, 200, 400, 8000 and 1600. For

each algorithm, to generate an initial population, we start by defining the maxi-

mum vector length (maximum number of rules per solution). As a higher number

of operations in a solution do not necessarily mean that the results will be better,

we empirically determine the best set of setting through the above-mentioned tri-

als. Ideally, a small number of rules should be sufficient to provide a good trade-off

between the fitness functions. This parameter can be also specified by the user or

derived randomly from the sizes of the program and the used operations list.

During the creation, the solutions have random sizes inside the allowed range. We

use the trial and error method in order to obtain a good parameter configuration.

Since we are comparing different search algorithms, we classify parameters into

common parameters and specific parameters.

Table 4 depicts the important common parameters. For MOEA/D, the neighbor-

hood size is set to 20.
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Table 4 The Setting of Common Parameter.

Number of objective 4 4 4 4

Algorithm Name MOEA/D NSGAII IBEA SPEA2
Population size 300 100 100 100
Number of generation 1500 1000 1000 1000
Crossover rate 0.9 0.9 0.9 0.9
Mutation rate 0.1 0.1 0.1 0.1

4.3 Results for Research Questions

4.3.1 Results for Research Question 1

During the rules generation process, our approach combines randomly evaluation

structural metrics with context criteria within logical expressions (intersection

AND) to create rules. In this case, the number n of possible combinations is very

large. The rule generation process consists of finding the best combination of m

structural metrics, k context criteria and p detected defects. In addition, for three

threshold values (low, medium, high) that each metric/criterion can take, a huge

number of rules can be generated. In this context, the number NR of possible

combinations that have to be explored is given by:

PC = Cm
k ∗ Cb

m ∗ Cpc =
k!

a!(k − a)!
∗ m!

b!(m− b)! ∗
p!

c!(p− c)! (18)

With a being the number of all context criteria, b is the number of quality metrics

and c is the number of possible defect types.In this context, the number (NR) of

generated rules will be huge and is defined by: NR = (3mkp). In such setting,

the number of possible usability problems to manually illustrate with rules can

be very huge. Thus, a heuristic search is needed. Table 5 shows the following

experiment of considering the runtime of the brute force search, in which, all

the possible combinations of rules are exhaustively explored, against the use of a

meta-heuristic.

Table 5 Runtime in micro-seconds of Brute Force and used algorithms over a given number
of metrics/criteria.

Number
of met-
rics/criteria

Brute force MOEA/D NSGAII IBEA SPEA2

6 830 24688 25880 24561 23459
10 60000 25810 25990 24888 23698
15 14349007 27419 27541 26458 25132
20 3.49E+09 27811 27789 26888 25489
25 8.47E+11 28004 28654 27457 26457
30 2.06E+14 28801 28954 27698 26895
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As noticed in Table 5, the runtime of Brute Force quickly becomes huge for a

higher number of metrics. Consequently, to ensure the scalability of our solution,

we considered the rule generation process as a combinatorial optimization prob-

lem. So, any solution must satisfy the predefined four objectives.

To this end, we propose an adaptation of the multi-objective evolutionary algo-

rithm for the problem of rules generation and the results are described in the next

sub-section.

4.3.2 Results for Research Question 2

In this research question, we show how the generated rules are different among

different types of users. In this context, we classify users into 15 groups according

to the different values of their context criteria. Table 6 presents the classification

of users.

Table 6 Classification of users

Category number description

C1 Users with Low age
C2 Users with medium age
C3 Users with high age
C4 Users with Low motivation
C5 Users with medium motivation
C6 Users with high motivation
C7 Users with low interest
C8 Users with medium interest
C9 Users with high interest
C10 Users with low education level
C11 Users with medium education

level
C12 Users with high education level
C13 Users with low user experience
C14 Users with medium user expe-

rience
C15 Users with high user experi-

ence

After this classification we calculate the number of rules in the solution which have

’if clause’ contains the value of each category. Figure 17 present the distribution

of the different rules which cover all type of users.
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Fig. 17 The distribution of the evaluation rules in relation to the categories of users

4.3.3 Results for Research Question 3

In this section, we evaluate the performance of our used algorithms (MOEA/D,

NSGAII, IBEA, SPEA2) on the detection of eight different types of MUIs defects

related to guidance criteria and in the same time to coherence criteria.

Fig. 18 The distribution of the used algorithms for the problem: Overloaded MUI

Figure 18 presents the distribution of the four used algorithms in the detection

of the overloaded problem. For the studied projects, we conclude that IBEA is the

best algorithm for the detection of workload problem for the five projects: libiri

reader, Kontalk, foodforKids, ConnectBot and Arzneimittel pocket.

Figure 19 presents the distribution of the four used algorithms in the detection

of the difficult navigation problem for mobile user interfaces. In this distribution,
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Fig. 19 The distribution of the used algorithms for the problem: Difficult navigation

we conclude that IBEA is the best algorithm for the detection of low guidance prob-

lem for the seven projects: Accuweather, Accordion, Moss, Resound, Arzneimittel

pocket, Video Editing, and VLC.

Fig. 20 The distribution of the used algorithms for the problem: Ineffective appearance of
widgets

Figure 20 presents the distribution of the four used algorithms in the detection

of the ineffective appearance of widgets problem for mobile user interfaces. In this

distribution, we conclude that IBEA is the best algorithm for the detection of

disorder interface problem for the seven projects: Accuweather, Accordion, Moss,

Resound, Arzneimittel pocket, Video Editing, and VLC.

Figure 21 presents the distribution of the four used algorithms in the detec-

tion of the incorrect data presentation problem for mobile user interfaces. In this
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Fig. 21 The distribution of the used algorithms for the problem: Incorrect data presentation.

distribution, we conclude that this type of problem is not covered by all the used

algorithm in all studied projects. However, we can note that IBEA is the best

algorithm for the detection of this type of problem for the eight projects: Ac-

cuweather, Accordion, AntennaPod, Moss, Resound, Arzneimittel pocket, Math

superstar and VLC.

Fig. 22 The distribution of the used algorithms for the problem: Imbalance of MUI.

Figure 22 presents the distribution of the four used algorithms in the detection

of the Imbalance of MUI problem for mobile user interfaces. In this distribution, we

conclude that IBEA is the best algorithm for the detection of unequal arrangement

problem for the ten projects.

Figure 23 presents the distribution of the four used algorithms in the detection

of the incorrect layout of widgets problem for mobile user interfaces. In this distri-
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Fig. 23 The distribution of the used algorithms for the problem: Incorrect layout of widgets.

bution, we conclude that IBEA is the best algorithm for the detection of irregular

interface problem for several projects at a high level.

Fig. 24 The distribution of the used algorithms for the problem: Complicated MUI.

Figure 24 presents the distribution of the four used algorithms in the detection

of the complicated interface problem for mobile user interfaces. In this distribution,

we conclude that IBEA is the best algorithm for the detection of complex interface

problem with a high level.

Figure 25 presents the distribution of the four used algorithms in the detection

of the incohesion interface problem for mobile user interfaces. In this distribution,

we conclude that IBEA and MOEA/D were the two best algorithms in the detec-

tion of incoherent interface problem for the most of the studied projects.

The detection rules were able to identify various types of defects in our stud-

ied projects. This ability to identify different types of defects underlines a key
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Fig. 25 The distribution of the used algorithms for the problem: Lack of cohesion in MUI.

strength of our approach. Most other existing tools and techniques rely on detect-

ing one kind of defect, and usually, these techniques are manual, error-prone and

tedious. Other automated techniques rely heavily on the structural information of

the MUIs. This is reasonable considering that some defects like the Complex UI

are associated with a number of modules inside the interface.

Fig. 26 Number of detected defects by project.

The mobile application Easy loan calculator was covered by all the type of

defects detected on each evaluated evolutionary algorithm. However, the coverage

of the other studied application out varies from one evolutionary algorithm to

another with various values. Figure 26 shows that IBEA is the algorithm that

detects the high number of detected problems in all the studied projects.
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4.3.4 Results for Research Question 4

To test the effectiveness of the minimizing the number of rules, we consider the

four used algorithms MOEA/D, NSGAII, IBEA, SPEA2). Figure 27 summarizes

the results of median values of the number of generated rules over 31 independent

simulation runs after applying the proposed rules by the best solution selected

using the knee-point strategy.

Fig. 27 The values of the number of generated rules for the used algorithms.

We notice that IBEA was able to generate less number of rules while maintain-

ing good coverage. This can be explained by the fact that increasing the number

of metrics allows the search heuristic to reach more rules combinations and so

create more rules. Since the use of multi rules is not recommended as it increases

the solution complexity, it is necessary for a good solution to find the trade-off

between maximizing the coverage while maintaining a relatively low number of

rules.

4.3.5 Results for Research Question 5

Figure 28 summarizes the results of median values of the structural metrics over 31

independent simulation runs after applying the proposed rules to the best solution

selected using the knee-point strategy. The results of Figure 28 are based on the

gradual consideration of all the eight metrics for the four used algorithms in terms

of the second, third and fourth fitness function.

As described in Figure 28, we found that IBEA algorithm provides better struc-

tural coverage over the other algorithms in term of the three tested objectives. This

is an interesting result confirming that IBEA algorithm can find very good com-

promises between multiple objectives that are dissimilar and it outperforms those

that are produced by MOEA/D, NSGAII, and SPEA2. To assess the performance
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Fig. 28 Normalized fitness functions values for the used algorithm.

of all algorithms under comparison, three different issues are normally taken into

account: minimize the distance of the Pareto front generated by the proposed

algorithm to the exact Pareto front (GD), and to maximize the spread of solu-

tions found (Spread), so that we can have a distribution of vectors as smooth and

uniform as possible (Hypervolume).

Table 7 The performance indicators.

MOEA/D NSGAII IBEA SPEA2

GD 1.26+ 1.73+ 0.58+++ 0.94+

Spread 1.56++ 1.23 0.32+++ 1.02+

Hypervolume 0.125++ 0.023+ 0.0014+++ 0.032

In fact, the best algorithm is the one who has the minimum values of the per-

formance indicators (GD, Spread, Hypervolume) along with the t-test significance.

As Table 7 shows, IBEA has the minimum values of GD indicator with a value of

0.58 that is better than NSGAII with a value of 1.73, Spread Indicator with a value

of 0.32 better than MOEA/D and Hypervolume indicator that is equal to 0.0014

better than SPEA2. An unpaired student t-test has been performed between each

two pair of algorithms. The symbol + denotes the student t-test significance, where

the number of + in each cell represents how many times the algorithm has been

more significant than another algorithm with a p-value<0.05. As seen in Table 7,

the IBEA has been more significant than all the other algorithms for the three

indicators, followed by the MOEA/D, that was the second more significant in the

Spread and Hypervolume indicators.
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5 Threat to validity

In this section we report threats to validity to our study. As an internal validity,

we have used state of the art defects that we have adapted to the context of

mobile computing, these defects are known to be a the more detected problems for

assessing the aesthetic quality of mobile interfaces, and we have no prior validation

for these defects as we relied on their prior work for ensuring their performance.

As a construct validity, we have used four evolutionary algorithms to generate

detection rules, the choice of these algorithms cannot be proven to be the best

choice compared to other existing algorithms, but in our approach we aim in

automating the generation process and our results were statistically significant.

As an external threat, we have used only 24 mobile applications and this may not

be enough to generalize our findings, and thats why we are planning on extending

the number of applications analyzed to challenge the scalability of our results.

6 Related work

Evaluation of mobile user interfaces aims to detect the so-called structural lay-

out defects to improve their quality. A few methods for assessment of GUIs are

proposed in the literature. In the following part, we will discuss some existing

approaches related to our contribution that can be classified into (1) existing eval-

uation approaches, (2) existing evaluation metrics.

6.1 Existing evaluation metrics

Several metrics have been proposed to evaluate the ergonomic quality of mobile

user interface [95,84,12]. Based on those studies, we selected several metrics for

covering their complexity, their visual aesthetic, as well as their structural of the

layout. (Xing et al.,) [101] defines complexity as the measure that based on the

numeric size of components in the user interface, the variety of these compo-

nents, and the correlation between them [101]. In this way, (Kang et al.,) [48]

proposed three complexity metrics: operation complexity, transition complexity

and screen complexity, to measure the complexity of user interface design. In ad-

dition, (Miyoshi et al.,) [60] evaluates the usability of screen design based on its

complexity measures. The visual aesthetic is a measure of the perceived beauty

of a visual stimulus [61]. The elements of visual aesthetics can be characteristics

of layout, quality of graphics, amount of text, number, and choice of fonts, use of

color, etc. In this context, (Ngo et al.,) [66] proposed a set of aesthetic measures for

a graphical interface which are: balance, symmetry, equilibrium, sequence, order

and complexity, cohesion, unity, proportion, simplicity, density, regularity, econ-

omy, homogeneity, rhythm. The values of these measures can be calculated based

on the sizes and arrangements of components on the screen. Moreover, (Hartmann

et al.,) [41] proposed several metrics (usability, aesthetics, memory, overall prefer-

ence, engagement, service and information) of the aesthetic attribute to enhance

the visual equilibrium of label layout. However, (Gonzales et al.,) [37] proposed
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five aesthetic metrics: balance, linearity, orthogonality, regularity, and sequential-

ity. His work aims to calculate the metrics in order to assess aesthetically the

graphical user interfaces. (Alemerien et al.,) [12] proposed a set of structured

metrics (alignment, balance, density, size and grouping). These metrics allow eval-

uating the user interface based on its structure. (Sears et al.,) [82] proposed also

a metric called Layout Appropriateness to organize widgets in the user interface.

This metric takes as inputs a description of the sequence of widget actions in

order to calculate the cost of each sequence of these actions. (Parush et al.,) [72]

developed a set of metrics: size, local density, alignment, and grouping, to evaluate

graphical user interfaces concerning the screen layout. However, (Constantine et

al.,) [27] introduced a visual cohesion metric to assess the quality of user interface

through a semantic aspect of widgets. (Shoaib et al.,) [85] proposed a coherence

metric consist on three cohesion modes: low, medium and high. This metric aims

to evaluate the design quality of web application.(Alemerien et al.,) [11] proposed

a metric to calculate a screen layout cohesion metric (SLC metric) in order to

predict the usability of user interface during the software development. Inspired

from the existing evaluation metrics, we proposed a set of evaluation structural

metrics devoted to assessing the quality of GUI in a different context.

6.2 Existing evaluation approaches

Due to the limited life cycle of the mobile devices and the rapid change in mobile

technology, there is certainly a great demand in the mobile industry to implement

evaluation techniques. These techniques aim to evaluate mobile user interfaces

with time constraints and minimal efforts. However, there are several works [50,

67,22,40,63] that have focused on detecting defects of mobile user interface using

different methods of evaluation.

– Final evaluation phase

This phase includes methods based on an experimental evaluation that can

take place at the end of the development cycle of mobile applications. These

methods aim to collect data about the behavior of the user in the real work

situation. (Alnanihet al.,) [13] proposed a new quality-in-use model based on

the international standard ISO 9126-4 (ISO/IEC TR 9126-4:2004), for mea-

suring mobile user interface design quality. In this work, the author design

theoretically valid measurement methods as a foundation for collecting and

analyzing data on the new quality-in-use model of GUIs for social networking

applications. In addition, they tested the model among 20 graduate students

with both objective and subjective factors. (Bhandari et al.,) [23] proposed

a questionnaire that combines the classical and expressive design techniques

to improve mobile interface apps quality perception through the induction of

arousal and valence dimension of emotion. In this work, they examined the re-

lationship between two design factors (balance and originality) and emotional

outcomes (valence and arousal). Then, they explored the impact of these af-

fective responses on quality perceptions like pragmatic and hedonic. Hence,

Coherent labs [1] developed a framework called Coherent UI Mobile. It is a
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modern user interface middleware that allows developers to integrate HTML

pages built with CSS and JavaScript in their game. This is achieved via the

UI WebView on iOS and Androids WebView. (Su et al.,) [89] presented an

intelligent user interface for reporting problematic mobile application features

called QuickReview. It is developed to improve the quality and structure of

mobile user interfaces reviews. The proposed QuickReview facilitates the use

of mobile interface by adding reviews swiftly with ease. And, it helps develop-

ers with quick interpretation of submitted reviews by presenting a ranked list

of commonly reported features.

– Preliminary evaluation phase

To improve the mobile user interfaces quality, one of the most used methods

is the identification of defects using rules which enhance the interface presen-

tation. (Park et al.,) [69] presents two empirical studies performed to increase

the understanding of motion feedback concerning sufficient quality in mobile

touchscreen user interfaces. In the first study, they examine motion properties

relevant to motion feedback in mobile touchscreen user interfaces to identify

their relationship with 29 affective qualities. In the second study, they explore

a new factor of interactivity in mobile touchscreen user interfaces to investigate

a new way to design effective qualities more effectively. These two studies are

performed empirically by developing prototypes and conducting user studies

to extract practical design guidelines. In addition, (Xu et al.,) [102] proposed

a mobile user interface for mobile camera in order to provide the quality of

the photo by enhancing the guidance of the proposed interface based on pho-

tography composition rule called rule-of-thirds. Moreover, (Kascak et al.,) [49]

described and redesign the mobile user interface of remote patient monitoring

(RPM) for older adults, in order to enhance the guidance of the RPM mobile

application. This study uses the existing design guidelines to improve design

quality of mobile health applications for older adults. In the same context,

(Ruzic et al.,) [79] proposed a set of GUI design guidelines based on the Uni-

versal Design (UD) and Design for Aging strategies to ensure the guidance of

mobile devices for older adults. Furthermore, coherence is also being solicited

for the evaluation of mobile user interface. In fact, (Reitter et al.,) [76] demon-

strated a formalism that generates coherent multimodal user interfaces, as well

as its application in mobile apps. They use a generation algorithm which uses

both hard constraints and scalar scores in order to cater mobile user interface

adaptability.

In this way, our contribution aims to generate detection rules for MUI. In this

context, our contribution aims to detect defects of MUIs by proposing an automatic

tool that facilitate the detection process. Then, we use a base of example which

allows generating generic rules that can be used to evaluate different types of

mobile apps. In fact, instead of inviting users whenever we have an interface to

evaluate, the idea is to collect for once a base of examples that would be used to

generate generic detection rules. These rules can be exploited for the evaluation

of different mobile apps.
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7 Conclusion and future work

The mobile user interfaces have been in ever-increasing development. In this con-

text, several research initiatives have been proposed to model the context of use,

to design and generate the mobile user interface [35,68]. However, there are few

studies about the evaluation of mobile user interfaces. One of the widely used

methods to detect defects is applying standard detection rules which have multi-

effects such as time-consuming, error-prone task. In this context, we proposed

an approach that incorporates the user’s feedback and profile when assessing the

quality of the mobile user interface.

To this end, we consider the generation of evaluation rules as a Multi-objective

optimization problem where the goal is to find the best rules maximizing the

number of detected defects, minimizing rules-complexity, maximizing the cover-

age MUI guidance and maximizing the coverage of MUI coherence. Therefore, we

tested various Multi-Objective Evolutionary Algorithms to automatically gener-

ate the best detection rules satisfying the four conflicting criterias. Our approach

takes as input a base of examples, a set of context criteria (experience, study

level, motivation, etc.), a list of possible problem types (workload, low guidance,

complexity, etc.), a set of quality metrics (density, grouping, regularity etc.) and

generates as output an exciting detection rules. After that, we will use these rules

to detect quality defects of MUI.

However, there are three significant limitations to our work. Thus, the per-

formance of our approach depends on the availability of mobile user interfaces

examples. In our work, we use a benchmarked of mobile android applications to

extract evaluation rules. So, we plan to expand our base of example by additional

interfaces to detect more different problems of mobile user interfaces. For the

generated rules, the representation of such rule depends on one context criterion

such as (age, motivation, education level, user experience, and interest) and one of

the proposed metrics that correlate semantically with this criterion. On the other

hand, we can combine some metrics that relate with the same context criterion to

improve the detection of evaluation rules.

Another limitation of the proposed approach is the number of objectives. In-

deed, we use a multi-objective evolutionary algorithm that performs to optimize a

multi-objective problem. In fact, we can increase the number of objectives to im-

prove the performance of our approach. One of our perspectives is the extraction

of refactoring rules for the problem detection to mend the quality of the studied

mobile interfaces.
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