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Abstract

Background: The topological landscape of gene interaction networks provides a rich source of information for
inferring functional patterns of genes or proteins. However, it is still a challenging task to aggregate heterogeneous
biological information such as gene expression and gene interactions to achieve more accurate inference for
prediction and discovery of new gene interactions. In particular, how to generate a unified vector representation to
integrate diverse input data is a key challenge addressed here.

Results: We propose a scalable and robust deep learning framework to learn embedded representations to unify
known gene interactions and gene expression for gene interaction predictions. These low- dimensional embeddings
derive deeper insights into the structure of rapidly accumulating and diverse gene interaction networks and greatly
simplify downstream modeling. We compare the predictive power of our deep embeddings to the strong baselines.
The results suggest that our deep embeddings achieve significantly more accurate predictions. Moreover, a set of
novel gene interaction predictions are validated by up-to-date literature-based database entries.

Conclusion: The proposed model demonstrates the importance of integrating heterogeneous information about
genes for gene network inference. GNE is freely available under the GNU General Public License and can be
downloaded from GitHub (https://github.com/kckishan/GNE).

Keywords: Gene interaction networks, Gene expression, Network embedding, Heterogeneous data integration,
Deep learning

Background
A comprehensive study of gene interactions (GIs) provides
means to identify the functional relationship between
genes and their corresponding products, as well as
insights into underlying biological phenomena that are
critical to understanding phenotypes in health and dis-
ease conditions [1–3]. Since advancements in measure-
ment technologies have led to numerous high-throughput
datasets, there is a great value in developing efficient com-
putational methods capable of automatically extracting
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and aggregating meaningful information from heteroge-
neous datasets to infer gene interactions.

Although a wide variety of machine learning models
have been developed to analyze high-throughput datasets
for GI prediction [4], there are still some major chal-
lenges, such as efficient analysis of large heterogeneous
datasets, integration of biological information, and effec-
tive feature engineering. To address these challenges, we
propose a novel deep learning framework to integrate
diverse biological information for GI network inference.

Our proposed method frames GI network inference as
a problem of network embedding. In particular, we rep-
resent gene interactions as a network of genes and their
interactions and create a deep learning framework to
automatically learn an informative representation which

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-019-0694-y&domain=pdf
https://github.com/kckishan/GNE
mailto: kk3671@rit.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


KC et al. BMC Systems Biology 2019, 13(Suppl 2):38 Page 2 of 14

integrates both the topological property and the gene
expression property. A key insight behind our gene net-
work embedding method is the “guilt by association”
assumption [5], that is, genes that are co-localized or
have similar topological roles in the interaction net-
work are likely to be functionally correlated. This insight
not only allows us to discover similar genes and pro-
teins but also to infer the properties of unknown ones.
Our network embedding generates a lower-dimensional
vector representation of the gene topological character-
istics. The relationships between genes including higher-
order topological properties are captured by the distances
between genes in the embedding space. The new low-
dimensional representation of a GI network can be used
for various downstream tasks, such as gene function pre-
diction, gene interaction prediction, and gene ontology
reconstruction [6].

Furthermore, since the network embedding method can
only preserve the topological properties of a GI network,
and fails to generalize for genes with no interaction infor-
mation, our scalable deep learning method also integrates
heterogeneous gene information, such as expression data
from high throughput technologies, into the GI net-
work inference. Our method projects genes with similar
attributes closer to each other in the embedding space,
even if they may not have similar topological properties.
The results show that by integrating additional gene infor-
mation in the network embedding process, the prediction
performance is improved significantly.

GI prediction is a long-standing problem. The pro-
posed machine learning methods include statistical corre-
lation, mutual information [7], dimensionality reduction
[8], and network-based methods (e.g. common neighbor-
hood, network embedding) [4, 9]. Among these methods,
some methods such as statistical correlation and mutual
information consider only gene expression whereas other
methods use only topological properties to predict GIs.

Network-based methods have been proposed to
leverage topological properties of GI networks [10].
Neighborhood-based methods quantify the proximity
between genes, based on common neighbors in GI
network [11]. The proximity scores assigned to a pair
of genes rely on the number of neighbors that the pair
has in common. Adjacency matrix, representing the
interaction network, or proximity matrix, obtained
from neighborhood-based methods, are processed with
network embedding methods to learn embeddings
that preserve the structural properties of the network.
Structure-preserving network embedding methods such
as Isomap [12] are proposed as a dimensionality reduc-
tion technique. Since the goal of these methods is solely
for graph reconstruction, the embedding space may not
be suitable for GI network inference. Besides, these meth-
ods construct the graphs from the data features where

proximity between genes is well defined in the original
feature space [9]. On the other hand, in GI networks,
gene proximities are not explicitly defined, and they
depend on the specific analytic tasks and application
scenarios.

Our deep learning method allows incorporating gene
expression data with GI network topological structure
information to preserve both topological and attribute
proximity in the low-dimensional representation for GI
predictions. Moreover, the scalable architecture enables
us to incorporate additional attributes. Topological prop-
erties of GI network and expression profiles are trans-
formed into two separate embeddings: ID embedding
(which preserves the topological structure proximity) and
attribute embedding (which preserves the attribute prox-
imity) respectively. With a multilayer neural network,
we then aggregate the complex statistical relationships
between topology and attribute information to improve
GI predictions.

In summary, our contributions are as follows:

• We propose a novel deep learning framework to learn
lower dimensional representations while preserving
topological and attribute proximity of GI networks.

• We evaluate the prediction performance on the
datasets of two organisms based on the embedded
representation and achieve significantly better
predictions than the strong baselines.

• Our method can predict new gene interactions which
are validated on an up-to-date GI database.

Methods
Preliminaries
We formally define the problem of gene network infer-
ence as a network embedding problem using the concepts
of topological and attribute proximity as demonstrated in
Fig. 1.

Definition 1 (Gene network) Gene network can be rep-
resented as a network structure, which represents the inter-
actions between genes within an organism. The interaction
between genes corresponds to either a physical interaction
through their gene products, e.g., proteins, or one of the
genes alters or affects the activity of other gene of interest.
We denote gene network as G = (V , E, A) where V = {vi}
denotes genes or proteins, E = {eij} denotes edges that
correspond to interactions between genes vi and vj, and
A = {Ai} represents the attributes of gene vi. Edge eij is
associated with a weight wij ≥ 0 indicating the strength of
the connection between gene vi and vj. If gene vi and vj is
not linked by an edge, wij = 0. We name interactions with
wij > 0 as positive interactions and wij = 0 as negative
interactions. In this paper, we consider weights wij to be
binary, indicating whether genes vi and vj interact or not.
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Fig. 1 An illustration of gene network embedding (GNE). GNE integrates gene interaction network and gene expression data to learn a
lower-dimensional representation.The nodes represent genes, and the genes with the same color have similar expression profiles. GNE groups
genes with similar network topology, which are connected or have a similar neighborhood in the graph, and attribute similarity (similar expression
profiles) in the embedded space

Genes directly connected with a gene vi in gene network
denote the local network structure of gene vi. We define
local network structures as the first-order proximity of a
gene.

Definition 2 (First-order proximity) The first-order
proximity in a gene network is the pairwise interactions
between genes. Weight wij indicates the first-order proxim-
ity between gene vi and vj. If there is no interaction between
gene vi and vj, their first-order proximity wij is 0.

Genes are likely to be involved in the same cellular func-
tions if they are connected in the gene network. On the other
hand, even if two genes are not connected, they may be
still related in some cellular functions. This indicates the
need for an additional notion of proximity to preserve the
network structure. Studies suggest that genes that share a
similar neighborhood are also likely to be related [6]. Thus,
we introduce second-order proximity that characterizes the
global network structure of the genes.

Definition 3 (Second-order proximity) Second order
proximity denotes the similarity between the neighbor-
hood of genes. Let Ni = {si,1,. . . , si,i−1, si,i+1,. . . , si,M−1}
denotes the first-order proximity of gene vi, where si,j is wij
if there is direct connection between gene vi and gene vj,
otherwise 0. Then, the second order proximity is the sim-
ilarity between Ni and Nj. If there is no path to reach
gene vi from gene vj, the second proximity between these
genes is 0.

Integrating first-order and second-order proximities
simultaneously can help to preserve the topological proper-
ties of the gene network. To generate a more comprehensive
representation of the genes, it is crucial to integrate gene
expression data as gene attributes with their topological
properties. Besides preserving topological properties, gene
expression provides additional information to predict the
network structure.

Definition 4 (Attribute proximity) Attribute proxim-
ity denotes the similarity between the expression of genes.

We thus investigate both topological and attribute prox-
imity for gene network embedding, which is defined as
follows:

Definition 5 (Gene network embedding) Given a
gene network denoted as G = (V , E, A), gene network
embedding aims to learn a function f that maps gene
network structure and their attribute information to a d-
dimensional space where a gene is represented by a vector
yi ∈ R

d where d � M. The low dimensional vectors yi
and yj for genes vi and vj preserve their relationships in
terms of the network topological structure and attribute
proximity.

Gene network embedding (GNE) model
Our deep learning framework as shown in Fig. 2 jointly
utilizes gene network structure and gene expression data
to learn a unified representation for the genes. Embedding
of a gene network projects genes into a lower dimensional
space, known as the embedding space, in which each gene
is represented by a vector. The embeddings preserve both
the gene network structure and statistical relationships
of gene expression. We list the variables to specify our
framework in Table 1.

Gene network structure modeling
GNE framework preserves first-order and second-order
proximity of genes in the gene network. The key idea of
network structure modeling is to estimate the pairwise
proximity of genes in terms of the network structure. If
two genes are connected or share similar neighborhood
genes, they tend to be related and should be placed closer
to each other in the embedding space. Inspired by the
Skip-gram model [13], we use one hot encoded represen-
tation to represent topological information of a gene. Each
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Fig. 2 Overview of Gene Network Embedding (GNE) Framework for gene interaction prediction. On the left,one-hot encoded representation of
gene is encoded to dense vector v(s)

i of dimension d × 1 which captures topological properties and expression vector of gene is transformed to

v(a)
i of dimension d × 1 which aggregates the attribute information (Step 1). Next, concatenation of two embedded vectors (creates vector with

dimension 2d × 1) allows to combine strength of both network structure and attribute modeling. Then, nonlinear transformation of concatenated
vector enables GNE to capture complex statistical relationships between network structure and attribute information and learn better
representations (Step 2). Finally, these learned representation of dimension d × 1 is transformed into a probability vector of length M × 1 in output
layer, which contains the predictive probability of gene vi to all the genes in the network. Conditional probability p(vj|vi) on output layer indicates
the likelihood that gene vj is connected with gene vi (Step 3)

gene vi in the network is represented as an M-dimensional
vector where only the ith component of the vector is 1.

To model topological similarity, we define the condi-
tional probability of gene vj on gene vi using a softmax
function as:

p(vj|vi) = exp(f (vi, vj))
∑M

j′=1 exp(f (vi, vj′))
(1)

Table 1 Terms and Notations

Symbol Definitions

M Total number of genes in gene network

E Number of expression values for each gene

Ni Set of the neighbor genes of gene vi

v(s)
i Topological representation of gene vi

v(a)
i Attribute representation of gene vi

ṽi Neighborhood representation of gene vi

vi Concatenated representation of topological
properties and expression data

k Number of hidden layers to transform concatenated
representation into embedding space

h(k) Output of kth hidden layer

Wk Weight matrix for kth hidden layer

Wid Weight matrix for topological structure embedding

Watt Weight matrix for attribute embedding

Wout Weight matrix for output layer

which measures the likelihood of gene vi being connected
with vj. Let function f represents the mapping of two
genes vi and vj to their estimated proximity score. Let
p(N |v) be the likelihood of observing a neighborhood
N for a gene v. By assuming conditional independence,
we can factorize the likelihood so that the likelihood of
observing a neighborhood gene is independent of observ-
ing any other neighborhood gene, given a gene vi:

p(Ni|vi) =
∏

vj∈Ni

p(vj|vi) (2)

where Ni represents the neighborhood genes of the gene
vi. Global structure proximity for a gene vi can be pre-
served by maximizing the conditional probability over
all genes in the neighborhood. Hence, we can define
the likelihood function that preserve global structure
proximity as:

L =
M∏

i=1
p(Ni|vi) =

M∏

i=1

∏

vj∈Ni

p(vj|vi) (3)

Let v(s)
i denotes the dense vector generated from one-hot

gene ID vector, which represents topological informa-
tion of that gene. GNE follows direct encoding methods
[13, 14] to map genes to vector embeddings, simply known
as embedding lookup:
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v(s)
i = Widvi (4)

where Wid ∈ R
d×M is a matrix containing the embedding

vectors for all genes and vi ∈ IM is a one-hot indica-
tor vector indicating the column of Wid corresponding to
gene vi.

Gene expression modeling
GNE encodes the expression data from microarray exper-
iments to the dense representation using a non-linear
transformation. The amount of mRNA produced during
transcription measured over a number of experiments
helps to identify similarly expressed genes. Since expres-
sion data have inherent noise [15], transforming expres-
sion data using a non-linear transformation can be helpful
to uncover the underlying representation. Let xi be the
vector of expression values of gene vi measured over
E experiments. Using non-linear transformation, we can
capture the non-linearities of expression data of gene vi as:

v(a)
i = δa(Watt · xi) (5)

where v(a)
i represents the lower dimensional attribute rep-

resentation vector for gene vi. Watt , and δa represents
the weight matrix, and activation function of attribute
transformation layer respectively.

We use the deep model to approximate the attribute
proximity by capturing complex statistical relationships
between attributes and introducing non-linearities, simi-
lar to structural embedding.

GNE integration
GNE models the integration of network structure and
attribute information to learn more comprehensive
embeddings for gene networks. GNE takes two inputs:
one for topological information of a gene as one hot gene
ID vector and another for its expression as an attribute
vector. Each input is encoded to its respective embed-
dings. One hot representation for a gene vi is projected
to the dense vector v(s)

i which captures the topological
properties. Non-linear transformation of attribute vec-
tor generates compact representation vector v(a)

i . Previous
work [16] combines heterogeneous information using the
late fusion approach. However, the late fusion approach
is the approach of learning separate models for hetero-
geneous information and integrating the representations
learned from separate models. On the other hand, the
early fusion combines heterogeneous information and
train the model on combined representations [17]. We
thus propose to use the early fusion approach to combine
them by concatenating. As a result, learning from topo-
logical and attribute information can complement each
other, allowing the model to learn their complex statistical
relationships as well. Embeddings from topological and
attribute information are concatenated into a vector as:

vi =
[

v(s)
i λv(a)

i

]
(6)

where λ is the importance of gene expression information
relative to topological information.

The concatenated vectors are fed into a multilayer
perceptron with k hidden layers. The hidden represen-
tations from each hidden layer in GNE are denoted as
h(0)

i , h(1)
i , ....., h(k)

i , which can be defined as :

h(0)
i = δ

(
W0vi + b(0)

)
,

h(k)
i = δk

(
Wkh(k−1)

i + b(k)
) (7)

where δk represents the activation function of layer k. h(0)
i

represents initial representation and h(k)
i represents final

representation of the input gene vi. Transformation of
input data using multiple non-linear layers has shown to
improve the representation of input data [18]. Moreover,
stacking multiple layers of non-linear transformations can
help to learn high-order statistical relationships between
topological properties and attributes.

At last, final representation h(k)
i of a gene vi from the last

hidden layer is transformed to probability vector, which
contains the conditional probability of all other genes to vi:

oi = [
p(v1|vi), p(v2|vi), . . . , p(vM|vi)

]
(8)

where p(vj|vi) represents the probability of gene vi being
related to gene vj and oi represents the output probabil-
ity vector with the conditional probability of gene vi being
connected to all other genes.

Weight matrix Wout between the last hidden layer and
the output layer corresponds to the abstractive represen-
tation of neighborhood of genes. A jth row from Wout
refers to the compact representation of neighborhood of
gene vj, which can be denoted as ṽj. The proximity score
between gene vi and vj can be defined as:

f (vi, vj) = ṽj · h(k)
i (9)

which can be replaced into Eq. 1 to calculate the condi-
tional probability:

p(vj|vi) =
exp

(
ṽj · h(k)

i

)

∑M
j′=1 exp

(
ṽj′ · h(k)

i

) (10)

Our model learns two latent representations h(k)
i and ṽi

for a gene vi where h(k)
i is the representation of gene as

a node and ṽi is the representation of the gene vi as a
neighbor. Neighborhood representation ṽi can be com-
bined with node representation h(k)

i by addition [19, 20]
to get final representation for a gene as:

yi = h(k)
i + ṽi (11)

which returns us better performance results.
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For an edge connecting gene vi and vj, we create fea-
ture vector by combining embeddings of those genes using
Hadamard product. Empirical evaluation shows features
created with Hadamard product gives better performance
over concatenation [14]. Then, we train a logistic classi-
fier on these features to classify whether genes vi and vj
interact or not.

Parameter optimization
To optimize GNE, the goal is to maximize objective func-
tion mentioned in Eq. 10 as a function of all parame-
ters. Let � be the parameters of GNE which includes
{Wid, Watt , Wout , �h} and �h represents weight matrices
Wk of hidden layers. We train our model to maximize the
objective function with respect to all parameters � :

argmax
�

⎡

⎣
M∑

i=1

∑

vj ∈ Ni

log
exp

(
ṽj · h(k)

i

)

∑M
j′=1 exp

(
ṽj′ · h(k)

i

)

⎤

⎦ (12)

Maximizing this objective function with respect to � is
computationally expensive, which requires the calculation
of partition function

∑M
j′=1 exp

(
ṽj′ · h(k)

i

)
for each gene.

To calculate a single probability, we need to aggregate all
genes in the network. To address this problem, we adopt
the approach of negative sampling [13] which samples
the negative interactions, interactions with no evidence of
their existence, according to some noise distribution for
each edge eij. This approach allows us to sample a small
subset of genes from the network as negative samples for
a gene, considering that the genes on selected subset don’t
fall in the neighborhood Ni of the gene. Above objective
function enhances the similarity of a gene viwith its neigh-
borhood genes vj ∈ Ni and weakens the similarity with
genes not in its neighborhood genes vj /∈ Ni. It is inap-
propriate to assume that the two genes in the network are
not related if they are not connected. It may be the case
that there is not enough experimental evidence to support
that they are related yet. Thus, forcing the dissimilarity of
a gene with all other genes, not in its neighborhood Ni
seems to be inappropriate.

We adopt Adaptive Moment Estimation (Adam) opti-
mization [21], which is an extension to stochastic gra-
dient descent, for optimizing Eq. 12. Adam computes
the adaptive learning rate for each parameter by per-
forming smaller updates for the frequent parameters and
larger updates for the infrequent parameters. The Adam
method provides the ability of AdaGrad [22] to deal with
sparse gradients and also the ability of RMSProp [23] to
deal with non-stationary objectives. In each step, Adam
algorithm samples mini-batch of interactions and then

updates GNE’s parameters. To address the issue of over-
fitting, regularization like dropout [24] and batch normal-
ization [25] is added to hidden layers. Proper optimization
of GNE gives the final representation for each gene.

Experimental setup
We evaluate our model using two real organism datasets.
We take gene interaction network data from the BioGRID
database [26] and gene expression data from DREAM5
challenge [7]. We use two interaction datasets from
BioGRID database (2017 released version 3.4.153 and
2018 released version 3.4.158) to evaluate the predictive
performance of our model. Self-interactions and redun-
dant interactions are removed from interaction datasets.
The statistics of the datasets are shown in Table 2.

We evaluate the learned embeddings to infer gene net-
work structure. We randomly hold out a fraction of inter-
actions as the validation set for hyper-parameter tuning.
Then, we divide the remaining interactions randomly into
training and testing dataset with the equal number of
interactions. Since the validation set and the test set con-
tains only positive interactions, we randomly sample an
equal number of gene pairs from the network, consider-
ing the missing edge between the gene pairs represents the
absence of interactions. Given the gene network G with a
fraction of missing interactions, the task is to predict these
missing interactions.

We compare the GNE model with five competing
methods. Correlation directly predicts the interactions
between genes based on the correlation of expression pro-
files. Then, the following three baselines (Isomap, LINE,
and node2vec) are network embedding methods. Specif-
ically, node2vec is the strong baseline for structural net-
work embedding. We evaluate the performance of GNE
against the following methods:

• Correlation [27]
It computes Pearson’s correlation coefficient between
all genes and the interactions are ranked via
correlation scores, i.e., highly correlated gene pairs
receive higher confidence.

• Isomap [10]
It computes all-pairs shortest-path distances to create
a distance matrix and performs singular-value
decomposition of that matrix to learn a
lower-dimensional representation. Genes separated

Table 2 Statistics of the interaction datasets from BioGRID and
the gene expression data from DREAM5 challenge

#(Interactions) Expression data

Datasets #(Genes) 2017 version 2018 version #(Experiments)

Yeast 5950 544,652 557,487 536

E. coli 4511 148,340 159,523 805
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by the distance less than threshold ε in embedding
space are considered to have the connection with
each other and the reliability index, a likelihood
indicating the interaction between two genes, is
computed using FSWeight [28].

• LINE [16]
Two separate embeddings are learned by preserving
first-order and second-order proximity of the
network structure respectively. Then, these
embeddings are concatenated to get final
representations for each node.

• node2vec [14]
It learns the embeddings of the node by applying
Skip-gram model to node sequences generated by a
biased random walk. We tuned two hyper-parameters
p and q that control the random walk.

Note that the competing methods such as Isomap,
LINE, and node2vec are designed to capture only the
topological properties of the network. For the fair com-
parison with GNE that additionally integrates expression
data, we concatenate attribute feature vector with learned
gene representation to extend baselines by including the
gene expression. We name these variants as Isomap+,
LINE+, and node2vec+.

We have implemented GNE with TensorFlow frame-
work [29]. The parameter settings for GNE are deter-
mined by its performance on the validation set. We
randomly initialize GNE’s parameters, optimizing with
mini-batch Adam. We test the batch size of [8, 16, 32, 64,
128, 256] and learning rate of [0.1, 0.01, 0.005, 0.002, 0.001,
0.0001]. We test the number of negative samples to be [2,
5, 10, 15, 20] as suggested by [13]. We test the embedding
dimension d of [32, 64, 128, 256] for all methods. Also,
we evaluate model’s performance with respect to differ-
ent values of λ [0, 0.2, 0.4, 0.6, 0.8, 1], which is discussed
in more detail later. The parameters are selected based on
empirical evaluation and Table 3 summarizes the optimal
parameters tuned on validation data sets.

To capture the non-linearity of gene expression data,
we choose Exponential Linear Unit (ELU) [30] activation
function, which corresponds to δa in Eq. 5. Also, ELU acti-
vation avoids vanishing gradient problem and provides
improved learning characteristics in comparison to other
methods. We use a single hidden layer (k = 1) with
hyperbolic tangent activation (Tanh) to model complex
statistical relationships between topological properties

and attributes of the gene. The choice of ELU for attribute
transformation and Tanh for hidden layer shows better
performance upon empirical evaluation.

We use the area under the ROC curve (AUROC) and
area under the precision-recall curve (AUPR) [31] to eval-
uate the rankings generated by the model for interactions
in the test set. These metrics are widely used in evaluating
the ranked list of predictions in gene interaction [4].

Results and discussion
We evaluate the ability of our GNE model to predict gene
interaction of two real organisms. We present empirical
results of our proposed method against other methods.

Analysis of gene embeddings
We visualize the embedding vectors of genes learned by
GNE. We take the learned embeddings, which specifi-
cally model the interactions by preserving topological and
attribute similarity. We embed these embeddings into a
2D space using t-SNE package [32] and visualize them
(Fig. 3). For comparison, we also visualize the embeddings
learned by structure-preserving deep learning methods,
such as LINE, and node2vec.

In E. coli, a substantial fraction of functionally related
genes are organized into operons, which are the group of
genes that interact with each other and are co-regulated
[33]. Since this concept fits well with the topological and
attribute proximity implemented in GNE, we expect GNE
to place genes within an operon close to each other in the
embedding space. To evaluate this, we collect information
about operons of E. coli from the DOOR database and
visualize the embeddings of genes within these operons
(Fig. 3).

Figure 3 reveals the clustering structure that corre-
sponds to the operons on E. coli. For example, operon
with operon id 3306 consists of seven genes: rsxA, rsxB,
rsx, rsxD, rsxG, rsxE, and nth that are involved in electron
transport. GNE infers similar representations for these
genes, resulting in localized projection in the 2D space.
Similarly, other operons also show similar patterns (Fig. 3).

To test if the pattern in Fig. 3 holds across all operons,
we compute the average Euclidean distance between each
gene’s vector representation and vector representations of
other genes within the same operon. Genes within the
same operon have significantly similar vector representa-
tion yi than expected by chance (p-value = 1.75e − 127,
2-sample KS test).

Table 3 Optimal parameter settings for GNE model

Dataset Learning rate Batch size Embedding dimension (d) Epoch Negative samples

Yeast 0.005 256 128 20 10

E. coli 0.002 128 128 20 10
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Fig. 3 Visualization of learned embeddings for genes on E. coli. Genes are mapped to the 2D space using the t-SNE package [32] with learned gene
representations (yi , i = 1, 2, . . . , M) from different methods: a GNE, b LINE, and c node2vec as input. Operons 3203, 3274, 3279, 3306, and 3736 of E.
coli are visualized and show clustering patterns. Best viewed on screen

Thus, the analysis here indicates that GNE can learn
similar representations for genes with similar topological
properties and expression.

Gene interaction prediction
We randomly remove 50% of interactions from the net-
work and compare various methods to evaluate their pre-
dictions for 50% missing interactions. Table 4 shows the
performance of GNE and other methods on gene interac-
tion prediction across different datasets. As our method
significantly outperforms other competing methods, it
indicates the informativeness of gene expression in pre-
dicting missing interactions. Also, our model is capable of
integrating attributes with topological properties to learn
better representations.

Table 4 Area under ROC curve (AUROC) and Area under PR
curve (AUPR) for gene Interaction Prediction

Methods
Yeast E. coli

AUROC AUPR AUROC AUPR

Correlation 0.582 0.579 0.537 0.557

Isomap 0.507 0.588 0.559 0.672

LINE 0.726 0.686 0.897 0.851

node2vec 0.739 0.708 0.912 0.862

Isomap+ 0.653 0.652 0.644 0.649

LINE+ 0.745 0.713 0.899 0.856

node2vec+ 0.751 0.716 0.871 0.826

GNE (Topology) 0.787 0.784 0.930 0.931

GNE (our model) 0.825* 0.821* 0.940* 0.939*

+ indicates the concatenation of expression data with learned embeddings to
create final representation. * denotes that GNE significantly outperforms node2vec
at 0.01 level paired t-test. Note that method that achieves the best performance is
bold faced

We compare our model with a correlation-based
method, that takes only expression data into account. Our
model shows significant improvement of 0.243 (AUROC),
0.242 (AUPR) on yeast and 0.403 (AUROC), 0.382 (AUPR)
on E. coli over correlation-based methods. This improve-
ment suggests the significance of the topological proper-
ties of the gene network.

The network embedding method, Isomap, performs
poorly in comparison to correlation-based methods on
yeast because of its limitation on network inference.
Deep learning based network embedding methods such
as LINE, and node2vec show the significant gain over
Isomap and correlation-based methods. node2vec out-
performs LINE across two datasets. Moreover, GNE
trained only with topological properties outperforms
these structured-based deep learning methods (Table 4).
However, these methods don’t consider the attributes
of the gene that we suggest to contain useful informa-
tion for gene interaction prediction. By adding expres-
sion data with topological properties, GNE outperforms
structure-preserving deep embedding methods across
both datasets.

Focusing on the results corresponding to the integra-
tion of expression data with topological properties, we
find that the method of integrating the expression data
plays an essential role in the performance. Performance of
node2vec+ (LINE+, Isomap+) shows little improvement
with the integration of expression data on yeast. How-
ever, node2vec+ (LINE+, Isomap+) has no improvement
or decline in performance on E. coli. The decline in per-
formance indicates that merely concatenating the expres-
sion vector with learned representations for the gene is
insufficient to capture the rich information in expression
data. The late fusion approach of combining the embed-
ding vector corresponding to the topological properties
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of the gene network and the feature vector represent-
ing expression data has no significant improvement in
the performance (except Isomap). In contrast, our model
incorporates gene expression data with topological prop-
erties by the early fusion method and shows significant
improvement over other methods.

Impact of network sparsity
We investigate the robustness of our model to network
sparsity. We hold out 10% interactions as the test set and
change the sparsity of the remaining network by randomly
removing a portion of remaining interactions. Then, we
train GNE to predict interactions in the test set and eval-
uate the change in performance to network sparsity. We
evaluate two versions of our implementations: GNE with
only topological properties and GNE with topological
properties and expression data. The result is shown in
Fig. 4.

Figure 4 shows that our method’s performance improves
with an increase in the number of training interactions
across datasets. Also, our method’s performance improves
when expression data is integrated with the topological
structure. Specifically, GNE trained on 10% of total inter-
actions and attributes of yeast shows a significant gain of
0.172 AUROC (from 0.503 to 0.675) over GNE trained
only with 10% of total interactions as shown in Fig. 4.
Similarly, GNE improves the AUROC from 0.497 to 0.816
for E. coli with the same setup as shown in Fig. 4. The
integration of gene expression data results in less improve-
ment when we train GNE on a relatively large number of
interactions.

Moreover, the performance of GNE trained with 50%
of total interactions and expression data is comparable
to be trained with 80% of total interactions without gene
expression data as shown in Fig. 4. The integration of
expression data with topological properties into GNE
model has more improvement on E. coli than yeast when
we train with 10% of total interactions for each dataset.

The reason for this is likely the difference in the number of
available interactions for yeast and E. coli (Table 2). This
indicates the informativeness of gene expression when
we have few interactions and supports the idea that the
integration of expression data with topological properties
improves gene interaction prediction.

Impact of λ

GNE involves the parameter λ that controls the impor-
tance of gene expression information relative to topolog-
ical properties of gene network as shown in Eq. 6. We
examine how the choice of the parameter λ affects our
method’s performance. Figure 5 shows the comparison of
our method’s performance with different values of λ when
GNE is trained on varying percentage of total interactions.

We evaluate the impact of λ on range [0, 0.2, 0.4, 0.6,
0.8, 1]. When λ becomes 0, the learned representations
model only topological properties. In contrast, setting the
high value for λ makes GNE learn only from attributes and
degrades its performance. Therefore, our model performs
well when λ is within [0, 1].

Figure 5 shows that the integration of expression data
improves the performance of GNE to predict gene interac-
tions. Impact of λ depends on the number of interactions
used to train GNE. If GNE is trained with few interactions,
integration of expression data with topological properties
plays a vital role in predicting missing interactions. As
the number of training interactions increases, integration
of expression data has less impact but still improves the
performance over only topological properties.

Figures 4 and 5 demonstrate that the expression data
contributes the increase in AUROC by nearly 0.14 when
interactions are less than 40% for yeast and about 0.32
when interactions are less than 10% for E. coli. More topo-
logical properties and attributes are required for yeast
than E. coli. It may be related to the fact that yeast is a
more complex species than E. coli. Moreover, we can spec-
ulate that more topological properties and attributes are

a b

Fig. 4 AUROC comparison of GNE’s performance with respect to network sparsity. a yeast b E. coli. Integration of expression data with topological
properties of the gene network improves the performance for both datasets
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a b

Fig. 5 Impact of λ on GNE’s performance trained with different percentages of interactions. a yeast b E. coli. Different lines indicate performance of
GNE trained with different percentages of interactions

required for higher eukaryotes like humans. In humans,
GNE that integrates topological properties with attributes
may be more successful than the methods that only use
either topological properties or attributes.

This demonstrates the sensitivity of GNE to parame-
ter λ. This parameter λ has a considerable impact on

our method’s performance and should be appropriately
selected.

Investigation of GNE’s predictions
We investigate the predictive ability of our model in iden-
tifying new gene interactions. For this aim, we consider

a b

c d

Fig. 6 Temporal holdout validation in predicting new interactions. Performance is measured by the area under the ROC curve and the area under the
precision-recall curve. Shown are the performance of each method based on the AUROC (a, b) and AUPR (c, d) for yeast and E. coli. The limit of the
y-axis is adjusted to [0.5, 1.0] for the precision-recall curve to make the difference in performance more visible. GNE outperforms LINE and node2vec
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Table 5 AUROC and AUPR comparision for temporal holdout
validation

Methods
Yeast E. coli

AUROC AUPR AUROC AUPR

LINE 0.620 0.611 0.569 0.598

node2vec 0.640 0.609 0.587 0.599

GNE (our model) 0.710 0.683 0.653 0.658

Note that method that achieves the best performance is bold faced

two versions of BioGRID interaction datasets at two dif-
ferent time points (2017 and 2018 version), where the
older version is used for training and the newer one is used
for testing the model (temporal holdout validation). The
2018 version contains 12,835 new interactions for yeast
and 11,185 new interactions for E. coli than the 2017 ver-
sion. GNE’s performance trained with 50% and 80% of
total interactions are comparable for both yeast and E. coli
(Figs. 4 and 5). We thus train our model with 50% of total
interactions from the 2017 version to learn the embed-
dings for genes and demonstrate the impact of integrating
expression data with topological properties. We create the
test set with new interactions from the 2018 version of
BioGRID as positive interactions and the equal number
of negative interactions randomly sampled. We make pre-
dictions for these interactions using learned embeddings
and create a list of (Gene vi, Gene vj, probability), ranked
by the predicted probability. We consider predicted gene
pairs with the probabilities of 0.5 or higher but are miss-
ing from BioGRID for further investigation as we discuss
later in this section.

The temporal holdout performance of our model in
comparison to other methods is shown in Fig. 6. We

observe that GNE outperforms both node2vec and LINE
in temporal holdout validation across both yeast and E.
coli datasets, indicating GNE can accurately predict new
genetic interactions. Table 5 shows that GNE achieves
substantial improvement of 7.0 (AUROC), 7.4 (AUPR) on
yeast and 6.6 (AUROC), 5.9 (AUPR) on E. coli datasets.

Table 6 shows the top 5 interactions with the sig-
nificant increase in predicted probability for both yeast
and E. coli after expression data is integrated. We also
provide literature evidence with experimental evidence
code obtained from the BioGRID database [26] sup-
porting these predictions. BioGRID compiles interaction
data from numerous publications through comprehen-
sive curation efforts. Taking new interactions added to
BioGRID (version 3.4.158) into consideration, we evalu-
ate the probability of these interactions predicted by GNE
trained with and without expression data. Specifically,
integration of expression data increases the probability of
8331 (out of 11,185) interactions for E. coli (improving
AUROC from 0.606 to 0.662) and 6,010 (out of 12,835)
interactions for yeast (improving AUROC from 0.685 to
0.707). Integration of topology and expression data sig-
nificantly increases the probabilities of true interactions
between genes (Table 6).

To further evaluate GNE’s predictions, we consider the
new version of BioGRID (version 3.4.162) and evaluate
2609 yeast gene pairs (Additional file 1: Table S1) and 871
E. coli gene pairs (Additional file 2: Table S2) predicted
by GNE with the probabilities of 0.5 or higher. We find
that 128 (5%) yeast gene pairs and 78 (9%) E. coli gene
pairs are true interactions that have been added to the lat-
est release of BioGRID. We then evaluate the predictive
ability of GNE by calculating the percentage of true inter-
actions with regard to different probability bins (Fig. 7).
Sixteen percent of predicted yeast gene pairs and 17.5%

Table 6 New gene interactions that are assigned high probability by GNE

Organism
Probability

Gene i Gene j Experimental evidence code
Topology Topology + Expression

Yeast

0.287 0.677 TFC8 DHH1 Affinity Capture-RNA [35]

0.394 0.730 SYH1 DHH1 Affinity Capture-RNA [35]

0.413 0.746 CPR7 DHH1 Affinity Capture-RNA [35]

0.253 0.551 MRP10 DHH1 Affinity Capture-RNA [35]

0.542 0.835 RPS13 ULP2 Affinity Capture-MS [36]

E. coli

0.014 0.944 ATPB RFBC Affinity Capture-MS [37]

0.012 0.941 NARQ CYDB Affinity Capture-MS [37]

0.013 0.937 PCNB PAND Affinity Capture-MS [37]

0.015 0.939 FLIF CHEY Affinity Capture-MS [37]

0.017 0.938 YCHM PROB Affinity Capture-MS [37]

New gene interactions on 2018 version that are assigned high probability by GNE after integration of expression data. We provide probability predicted by GNE
(with/without expression data) for new interactions in the 2018 version and evidence supporting the existence of predicted interactions
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Fig. 7 The percentage of true interactions from GNE’s predictions with different probability bins. a yeast b E. coli. We divide the gene pairs based on
their predicted probabilities to different probability ranges (as shown in the x-axis) and identify the number of predicted true interactions in each
range. Each bar indicates the percentage of true interactions out of predicted gene pairs in that probability range

of predicted E. coli gene pairs with the probability higher
than 0.9 are true interactions. This suggests that gene pairs
with high probability predicted by GNE are more likely to
be true interactions.

To support our finding that GNE predicted gene pairs
have high value, we manually check gene pairs that have
high predicted probability but are missing from the latest
BioGRID release. We find that these gene pairs interact
with the same set of other genes. For example, GNE pre-
dicts the interaction between YDR311W and YGL122C
with the probability of 0.968. Mining BioGRID database,
we find that these genes interact with the same set of
374 genes. Similarly, E. coli genes DAMX and FLIL with
the predicted probability of 0.998 share 320 interacting
genes. In this way, we identify all interacting genes shared
by each of the predicted gene pairs in yeast and E.
coli (Additional file 1: Table S1 and Additional file 2:

Table S2). Figure 8 shows the average number of inter-
acting genes shared by a gene pair. In general, gene
pairs with a high GNE probability tend to have a large
number of interacting genes. For example, gene pairs
with the probability greater than 0.9 have, on average,
82 common interacting genes for yeast and 58 for E.
coli. Two sample t-test analysis has shown that there is
a significant difference in the number of shared inter-
acting genes with respect to different probability bins
(Table 7).

Moreover, we search the literature to see if we can find
supporting evidence for predicted interactions. We find
literature evidence for an interaction between YCL032W
(STE50) and YDL035C (GPR1), which has the probability
of 0.98 predicted by GNE. STE50 is an adaptor that links
G-protein complex in cell signalling, and GPR1 is a G-
protein coupled receptor. Both STE50 and GPR1 share a

Fig. 8 The average number of common interacting genes between the gene pairs predicted by GNE. a yeast b E. coli. We divide gene pairs into
different probability groups based on predicted probabilities by GNE and compute the number of common interacting genes shared by these gene
pairs. We categorize these gene pairs into different probability ranges (as shown in the x-axis). Each bar represents the average number of common
interacting genes shared by gene pairs in each probability range
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Table 7 Results of two-sample t-test

Probability bin for
Sample A

Probability bin for
Sample B

p-value for
yeast

p-value for E.
coli

0.5 - 0.6 0.6 - 0.7 9.2e − 14 6.9e − 02

0.5 - 0.6 0.7 - 0.8 3.02e − 51 1.23e − 05

0.5 - 0.6 0.8 - 0.9 6.1e − 117 7.4e − 14

0.5 - 0.6 0.9 - 1.0 2.1e − 177 3.7e − 39

0.6 - 0.7 0.7 - 0.8 8.2e − 17 1.1e − 02

0.6 - 0.7 0.8 - 0.9 3.5e − 69 9.2e − 09

0.6 - 0.7 0.9 - 1.0 2.1e − 128 1.9e − 30

0.7 - 0.8 0.8 - 0.9 4.7e − 28 4.8e − 04

0.7 - 0.8 0.9 - 1.0 6.2e − 87 7.4e − 23

0.8 - 0.9 0.9 - 1.0 4.3e − 35 5.1e − 13

We divide gene pairs into different probability groups based on predicted
probabilities by GNE and compute the number of common interacting genes
shared by these gene pairs. Significance test shows there is the significant
difference between average number of shared genes in different probability bins

common function of cell signalling via G-protein. Besides,
STE50p interacts with STE11p in the two-hybrid system,
which is a cell-based system examining protein-protein
interactions [34]. Also, BioGRID has evidence of 30 physi-
cal and 4 genetic associations between STE50 and STE11.
Thus, STE50 is highly likely to interact with STE11, which
in turn interacts with GPR1.

This analysis demonstrates the potential of our method
in the discovery of gene interactions. Also, GNE can help
the curator to identify interactions with strong potential
that need to be looked at with experimental validation or
within the literature.

Conclusion
We developed a novel deep learning framework, namely
GNE to perform gene network embedding. Specifi-
cally, we design deep neural network architecture to
model the complex statistical relationships between
gene interaction network and expression data. GNE is
flexible to the addition of different types and num-
ber of attributes. The features learned by GNE allow
us to use out-of-the-box machine learning classifiers
like Logistic Regression to predict gene interactions
accurately.

GNE relies on a deep learning technique that can learn
the underlying patterns of gene interactions by integrat-
ing heterogeneous data and extracts features that are
more informative for interaction prediction. Experimental
results show that GNE achieve better performance in gene
interaction prediction over other baseline approaches in
both yeast and E. coli organisms. Also, GNE can help
the curator to identify the interactions that need to be
looked at.

As future work, we aim to study the impact of inte-
grating other sources of information about gene such
as transcription factor binding sites, functional annota-
tions (from gene ontology), gene sequences, metabolic
pathways, etc. into GNE in predicting gene interaction.

Additional files

Additional file 1: Table S1. Includes yeast gene pairs predicted by GNE
with probabilities of 0.5 or higher. (XLSX 109 kb)

Additional file 2: Table S2. Includes E. coli gene pairs predicted by GNE
with probabilities of 0.5 or higher. Rows marked with yellow color indicate
predicted interaction is true based on latest version 3.4.162 of BioGRID
interaction dataset released on June 2018. (XLSX 43.7 kb)
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