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An Interactive and Dynamic Search-Based
Approach to Software Refactoring

Recommendations
Vahid Alizadeh, Marouane Kessentini, Wiem Mkaouer, Mel Ocinneide, Ali Ouni and Yuanfang Cai

Abstract—Successful software products evolve through a process of continual change. However, this process may weaken the design
of the software and make it unnecessarily complex, leading to significantly reduced productivity and increased fault-proneness.
Refactoring improves the software design while preserving overall functionality and behavior, and is an important technique in
managing the growing complexity of software systems. Most of the existing work on software refactoring uses either an entirely manual
or a fully automated approach. Manual refactoring is time-consuming, error-prone and unsuitable for large-scale, radical refactoring. On
the other hand, fully automated refactoring yields a static list of refactorings which, when applied, leads to a new and often hard to
comprehend design. Furthermore, it is difficult to merge these refactorings with other changes performed in parallel by developers. In
this paper, we propose a refactoring recommendation approach that dynamically adapts and interactively suggests refactorings to
developers and takes their feedback into consideration. Our approach uses NSGA-II to find a set of good refactoring solutions that
improve software quality while minimizing the deviation from the initial design. These refactoring solutions are then analyzed to extract
interesting common features between them such as the frequently occurring refactorings in the best non-dominated solutions. Based
on this analysis, the refactorings are ranked and suggested to the developer in an interactive fashion as a sequence of transformations.
The developer can approve, modify or reject each of the recommended refactorings, and this feedback is then used to update the
proposed rankings of recommended refactorings. After a number of introduced code changes and interactions with the developer, the
interactive NSGA-II algorithm is executed again on the new modified system to repair the set of refactoring solutions based on the new
changes and the feedback received from the developer. We evaluated our approach on a set of eight open source systems and two
industrial projects provided by an industrial partner. Statistical analysis of our experiments shows that our dynamic interactive
refactoring approach performed significantly better than four existing search-based refactoring techniques and one fully-automated
refactoring tool not based on heuristic search.

Index Terms—Search-based software engineering, Refactoring, interactive optimization, software quality.

F

1 INTRODUCTION

SUCCESSFUL software products evolve through a process
of continual change. However, this process may weaken

the design of the software and make it unnecessarily com-
plex, leading to significantly reduced productivity, increased
fault-proneness and cost of maintenance, and has even led
to projects being canceled. Many studies report that soft-
ware maintenance activities consume up to 90% of the total
cost of a typical software project. It has also been shown that
software developers typically spend around 60% of their
time in understanding the code they are maintaining [1].
Clearly, software developers need better ways to manage
and reduce the growing complexity of software systems
and improve their productivity. The standard solution is
refactoring, which involves improving the design structure
of the software while preserving its functionality [2]. There
has been much work done on various techniques and tools
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for software refactoring [2], [3], [4], [5] and these approaches
can be classified into three main categories: manual, semi-
automated and fully-automated approaches, as outlined below.
In manual refactoring, the developer refactors with no tool
support at all, identifying the parts of the program that
require attention and performing all aspects of the code
transformation by hand. It may seem surprising that a
developer would eschew the use of tools in this way, but
Murphy-Hill et al. [6] found in their empirical study of the
developers usage of the Eclipse refactoring tooling that in
almost 90% of cases the developers performed refactorings
manually and did not use any automated refactoring tools.
Kim et al. [7] confirmed this observation, finding that the
interviewed developers from Microsoft preferred to perform
refactoring manually in 86% of cases. In spite of its apparent
popularity, manual refactoring is very limited however;
several studies have shown that manual refactoring is error-
prone, time-consuming, not scalable and not useful for
radical refactoring that requires an extensive application of
refactorings to correct unhealthy code [8].
By semi-automated refactoring, we refer to the situation
where a developer uses the standard refactoring tooling
available in IDEs such as Eclipse and Netbeans to apply the
refactorings they deem appropriate. Murphy-Hill et al. [6]
analyzed data collected from 13,000 Java developers using
the Eclipse IDE over a 9-month period, finding that the
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trivial Rename refactoring accounted for almost 72% of the
refactorings performed, while the combination of Rename,
Extract Method/Variable and Move accounted for 89.3% of
the total number of refactorings performed.
In fully-automated refactoring, a search-based process is
employed to find an entire refactoring sequence that im-
proves the program in accordance with the employed fit-
ness function (involving e.g., code smells, software quality
metrics etc.). This approach is appealing in that it is a
complete solution and requires little developer effort, but
it suffers from several serious drawbacks as well. Firstly,
the recommended refactoring sequence may change the
program design radically and this is likely to cause the
developer to struggle to understand the refactored program
[9]. Secondly, it lacks flexibility since the developer has
to either accept or reject the entire refactoring solution.
Thirdly, it fails to consider the developer perspective, as the
developer has no opportunity to provide feedback on the
refactoring solution as it is being created. Furthermore, as
development must halt while the refactoring process exe-
cutes, fully-automated refactoring methods are not useful
for floss refactoring where the goal is to maintain good
design quality while modifying existing functionality. The
developers have to accept the entire refactoring solution
even though they prefer, in general, step-wise approaches
where the process is interactive and they have control of the
refactorings being applied [10].
In light of the discussion above, we propose an approach to
refactoring recommendation that (1) provides refactoring-
centric interaction, (2) enables refactoring and development
to proceed in parallel and (3) collects information in a non-
intrusive manner that can be used to inform dynamically
the refactoring process. We postulate that enabling the de-
veloper to interact with the refactoring solution is essential
both to creating a better refactoring solution, and to creating
a solution that the developer understands and can work
with.
We propose that this interaction should be centered on
refactorings, which are of direct interest to a developer,
rather than code smells or software quality metrics, which
have been found not to be strong drivers of the refactoring
process in practice [11, 12]. Refactoring and development
must be allowed to proceed in parallel, as this is part of test-
driven development [13] and the Agile approach to soft-
ware development in general [14]. Thus the developer can
continue to extend the program with new functionality or
bug fixes while the refactoring recommendation process ex-
ecutes. Finally, any development carried out is used where
possible to improve the refactoring recommendations, e.g.,
the developer is more likely to value refactorings that affect
recently updated code.
Our goal is to present the developer with few refactorings
at a time, allowing them to accept / reject/ modify each
refactoring as they see it. Thus, developers are not forced
to either accept or run the entire refactoring operations or
reject them and the developers may not control the number
the applied refactorings. In our approach, the developers
can apply operations to the extent that they want. Finding a
refactoring solution is a naturally multi-objective problem,
so there is not one single ”best” solution, rather there is a set
of non-dominated solutions, the so-called Pareto front [15].

In this paper, we use the multi-objective evolutionary algo-
rithm NSGA-II [15] to create the Pareto front, using a fitness
function that aims to improve software quality metrics while
maintaining design coherence and reducing the number of
recommended refactorings. The question we face is how
to choose one solution from this front to present to the
developer? The traditional approach is to seek a ”knee
point” on the front, but this ignores the fact that developers
have their own refactoring priorities and may prefer a
refactoring solution elsewhere on the front. To this end, we
propose, for the first time in search-based software refactoring,
the use of innovization (innovation through optimization) [16] to
analyze and explore the Pareto front interactively and implicitly
with the developer. Innovization is a technique that seeks
interesting commonalities among the solutions of the Pareto
front with the aim of developing a deeper understanding of
the problem.
Our innovization algorithm starts by finding the most
frequently-occurring refactorings among the set of non-
dominated refactoring solutions. Based on this analysis, a
complete refactoring solution is chosen from the front that
best matches the most frequently-occurring refactorings, i.e.,
one that best represents the entire front in some sense. The
recommended refactorings are then ranked and suggested
to the developer one by one.
The developer can approve, modify or reject each suggested
refactoring. Each such action by the developer is fed back
into the search process. For example, if the developer rejects
a refactoring, the search process will subsequently avoid
this refactoring in creating new solutions. After the software
has been changed to some degree, i.e. the developer has
changed it by adding new functionality, fixing some bugs or
applying some refactorings and/or has provided feedback
by rejecting a number of refactorings, NSGA-II will continue
to execute in the new modified context to repair the set
of good refactoring solutions based on the updated code
and the feedback received from the developer. The feedback
received from the developers will be also used as a set
of new constraints to consider for the next iterations of
NSGA-II. The algorithm will avoid, for example, including
rejected refactorings by the developer when generating new
solutions or repairing existing ones. However, the algorithm
is not based on simply discarding all refactoring suggestions
rejected by developer since adding new constraints to re-
duce the search space may make the current recommended
refactoring solutions invalid.
We implemented our proposed approach and evaluated it
on a set of eight open source systems and two industrial
systems provided by our industrial partner, the Ford Motor
Company. Statistical analysis of our experiments showed
that our proposal performed significantly better than four
existing search-based refactoring approaches [17, 18, 19]
[20] and an existing refactoring tool not based on heuristic
search, JDeodorant [21]. In our qualitative analysis, we
found that the software developers who participated in
our experiments confirmed the relevance of the suggested
refactorings and the flexibility of the tool in modifying and
adapting the suggested refactorings.
This paper builds on our previous work [22] extending it
in several ways: (1) the interaction mechanism is improved,
we define a new ranking function and different algorithm
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to repair non-dominated solutions after interactions with
developers, (2) ten software applications are studied rather
than five, (3) the number of participants in the experi-
ments is doubled from 11 to 22, (4) an entirely new set
of experimental results are presented and analyzed in far
greater detail, (5) a comparison with a larger set of existing
refactoring techniques is included.
It also extends our previous study [9] where we proposed
a fully-automated, multi-objective approach to find the best
refactoring solutions that improve software quality metrics
and reduce the number of recommended refactorings. In
[9], we did not consider any developer interaction (fully-
automated approach) and did not update/repair refactoring
solutions based on new code changes introduced by devel-
opers. A recent study [45] extended our previous work [22]
to propose an interactive search based approach for refac-
toring recommendations. The developers have to specify a
desired design at the architecture level then the proposed
approach try to find the relevant refactorings that can gen-
erate a similar design to the expected one. In our work, we
do not consider the use of a desired design, thus developers
are not required to manually modify the current architecture
of the system to get refactoring recommendations.
The primary contributions of this paper can be summarized
as follows:

1) The paper introduces a novel interactive way to
refactor software systems using innovization and
interactive dynamic multi-objective optimization.
The proposed technique supports the adaptation of
refactoring solutions based on developer feedback
while also taking into account other code changes
that the developer may have performed in parallel
with the refactoring activity.

2) We propose an implicit exploration of the Pareto
front of non-dominated solutions based on our
novel interactive approach that can help software
developers to use multi-objective optimization for
software engineering problems, avoiding the neces-
sity for manual exploration of the Pareto front to
find the best trade-off between the objectives.

3) The paper reports the results of an empirical study
on an implementation of our approach. The ob-
tained results provide evidence to support the claim
that our proposal is more efficient, on average, than
existing refactoring techniques based on a bench-
mark of eight open source systems and two indus-
trial projects. The paper also evaluates the relevance
and usefulness of the suggested refactorings for
software developers in improving the quality of
their systems.

The remainder of this paper is structured as follows.
Section 2 presents the relevant background details. Section 3
describes our novel approach to interactive code refactoring
while the results obtained from our experiments are pre-
sented and discussed in Section 4 and 5. Threats to validity
are discussed in Section 7. Section 7 provides an account
of related work. Finally, in Section 8, we summarize our
conclusions and present some ideas for future work.

2 BACKGROUND
In this section, we describe the required background to un-
derstand the proposed approach. First, we give an overview
about software refactoring. Then, several definitions related
to interactive and dynamic multi-objective optimization are
described.

2.1 Software Refactoring

Refactoring is defined as the process of improving the code
after it has been written by changing its internal structure
without changing its external behavior. The idea is to reorga-
nize variables, classes and methods to facilitate future adap-
tations and enhance comprehension. This reorganization is
used to improve different aspects of the software quality
such as maintainability, extensibility, reusability, etc. Some
modern Integrated Development Environments (IDEs), such
as Eclipse, Netbeans, provide support for applying the most
commonly used refactorings, e.g., move method, rename
class, etc.
In order to identify which parts of the source code need to
be refactored, most of the existing work relies on the notion
of bad smells (e.g., Fowler’s textbook [23]), also called
design defects or anti-patterns. In this paper, we assume
that code smells have been already detected, and need to be
corrected. Typically, code smells refer to design situations
that adversely affect the development of the software. When
applying refactorings to fix design defects, software metrics
can be used as an overall indication of the quality of the
new design. For instance, high intra-class cohesion and low
inter-class coupling usually indicate a high-quality system.

2.2 Interactive and Dynamic Evolutionary Multi-
Objective Optimization

In this section, we give a brief overview about two impor-
tant aspects in the Evolutionary Multi-objective Optimiza-
tion (EMO) [50] paradigm related to the: (1) Interaction with
the user and (2) Dynamicity of the problem.
Interacting with the human user means allowing the user
to inject his/her preferences into the computational search
algorithm and then using these preferences to guide the
search process. To express his/her preferences, the user
needs some preference modeling tools. The most commonly
used ones are [50]:

• Weights: Each objective is assigned a weighting coeffi-
cient expressing its importance. The larger the weight
is, the more important the objective is.

• Solution ranking: The user is provided with a sample
of solutions (a subset of the current population) and
is invited to perform comparisons between pairs
of equally-ranked solutions in order to differentiate
between solutions that the fitness function regards as
equal.

• Objective ranking: Pairwise comparisons between
pairs of objectives are performed in order to rank
the problem’s objectives where strong conflict exists
between a pair of objectives.

• Reference point (also called a goal or an aspiration
level vector): The user supplies, for each objective,
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the desired level that he/she wishes to achieve. This
desired level is called aspiration level.

• Reservation point (also called a reservation level vec-
tor): The user supplies, for each objective, the ac-
cepted level that he/she wishes to reach. This ac-
cepted level is called reservation level.

• Trade-off between objectives: The user specifies that the
gain of one unit in one objective is worth degradation
in some others and vice versa.

• Outranking thresholds: The user specifies the neces-
sary thresholds to design a fuzzy predicate modeling
the truth degree of the predicate solution x is at least
as good as solution y.

• Desirability thresholds: The user supplies: (1) an abso-
lutely satisfying objective value and (2) a marginally
infeasible objective value. These thresholds represent
the parameters that define the desirability functions.

Based on these preference modeling tools, we observe
that the goal of a preference-based EMO algorithm is
to assign different importance levels to the problem’s
objectives with the aim to guide the search towards the
Region of Interest (ROI) that is the portion of the Pareto
Front that best matches the user preferences. In fact, usually,
the user is not interested with the whole Pareto front
and thus he/she is searching only for his/her ROI from
which the problem’s final solution will be selected. Several
preference-based EMO algorithms have been proposed and
used to solve real problems such as PI-EMOA [46], iTDEA
[47], NOSGA [48], DF-SMS-EMOA [49], just to cite a few.
There are several algorithmic challenges that should be
overcome such as the preservation of Pareto dominance,
the preservation of population diversity, the scalability with
the number of objectives, etc.
Until now, the user’s preferences are expressed and handled
in the objective space. It is important to highlight that one
of the original aspects of our work in this paper, as detailed
later, is allowing the user (a software developer) to express
his/her preferences in the decision space and then handling
these preferences to help the user finding the most desired
refactoring solution. Moreover, our approach helps the user
in eliciting his/her preferences, which is very important for
any preference-based EMO algorithm. These preferences are
introduced implicitly by moving between the Pareto front
of non-dominated solutions after obtaining feedback from
the user about just a few parts of the solution in order to
better understand his preferences. This implicit exploration
of the Pareto front will be detailed in the next section where
we describe the formulation of our refactoring problem.
The incorporation of user preferences may require the
handling of dynamicity issues related to the introduced
changes to the solution or the input (i.e. the software
system). Handling dynamicity in EMO means solving
dynamic problems where the objective functions and or the
constraints may change over time such due to, for example,
the dynamic nature of most of software evolution problems
including software refactoring. Applying evolutionary
algorithms (EAs) to solve Dynamic Multi-Objective
Problems (DMOPs) has received great attention from
researchers thanks to the adaptive behavior of evolutionary
computation methods. A DMOP consists of minimizing

or maximizing an objective function vector under some
constraints over time. Its general form is the following [50]:
Minf(x, t) = [f1(x, t), f2(x, t), ..., fM (x, t)]T

gj(x, t) ≥ 0, j = 1, ...P ;

hk(x, t) = 0, k=1,...,Q;
xLi ≤ xi ≤ xUi , i=1,...,n;

where M is the number of objective functions, t is the
time instant, P is the number of inequality constraints, Q is
the number of equality constraints, XL

i and xUi correspond
respectively to the lower and upper bounds of the variable
xi .
A solution xi satisfying the (P + Q) constraints is said to
be feasible, and the set of all feasible solutions defines the
feasible search space denoted by Ω. In this formulation,
we consider a minimization MOP since maximization can
be easily turned into minimization based on the duality
principle by multiplying each objective function by −1 and
transforming the constraints based on the duality rules.
The resolution of a MOP yields a set of trade-off solutions,
called Pareto optimal solutions or non-dominated solutions,
and the image of this set in the objective space is called
the Pareto front. Hence, the resolution of a MOP consists
in approximating the entire Pareto front. In the following,
we provide some background definitions related to multi-
objective optimization. It is worth noting that these defini-
tions remain valid in the case of DMOPs.

Definition 1: Pareto optimality
A solution x∗ ∈ Ω is Pareto optimal if ∀x ∈ Ω and I = {1, ...,M}
either ∀m ∈ I we have fm(x) = fm(x∗) or there is at least one
m ∈ I such that fm(x) > fm(x∗) .

The definition of Pareto optimality states that x∗ is
Pareto optimal if no feasible vector exists that would
improve some objectives without causing a simultaneous
worsening in at least one other objective.

Definition 2: Pareto dominance
A solution u = (u1, u2, ..., un) is said to dominate another solution
v = (v1, v2, ..., vn) ( denoted by f(u) ≺ f(v) ) if and only if f(u) is
partially less than f(v). In other words, ∀m ∈ {1, ...,M} we have
fm(u) ≤ fm(v) and ∃m ∈ {1, ...,M} where fm(u) < fm(v) .

Definition 3: Pareto optimal set
For a given MOP f(x), the Pareto optimal set is
P ∗ = {x ∈ Ω|¬∃x′ ∈ Ω, f(x′) ≺ f(x)}.

Definition 4: Pareto optimal front
For a given MOP f(x) and its Pareto optimal set P ∗, the Pareto front
is PF ∗ = {f(x), x ∈ P ∗}.

In the next section, we describe an overview of our
dynamic interactive refactoring approach then a detailed
formulation of our solution.

3 SEARCH-BASED INTERACTIVE
REFACTORING RECOMMENDATION
We first detail an overview of our approach and then we
provide the details of our problem formulation and the
solution approach.
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Figure 1. Approach Overview.

3.1 Approach Overview

The goal of our approach is to propose a new dynamic
interactive way for software developers to refactor their
systems. The general structure of our approach is sketched
in Fig. 1.

Our technique comprises two main components. The
first component is an offline phase, executed in the back-
ground, when developers are modifying the source code of
the system. During this phase, the multi-objective algorithm,
NSGA-II, is executed for a number of iterations to find
the non-dominated solutions balancing the two objectives
of improving the quality, which corresponds to minimizing
the number of code smells, maximizing/preserving the se-
mantic coherence of the design and improving the QMOOD
(Quality Model for Object-Oriented Design) quality metrics,
and the second objective of minimizing the number of
refactorings in the proposed solutions.
The output of this first step of the offline phase is a set of
Pareto-equivalent refactoring solutions that optimizes the
above two objectives. The second step of the offline phase
explores this Pareto front in an intelligent manner using in-
novization to rank recommended refactorings based on the
common features between the non-dominated solutions. In
our adaptation, we assume true the hypothesis that the most
frequently occurring refactorings in the non-dominated so-
lutions are the most important ones. Thus, the output of this
second step of the offline phase is a set of ranked solutions
based on this frequency score. NSGA-II is able to generate
not only one good refactoring solution, but a diverse set of
non-dominated solutions. This set of refactoring solutions
may include specific patterns that make them better and
different than dominated (imperfect) refactoring solutions.
To extract these patterns, we used the heuristic of prioritiz-
ing the recommendation of refactorings that are the most
redundant ones among the non-dominated solutions. To
our intuition, it seems very likely that common patterns
in the set of non-dominated solutions are very likely to
be good patterns. The opposite situation, where some non-
dominated solutions share a pattern that in of poor quality,
seems highly unlikely, though it could plausibly occur were
the poor quality pattern to be an essential enabling feature
for another pattern of high quality. While we are only
expressing an intuition here, innovization has proven itself
to be of value later in the experiments section.
The second component of our approach is an online phase to

manage the interaction with the developer. It dynamically
updates the ranking of recommended refactorings based
on the feedback of the developer. This feedback can be to
approve/apply or modify or reject the suggested refactoring
one by one as a sequence of transformations. Thus, the goal
is to guide, implicitly, the exploration of the Pareto front to
find good refactoring recommendations. Since the ranking
is updated dynamically, our interactive algorithm allows
the implicit move between non-dominated solutions of the
Pareto front.
After a number of interactions, developers may have mod-
ified or rejected a high number of suggested refactorings
or have introduced several new code changes (new func-
tionalities, fix bugs, etc.). Whenever the developers stop
the refactoring session by closing the suggestions window,
the first component of our approach is executed again on
the background to update the last set of non-dominated
refactoring solutions by continuing the execution of NSGA-
II based on the two objectives defined in the first component
and also the new constraints summarizing the feedback of
the developer. In fact, we consider the rejected refactor-
ings by the developer as constraints to avoid generating
solutions containing several already rejected refactorings.
This may lead to reducing the search space and thus a fast
convergence to better solutions. Of course, the continuation
of the execution of NSGA-II takes as input the updated
version of the system after the interactions with developers.
The whole process continues until the developers decide
that there is no necessity to refactor the system any further.

3.2 Adaptation
We describe in the following subsections the details of the
various components of our framework.

3.2.1 Multi-objective formulation
In our previous work [9], we proposed a fully automated ap-
proach, to improve the quality of a system while preserving
its domain semantics. It uses multi-objective optimization
based on NSGA-II to find the best compromise between
code quality improvements and reducing the number of
code changes.
In this current work, we introduce the interactive compo-
nent to our NSGA-II algorithm, which radically changes the
process of finding good refactoring solutions in comparison
to our earlier work. We will compare later in the experi-
ments the performance of both algorithms. We present in
the following the different adaptation steps of our approach.
We ignored in this new interactive approach two objectives
considered in our previous automated refactoring work.
These two objectives are used to estimate, preserve and
improve the design coherence (semantics) when fully au-
tomatically refactoring software systems. The very initial
version of our experiments actually added the interaction,
dynamic and innovization components at the top of our
previous work. However, we found that the user interac-
tions and the constraints learned and generated from it
provided the required guidance to avoid semantics incoher-
ences. Furthermore, the consideration of a large number of
objectives make the execution time much longer to converge
towards acceptable solutions since an increase in the num-
ber of objectives will increase the number of non-dominated
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solutions to analyze which is not suitable for interactive
optimization algorithms since it will introduce noise in
the search. Thus, we considered the textual measures as
constraints to satisfy when generating the refactoring so-
lutions rather than an objective to optimize as highlighted
later. The users interaction history is sufficient based on
our experiments thus we ignored the use of development
history in our new interactive approach.
As explained in Algorithm 1, the process starts with a
complete execution of a regular NSGA-II algorithm based
on the objectives described in the previous section (offline
phase) then three components are introduced to improve the
recommendations: innovization, interactive and dynamic
components.

Algorithm 1 Dynamic Interactive NSGA-II at generation t
1: Input
2: Sys: system to evaluate, Pt: parent population
3: Output
4: Pt+1

5: Begin
6: /* Test if any user interaction occurred in the previous

iteration */
7: if UserFeedback = TRUE then
8: /* Rejected refactoring operations as constraints */
9: Ct← GetConstraints();

10: /* Updated source code after applying changes */
11: Sys← GetRefactored− System();
12: UserFeedback ← FALSE;
13: end if
14: St ← ∅, i← 1;
15: Qt ← V ariation(Pt);
16: Rt ← Pt ∪Qt;
17: Pt ← evaluate(Pt, Ct, Sys);
18: (F1, F2, ...)← NonDominatedSort(Rt);
19: repeat
20: St ← St ∪ Fi;
21: i← i+ 1
22: until (|St| ≥ N )
23: Fl ← Fi; . //Last front to be included
24: if |St| = N then
25: Pt+1 ← St;
26: else
27: Pt+1 ← ∪l−1j=1Fj ;
28: /*Number of points to be chosen from Fl*/
29: K ← N − |Pt+1|;
30: /*Crowding distance of points in Fl */
31: Crowding −Distance−Assignment(Fl);
32: Quick − Sort(Fl);
33: /*Choose K solutions with largest distance*/
34: Pt+1 ← Pt+1 ∪ Select(Fl, k);
35: end if
36: if t+ 1 = Threshold then
37: UserFeedback ← TRUE;
38: /* Select and rank the best front */
39: Rank − Solution(F1);
40: Threshold← Threshold+ t+ 1;
41: end if
42: End

The first iterations of the algorithm identify the Pareto

front of the non-dominated refactoring solutions based on
the fitness functions that will be discussed later. Then, the in-
novization component (Section 3.3) ranks the different non-
dominated solutions based on the most common refactoring
patterns between them. The different ranked refactorings
are presented to the user based on the interactive compo-
nent. During this interactive component, the developer may
accept or reject or modify the refactoring recommendations
(Section 3.3). Finally, the last dynamic component uses the
interaction data with the user to reduce the search space
of possible refactoring solutions and improve the future
suggestions by repairing the Pareto front as detailed later
in Section 3.3.

3.2.2 Solution representation
A solution consists of a sequence of n refactoring operations
involving one or multiple source code elements of the
system to refactor. The vector-based representation is used
to define the refactoring sequence. Each vector’s dimension
has a refactoring operation and its index in the vector
indicates the order in which it will be applied. For every
refactoring, pre- and post-conditions are specified to ensure
the feasibility of the operation.
The initial population is generated by randomly assigning
a sequence of refactorings to a randomly chosen set of code
elements, or actors. The type of actor usually depends on
the type of the refactoring it is assigned to and also depends
on its role in the refactoring operation. An actor can be
a package, class, field, method, parameter, statement or
variable. Table 1 depicts, for each refactoring, its involved
actors and its corresponding parameters.

The size of a solution, i.e. the vector’s length is ran-
domly chosen between upper and lower bound values.
The determination of these two bounds is similar to the
problem of bloat control in genetic programming where the
goal is to identify the tree size limits. Since the number
of required refactorings depends mainly on the size of the
target system, we performed, for each target project, several
trial and error experiments using the HyperVolume (HV)
performance indicator [49] to determine the upper bound
after which, the indicator remains invariant. For the lower
bound, it is arbitrarily chosen. The experiments section will
specify the upper and lower bounds used in this study. Table
2 shows an example of a refactoring solution including three
operations applied to a simplified version of a solution ap-
plied to JVacation v1.0, a Java open-source trip management
and scheduling software.

3.2.3 Solution variation
In each search algorithm, the variation operators play the
key role of moving within the search space with the aim of
driving the search towards optimal solutions.
For the crossover, we use the one-point crossover operator.
It starts by selecting and splitting at random two parent
solutions. Then, this operator creates two child solutions by
putting, for the first child, the first part of the first parent
with the second part of the second parent, and vice versa for
the second child. This operator must ensure the respect of
the length limits by eliminating randomly some refactoring
operations. It is important to note that in multi-objective
optimization, it is better to create children that are close to
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Table 1
List of considered refactorings for our solution representation.

Refactorings Actors Roles

Extract class
class source class, new class
field moved fields
method moved methods

Extract interface
class source classes, new interface
method moved abstract methods

Inline class class source class, target class

Move field
class source class, target class
field moved field

Move method
class source class, target class
method moved method

Push down field
class super class, subclasses
field moved field

Push down method
class super class, subclasses
method moved method

Pull up field
class subclasses, super class
field moved field

Pull up method
class subclasses, super class
method moved method

Move class
package source package, target package
class moved class

Extract method
method source class, new class
field moved fields

their parents in order to have a more efficient search process.
For mutation, we use the bit-string mutation operator that
picks probabilistically one or more refactoring operations
from the solutions and replace or modify or delete them.
While the crossover operator does not introduce or modify
a refactoring of a solution but just the sequence (a swap
between refactoring of different solutions), the mutation
operator definitely can add or modify or delete a refac-
toring when applied to any solution of the population.
When a mutation operator is applied, the goal is to slightly
change the solution for the purpose to probably improve
its fitness functions. We used these three operations for
the mutation operator that are randomly selected when
a mutation is applied to a solution. Thus, the mutation
operator can introduce new refactorings by either adding
completely new ones or modifying the controlling parame-
ters of an existing refactoring. For example, move method
(m1, A, B) could be replaced by movemethod(m1, A,C)
or movemethod(m3, A,B) where m1, A and B are the
controlling parameters of the refactoring move method.
Furthermore, the selection operator allows to regenerate
part of the population randomly at every iteration thus
new refactoring will be introduced since new solutions are
generated during the execution process.
When applying the change operators, the different pre-
and post-conditions are checked to ensure the applicability
of the newly generated solutions. For example, to apply
the refactoring operation movemethod a number of neces-
sary pre-conditions should be satisfied such as the method
and the source and target classes should exists. A post-

condition example is to check that the method exists and
was moved to the target class and did not exist anymore
in the source class. More details about the adapted pre-
and post-conditions for refactorings can be found in [2].
We also apply a repair operator that randomly selects new
refactorings to replace those creating conflicts.

3.2.4 Solution evaluation
The generated solutions are evaluated using two fitness
functions as detailed in the following paragraphs.
Minimize the number of code changes as an objective: The appli-
cation of a specific suggested refactoring sequence may re-
quire an effort that is comparable to that of re-implementing
part of the system from scratch. Taking this observation into
account, it is essential to minimize the number of suggested
operations in the refactoring solution since the designer
may have some preferences regarding the percentage of
deviation with the initial program design. In addition, most
developers prefer solutions that minimize the number of
changes applied to their design. Thus, we formally defined
the fitness function as the number of modified actors/code
elements (packages, classes, methods, attributes) by the
generated refactorings solution.

f(x) =
n∑

i−1
#code elements(Ri, x) (1)

where x is the solution to evaluate, n is the number of
refactorings in the solution x and #code elements is a func-
tion that counts the number of modified code elements in a
refactoring. Any solution with refactorings being performed
on the same code elements will have better (lower) fitness
value for this objective. Such a definition of the objective
is in favor of code locality since it encourages refactoring
the same code fragment, as developers prefer to refactor
the specific elements with which they are most familiar [7]
instead of applying scattered changes throughout the whole
system. The proposed fitness function is different from that
employed in our previous work [9] where only the number
of applied refactorings are counted. In fact, each refactoring
type may have a different impact on the system in terms of
number of code changes it engenders, something that can
be identified using our new formulation.
Maximize software quality as an objective: Many studies have
utilized structural metrics as a basis for defining quality in-
dicators for a good system design [18, 51]. As an illustrative
example, [38] proposed a set of quality measures, using the
ISO 9126 specification, called QMOOD. Each of these quality
metrics is defined using a combination of low-level metrics
as detailed in Tables 3 and 4.

The QMOOD model has been used previously in the area
of search-based software refactoring [18], [52] and so we use
it to estimate the effect of the suggested refactoring solutions
on software quality. QMOOD has the advantage that it
defines six high-level design quality attributes (reusability,
flexibility, understandability, functionality, extendibility, and
effectiveness) that can be calculated using 11 lower level
design metrics. Its objective function is defined as:

Quality =

∑6
i=1QAi(S)

6
(2)
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Table 2
Example of a solution representation.

Operation Source/entity Target entity
Move Method ctrl.booking.BookingController::handleLodgingViewEvent

(java.awt.event.ActionEvent):void
ctrl.booking.LodgingModel

Extract Class ctrl.booking.SelectionModel:: - flightList + addFlight():void
+clearFlight():void

ctrl.booking.FlightList

Move Method ctrl.booking.BookingController::createBookings():void ctrl.CoreModel

Table 3
QMOOD metrics description.

Design Metric Design Prop-
erty Description

Design Size in
Classes (DSC)

Design Size Total number of classes in
the design.

Number Of
Hierarchies
(NOH)

Hierarchies

Total number of ”root”
classes in the design
(count(MaxInheritenceTree
(class)=0))

Average Num-
ber of Ances-
tors (ANA)

Abstraction
Average number of classes
in the inheritance tree for
each class.

Direct Access
Metric (DAM)

Encapsulation

Ratio of the number of
private and protected at-
tributes to the total number
of attributes in a class.

Direct Class
Coupling
(DCC)

Coupling

Number of other classes
a class relates to, either
through a shared attribute
or a parameter in a method.

Cohesion
Among
Methods of
class (CAMC)

Cohesion

Measure of how related
methods are in a class in
terms of used parameters.
It can also be computed by:
1 − LackOfCohesionOfMeth-
ods()

Measure Of
Aggregation
(MOA)

Composition
Count of number of at-
tributes whose type is user
defined class(es).

Measure of
Functional
Abstraction
(MFA)

Inheritance

Ratio of the number of in-
herited methods per the
total number of methods
within a class.

Number of
Polymorphic
Methods
(NOP )

Polymorphism

Any method that can be
used by a class and its
descendants. Counts of the
number of methods in
a class excluding private,
static and final ones.

Class Interface
Size (CIS)

Messaging Number of public methods
in class.

Number of
Methods
(NOM)

Complexity Number of methods de-
clared in a class.

Where QAi is the quality attribute number i being cal-
culated based on the returned structural metrics from the
system S.
Since it may not be sufficient to consider structural metrics,
we used the design coherence measures of our previous
work to ensure that every refactoring solution preserves the

Table 4
Quality attributes and their computation equations.

Quality attributes
Definition
Computation

Reusability
A design with low coupling and high cohe-
sion is easily reused by other designs.
−0.25 ∗ Coupling + 0.25 ∗ Cohesion+ 0.5 ∗
Messaging + 0.5 ∗DesignSize

Flexibility
The degree of allowance of changes in the
design.
0.25∗Encapsulation−0.25∗Coupling+0.5∗
Composition+ 0.5 ∗ Polymorphism

Understandability
The degree of understanding and the easiness
of learning the design implementation details.
0.33 ∗Abstraction+ 0.33 ∗Encapsulation−
0.33 ∗ Coupling + 0.33 ∗ Cohesion − 0.33 ∗
Polymorphism−0.33∗Complexity−0.33∗
DesignSize

Functionality
Classes with given functions that are publicly
stated in interfaces to be used by others.
0.12 ∗ Cohesion + 0.22 ∗ Polymorphism +
0.22∗Messaging+0.22∗DesignSize+0.22∗
Hierarchies

Extendibility
Measurement of design’s allowance to incor-
porate new functional requirements.
0.5 ∗ Abstraction − 0.5 ∗ Coupling + 0.5 ∗
Inheritance+ 0.5 ∗ Polymorphism

Effectiveness
Design efficiency in fulfilling the required
functionality.
0.2 ∗ Abstraction + 0.2 ∗ Encapsulation +
0.2∗Composition+0.2∗Inheritance+0.2∗
Polymorphism

semantics of the design. We start from the assumption that
the vocabulary of an actor is borrowed from the domain
terminology and therefore can be used to determine which
part of the domain semantics an actor encodes. Thus, two
actors are likely to be semantically similar if they use similar
vocabularies.
The vocabulary can be extracted from the names of methods,
fields, variables, parameters, types, etc. We calculated the
design coherence similarity between actors using an infor-
mation retrieval-based technique, namely cosine similarity.
Each actor is represented as an n-dimensional vector, where
each dimension corresponds to a vocabulary term. The
cosine of the angle between two vectors is considered as
an indicator of similarity. More details can be found in our
previous work [53].
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3.3 Interactive Recommendation of Refactorings

The first step of the interactive component is executed as
described in Algorithm 2, to investigate if there are some
common principles among the generated non-dominated
refactoring solutions.

Algorithm 2 Rank Refactoring Operation procedure
1: Input
2: NS: Non-dominated SolutionSet of the first front
3: Output
4: HM: HashMap of refactorings along with their occur-

rences.
5: Begin
6: HM ← ∅;
7: /* Compute the number of occurrence of each refactor-

ing operation*/
8: for i = 1 to |NS| do
9: for each j = 1 to |NSi| do

10: /* If a refactoring operation does not exist in the
list, add its hash and set its occurrence number to 1*/

11: if (NSi,j /∈ HM) then
12: HM ← HM ∪Hash(NSi,j);
13: HM [Hash(NSi,j)]← 1;
14: /* If a refactoring operation exists in the list,

increment its occurrence number */
15: else
16: HM [Hash(NSi,j)] ← HM [Hash(NSi,j)] +

1;
17: end if
18: end for
19: end for
20: End

The algorithm checks if the optimal refactoring solutions
have some common features such as identical refactoring
operations among most or all of the solutions, and a specific
common order/sequence in which to apply the refactorings.
Such information will be used to rank the suggested refac-
torings for developers using the following formula:

Rank(Rx,y) =

n∑
j=0

size(Sj)∑
i=0

[Ri,j = Rx,y]

MAX(
n∑

j=0

size(Sj)∑
i=0

[Ri,j = Rx,y])

∈ [0...1] (3)

where Rx,y is the refactoring operation number x (index
in the solution vector) of solution number y, and n is the
number of solutions in the front. Si is the solution of index
i. All the solutions of the Pareto front are ranked based on
the score of this measure applied to every solution.
Once the Pareto front solutions are ranked, the second step
of the interactive step is executed as described in Algorithm
3. The refactorings of the best solution, in terms of ranking,
are recommended to the developer based on their order in
the vector. Then, the ranking score of the solutions is up-
dated automatically after every feedback (interaction) with
the developer. Our interactive algorithm proposes three
levels of interaction as described in Fig. 2 and Algorithm
3.

Algorithm 3 GUF (Get User Feedback) procedure to manage
the interactions with the developer (Online Phase)

1: Input
2: RNS: Ranked Non-dominated SolutionSet
3: Output
4: HM: HashMap of refactorings along with their occur-

rences.
5: Begin
6: AppliedRefactorings← ∅;
7: RejectedRefactorings← ∅;
8: for i = 1 to |RNS| do
9: ref [i]← 0;

10: end for
11: /* Main loop to suggest refactorings one by one to the

user*/
12: while |RejectedRefactorings < a do
13: /* Select index of the the solution with highest

rank*/
14: index←MaxRank(RNS);
15: d← UserDecision(RNSindex,ref [index]);
16: /* If the user has applied or modified the opera-

tion*/
17: if (d = True) then
18: AppliedRefactorings ←

AppliedRefactorings ∪RNSindex,ref [index];
19: /* If the user has rejected the operation*/
20: else
21: RejectedRefactorings ←

RejectedRefactorings ∪RNSindex,ref [index];
22: end if
23: Ref [index]← ref [index] + 1;
24: /* Update solutions indexes */
25: for i = 1 to |RNS| do
26: UpdateRank(RNSi;AppliedRefactorings,RejectedRefactorings)
27: end for
28: end while
29: End

Figure 2. Refactorings recommended by our technique.

The developer can check the ranked list of refactorings
and then apply, modify or reject the refactoring. If the devel-
oper prefers to modify the refactoring, then our algorithm
can help them during the modification process as described
in Fig. 3.

In fact, our tool proposes to the developer a set of
recommendations to modify the refactoring based on the
history of changes applied in the past and the semantic sim-
ilarity between code elements (classes, methods, etc.). For
example, if the developer wants to modify a move method
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Figure 3. Recommended target classes by our technique for a move
method refactoring to modify.

refactoring then, having specified the source method to
move, our interactive algorithm automatically suggests a
list of possible target classes ranked based on the history
of changes and semantic similarity. This is an interesting
feature since developers often know which method to move,
but find it hard to determine a suitable target class [22].
The same observation is valid for the remaining refactoring
types. Another action that the developers can select is to
reject/delete a refactoring from the list.
After every action selected by the developer, the ranking is
updated based on the feedback using the following formula:

Rank(Si) =

size(Si)∑
k=1

Rank(Rk,i) (4)

+(RO ∩AppliedRefactoringsList)
−(RO ∩RejectedRefactoringsList)
+0.5 ∗ (RO ∩ModifiedRefactoringsList)

Where Si is the solution to be ranked, the first compo-
nent consists of the sum of the ranks of its operations as
explained previously and the second component will take
the value of 1 if the recommended refactoring operation was
applied by the developer, or -1 if the refactoring operation
was rejected or 0.5 if it was partially modified by the
developer. The recommended refactorings will be adjusted
based on the updated ranking score.
It is important to note that we calculate the ranking score
for each non-dominated solution using the innovization
component and then the solution with the highest score
is presented refactoring by refactoring to the developer. In
fact, refactorings tend to be dependent on one another thus
it is important to ensure the coherence of the recommended
solution. After a number of modified or rejected refactorings
or several new code changes introduced, the generated
Pareto front of refactoring solutions by NSGA-II needs to
be updated since the system was modified in different
locations.
To check the applicability of the refactorings, we contin-
uously check the pre-conditions of individual refactorings
on the version after manual edits. Thus, the ranking of the

solutions will change after every interaction. If many refac-
torings are rejected, the NSGA-II algorithm will continue
to execute while taking into consideration all the feedback
from developers as constraints to satisfy during the search.
The rejected refactorings should not be considered as part
of the newly generated solutions and the new system after
refactoring will be considered in the input of the next
iteration of the NSGA-II.
In the non-interactive refactoring systems, the set of refac-
torings, suggested by the best-chosen solution, needs to be
fully executed in order to reach the solution’s promised
results. Thus, any changes applied to the set of refactorings
such as changing or skipping some of them could deterio-
rate the resulting system’s quality. In this context, the goal of
this work is to cope with the above-mentioned limitation by
granting to the developer’s the possibility to customize the
set of suggested refactorings either by accepting, modifying
or rejecting them. The novelty of this work is the approach’s
ability to take into account the developer’s interaction, in
terms of introduced customization to the existing solution,
by conducting a local search to locate a new solution in
the Pareto Front that is nearest to the newly introduced
changes. We believe that our approach may narrow the
gap that exists between automated refactoring techniques
and human intensive development. It allows the developer
to select the refactorings that best matches his/her coding
preferences while modifying the source code to update
existing features.

3.4 Running Example: Illustration on the JVacation
System

3.4.1 Context
To illustrate our interactive algorithm, we consider the
refactoring of JVacation v1.0 1 , a Java open-source
trip management and scheduling software. We asked a
developer to update an existing feature by adding one more
field (Premium member ID) in the personal information form
that a user has to fill out when booking a flight.
As JVacation architecture is based on the
Model/View/Controller model, adding this extra field
would trigger small updates on the View by adding a
textbox in the personal information input form. Also the
controller that handles the booking process needs to be
revised. At the model level, an attribute needs to be added
to the class that hosts the booking information. Finally, an
update on the database level is needed to save the newly
modified booking objects.
To simplify the illustration, we have limited the update
to these above-mentioned changes knowing that, in order
to completely implement this function, several other
updates may be needed in other views and controllers
in order to show, for example, the newly added field, as
part of the information related to the passengers’ records
for a given flight. We asked the developer to refactor
the software system while performing the given task,
therefore, the developer has initially launched the plugin
that triggered our interactive algorithms. We assisted the
developer in only selecting the initial default parameters

1. https://sourceforge.net/projects/jvacation/
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Table 5
Quality attributes value on the JVacation system.

Quality Attribute Original
System

Solution
1

Solution
2

Solution
3

Reusability
(+0.5) (+0.4) (+0.5)

1.74225 1.79225 1.79225 1.79225

Flexibility
(+0.001) (+0.001) (+0.001)

1.82 1.820 1.820 1.820

Understandability
(+0.08) (+0.07) (+0.087)

-4.5408 -4.5398 -4.5398 -4.5398

Functionality
(+0.5) (+0.6) (+0.5)

1.16314 1.21314 1.21314 1.21314

Extendibility
(+0.007) (+0.012) (+0.011)

19.7225 19.7295 19.7300 19.7299

Effectiveness 9.5406 9.5406 9.5406 9.5406

Quality Gain - 0.198 0.202 0.209

Number of opera-
tions - 11 14 19

for the optimization algorithm (such as the minimum and
maximum chromosome lengths).

3.4.2 Illustration of the Innovization Component
After generating the upfront list of best refactoring solu-
tions, three solutions are selected from the Pareto front
that were involved in the interactive session to simplify
this running example. Each solution has a fitness score
composed of the median of quality improvement calculated
based on the structural measures of the refactored system
for each solution, and the number of operations within each
solution. The previous section describes, these fitness val-
ues, for each solution, in terms of quality improvement and
refactoring effort compared to the original system values
before refactoring. These information is shown in Table 5.

One of the classic challenges in multi-objective opti-
mization is the choice of the most suitable solution for the
developer. The straightforward solution for this problem
would be to manually investigate all solutions, i. e., execute
all refactoring operations for each solution and allow the
developer to compare between several refactored designs.
This task can easily become tedious due to the large number
of solutions in the Pareto front.
To facilitate the selection task, decision making support tools
can be used to automate the selection of solutions based
on the decision maker’s preferences. In our context, these
preferences can be considered as the packages and classes
that the developer is interested in when implementing the
requested feature. Thus, another straightforward heuristic
would be to automatically shortlist solutions that only refac-
tor entities that are of interest to developers. Unfortunately,
this will not necessarily reduce drastically the number of
preferred solutions especially if the system is small.
To cope with this issue, another interesting idea would be
to calculate the overlap between solutions. Still, choosing
the most appropriate solution can be challenging as the
developer has to manually break the tie between solu-
tions by comparing between their specific refactorings. This

comparison may not be straightforward because specific
refactorings between to candidate solutions may both be of
an interest to the developer, for example, when comparing
between solution 1 and solution 2, both solutions contain
a move-method operation that agree on moving a function
called getSaluation() but disagree on the target class.
Since this function belongs to the booking panel, the par-
ticipating entities are of an interest to the developer, so no
choice can be automatically done based on the developer’s
preferred entities. Moreover, both target classes (respec-
tively LabelSpinner and LabelEdit), each proposed by one
solution, belong to the same package (gui.components) and
they are semantically close, so the fitness function values
cannot be used to break the tie. In this scenario, only the
developer would be qualified to take the decision of either
accepting one operation over the other or maybe rejecting
both operations. Thus, simply filtering solutions based on
the developer’s preferred entities may fall short in this
kind of scenarios. Furthermore, asking the developer to
exhaustively break the tie between shortlisted solutions can
become tedious.
In this context, our interactive process differs from simply
filtering operations based on a given preference as it learns
from the developer’s decision making and dynamically
break the tie between Pareto-equivalent solutions by up-
grading those with the highest number of successful rec-
ommendations (applied refactorings) while penalizing those
who contain rejected operations. To illustrate this process,
Table 6 describes each solution’s refactorings along with its
rank after the execution of the first step of the interactive
algorithm. For the purpose of simplicity, we considered a
first fragment of each solution. The solutions are ranked
based on Equation 3 to identify the most common refactor-
ings between the non-dominated solutions. This is achieved
by counting the number of occurrences of operation within
the Pareto front solution set, this number will be averaged
by the maximum number of occurrences found.

3.4.3 Illustration of the Interactive and Dynamic Compo-
nents
In the interaction part, the recommended refactoring
wanted to move a function that defines the trip’s starting
date to a LabelCombo class. The developer thought that mov-
ing it to DateEdit class makes more sense instead because
the return value of the moved function is of type Date
and DateEdit is semantically closer to the method. So the
refactroings were partially modified by the developer and
the ranking score of the second solution was increased by
0.5 for Solution 2 but by 1 for Solution 3 since it has already
a move method operation that suggests moving the same
method to the chosen class by the developer, i. e., the
applied operation exists in that solution.
In the third interaction, the recommended refactoring sug-
gests merging two classes CoreModel and ModelChangeEvent.
The first class gathers, for a given customer, all his/her
bookings and sums up the total price, since the price may be
later on reduced based on the customer’s premium number
(field to be added) the developer decided to keep the class
intact and thus the operation was rejected and so the score
of the top Solution 2 was decreased by 1. The solution with
the highest rank is selected for execution and its related
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Table 6
Three simplified refactoring solutions recommended for JVacation v1.0.

Operation Source entity Target entity

Solution 1 fitness scores before normalization (0.198, 4)
Move Method ctrl.booking.BookingController::handleLodgingViewEvent(java.awt.event.ActionEvent):void ctrl.booking.LodgingModel
Extract Class ctrl.booking.SelectionModel:: - flightList + addFlight():void +clearFlight():void ctrl.booking.FlightList
Move Method ctrl.booking.BookingController::createBookings():void ctrl.CoreModel
Move Method gui.panels.booking.bTravelersPanel::getSalutation():java.lang.String gui.components.LabelSpinner
Solution 1 Rank 3.960

Solution 2 fitness scores before normalization (0.202, 5)
Move Method ctrl.booking.BookingController::handleLodgingViewEvent(java.awt.event.ActionEvent):void ctrl.booking.lodgingList
Move Method gui.panels.maintenance.mLodgingsPanel::getStart():java.util.Date gui.components.LabelCombo
Inline Class ctrl.ModelChangeEvent ctrl.CoreModel
Extract Class ctrl.booking.SelectionModel:: - travelerList + addTraveler():void +clearTraveler():void ctrl.booking.TravelerList
Move Method gui.panels.booking.bTravelersPanel::getSalutation():java.lang.String gui.components.LabelSpinner
Solution 2 Rank 4.064

Solution 3 fitness scores before normalization (0.209, 6)
Move Method ctrl.booking.BookingController::handleLodgingViewEvent(java.awt.event.ActionEvent):void ctrl.booking.lodgingList
Move Method gui.panels.maintenance.mLodgingsPanel::getStart():java.util.Date gui.components.DateEdit
Extract Class ctrl.booking.SelectionModel:: - flightList + addFlight():void +clearFlight():void ctrl.booking.FlightList
Extract Class ctrl.booking.SelectionModel:: - travelerList + addTraveler():void +clearTraveler():void ctrl.booking.TravelerList
Inline Class ctrl.ModelChangeEvent ctrl.CoreModel
Move Class Db.factory.DBObjectFactory db
Solution 3 Rank 3.471

operations are shown to the user based on their order in the
vector. Table 7 summarizes the various interactions between
the developer and the suggested refactorings from the three
above mentioned solutions when adding the new feature.

The first recommended refactoring of the top ranked
solution (Solution 2) suggests moving an event function
from the controller class of the booking process, since the
developer is required to investigate this class and since this
function is not called during the booking procedure, moving
it out of the class will reduce the number of investigated
functions, so the operation was applied by the developer
and accordingly the ranking score was increased by 1 for
both Solutions 2 and 3 since they include this refactoring in
their solutions.
Upon the rejection of the third suggested refactoring, the
ranking score of solution 3 has become higher than the one of
solution 2, this has triggered the fourth recommended opera-
tion to be issued from solution 3 instead. All the refactorings
that belong to the intersection between solution 3 and the
lists of applied/rejected refactorings will be skipped during
the recommendation process.
For instance, the first and second operation of solution 3
will be skipped as they have been already applied by the
developer, and the third operation will be suggested during
the fourth interaction. This operation suggests the extraction
of a class from the selection mode of the booking process.
Since this refactoring will facilitate the distinction between
functions related to the flight from those related to the
passengers, the developer has approved the operation. The
algorithm will stop recommending new refactorings either
on the request of the developer or when the system achieves
acceptable quality improvement in terms of reducing the

number of design defects and improving quality metrics.
These parameters can be specified by the developer or the
team manager.

4 VALIDATION
To evaluate the ability of our refactoring framework to
generate good refactoring recommendations, we conducted
a set of experiments based on eight open source systems
and two industrial projects provided by the IT department
at the Ford Motor Company. The obtained results are subse-
quently statistically analyzed with the aim of comparing our
proposal with a variety of existing approaches. The relevant
data related to our experiments and a demo about the main
features of the tool can be found in [61].
In this section, we first present our research questions and
validation methodology followed by experimental setup.
Then we describe and discuss the obtained results.

4.1 Research Questions
We defined three categories of research questions to measure
the correctness, relevance and benefits of our interactive
multi-objective refactoring approach comparing to the state
of the art based on several practical scenarios. It is important
to evaluate, first, the correctness of the recommended refac-
toring. Since it is not sufficient to make correct refactoring
recommendations, we evaluated the benefits of applying the
recommended refactorings in terms of fixing code smells
and improving quality attributes. Programmers are not
interested, in practice, to apply all the correct and useful
recommended refactorings due to limited resources thus we
evaluated both the relevance of our recommendations and
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Table 7
Four different interaction examples with the developer applied on the

refactoring solutions recommended for JVacation v1.0.

Operation R1:MoveMethod(ctrl.booking.BookingController
::handleLodgingViewEvent:void,
ctrl.booking.LodgingList)

Decision Applied
Changes AppliedRefactoringsList = {R1} ,

RejectedRefactoringsList = {}
SolutionSet Solution1 Solution2 * Solution3
Initial rank 3.960 4.064 3.471
Interation1 3.960 5.064 (+1) 4.471 (+1)

Operation R2:MoveMethod(gui.panels.maintenance.
mLodgingsPanel::getStart():java.util.Date,
gui.components.LabelCombo)

Decision Modified to: R2:
MoveMethod(gui.panels.maintenance.
mLodgingsPanel::getStart():java.util.Date,
gui.components.DateEdit)

Changes AppliedRefactoringsList = {R1,R2} ,
RejectedRefactoringsList = {}

SolutionSet Solution1 Solution2 * Solution3
Initial rank 3.960 4.064 3.471
Interation1 3.960 5.064 (+1) 4.471 (+1)
Interation2 3.960 5.564 (+0.5) 5.471 (+1)

Operation R3: InlineClass(ctrl.ModelChangeEvent,
ctrl.CoreModel)

Decision Rejected
Changes AppliedRefactoringsList = {R1,R2} ,

RejectedRefactoringsList = {R3}
SolutionSet Solution1 Solution2 * Solution3
Initial rank 3.960 4.064 3.471
Interation1 3.960 5.064 (+1) 4.471 (+1)
Interation2 3.960 5.564 (+0.5) 5.471 (+1)
Interation3 3.960 4.564 (-1) 5.471

Operation R4: ExtractClass(ctrl.booking.SelectionModel::-
flightList +addFlight():void+clearFlight():void,
ctrl.booking.FlightList)

Decision Applied
Changes AppliedRefactoringsList = {R1,R2,R4} ,

RejectedRefactoringsList = {R3}
SolutionSet Solution1 Solution2 Solution3 *
Initial rank 3.960 4.064 3.471
Interation1 3.960 5.064 (+1) 4.471 (+1)
Interation2 3.960 5.564 (+0.5) 5.471 (+1)
Interation3 3.960 4.564 (-1) 5.471
Interation4 4.960 (+1) 4.564 6.471 (+1)

our ranking efficiency from programmers perspective based
on several real-world scenarios including productivity and
post-study questionnaires. We considered various existing
refactoring approaches as a baseline for this proposed inter-
active refactoring technology to define an accurate estima-
tion of possible improvements.

The research questions are as follows:
RQ1: Correctness, Relevance and Comparison with State
of the Art.

• RQ1-a: Correctness. To what extent the results of
our approach are similar to the ones proposed by

developers compared to fully-automated refactoring
techniques?

• RQ1-b: Benefits–antipatterns correction. To what
extent code smells can be fixed using our ap-
proach compared to fully-automated refactoring
techniques?

• RQ1-c: Benefits–improving quality. To what ex-
tent can our approach improve the overall quality
of software systems compared to fully-automated
refactoring techniques?

• RQ1-d: Relevance to programmers. To what extent
can our approach make meaningful recommenda-
tions compared to fully-automated refactoring tech-
niques?

RQ2: Interaction Relevance. To what extent can our ap-
proach efficiently rank the recommended refactorings?
RQ3: Impact based on Practical Scenarios.

• RQ3-a: To what extent our approach can improve
the productivity of programmers when fixing
bugs compared to fully-automated refactoring tech-
niques?

• RQ3-b: To what extent our approach can improve
the productivity of programmers when adding new
features compared to fully-automated refactoring
techniques?

• RQ3-c: How do programmers evaluate the useful-
ness of our approach (questionnaire)?

4.2 Validation Methodology
To answer the research questions described in the previous
section, we give, first, an overview about the adopted vali-
dation methodology that include the following tasks:

• Task-1: Generate data for baseline methods by using
other existing state-of-the-art automated refactoring
tools and methods offline. (RQ1a-d)

• Task-2: Manually refactor a system. (RQ1a)
• Task-3: Use our tool (DINAR) to collect final set of

recommendations. (RQ1a-d, RQ2)
• Task-4: Rate solutions and recommendations of dif-

ferent methods and tools. (RQ1d, RQ2)
• Task-5: Code smells detection after refactoring.

(RQ1b)
• Task-6: Measure quality metrics after refactoring.

(RQ1c)
• Task-7: Fix bugs on refactored / unrefactored sys-

tems. (RQ3a)
• Task-8: Implement features on refactored / unrefac-

tored systems.(RQ3b)
• Task-9: Post-study questionnaire. (RQ3c)

For each task, we defined and used different evalu-
ation metrics (Precision, Recall, number of fixed antipat-
terns, the quality gain, manual correctness, number of
modified/rejected/accepted recommendations and execu-
tion time) which are described in this section. These metrics
are calculated and compared for different refactoring tech-
niques which are applied on a variety of software projects
under the specific above scenarios. Table 8 shows the sum-
mary of the connections between the research questions,
metrics and tasks detailed in this section.
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Table 8
Summary of the research questions, their goals, defined metrics to answer and analyse them, and the associated tasks to collect data and

calculate the metrics.

RQ# RQ Goal Sub-RQ Sub-Goal Metric(s) Task(s)#

RQ1 Relevant Solutions

RQ1-a Similarity RC, PR 1, 2, 3
RQ1-b Fixing code smells NF 1,3,5
RQ1-c Overall quality G 1,3,6
RQ1-d Meaningful recommendation MC 1,3,4

RQ2 Efficient ranking - NAR, NRR, NMR, PR@k, MC@k 3, 4

RQ3 Usefulness
RQ3-a Productivity / fixing bugs

TP
7

RQ3-b Productivity /adding features 8
RQ3-c questionnaire 9

In order to have a consistent comparison, we considered
the refactoring solutions recommended by our approach af-
ter all interactions with the developers (last set of solutions).
Therefore, we refer to these sets of refactoring solutions as
our approach results afterward. To create a baseline, we
asked the participants in our study to analyze and apply
manually several refactoring types using Eclipse IDE on
several code fragments extracted from different systems
where most of them correspond to code smells identified
in previous studies as worth removing by refactoring [19,
54]. This golden set is defined based on the following two
main criteria: 1. Refactorings that fix a design flaw and did
not change the behavior or introduce bugs, 2. Refactorings
that improve a set of quality metrics (based on the QMOOD
model) and did not change the behavior or introduce bugs.
We refer to these refactoring solutions as expected refactor-
ings afterward.

To answer RQ1, it is important to validate the proposed
refactoring solutions from both quantitative and qualitative
perspectives. For RQ1-a, we calculated precision and recall
scores to compare between refactorings recommended by
each approach and those expected based on the participants
opinion:

RCrecall =
Approach Solution ∩ Expected Refactorings

Expected Refactorings
∈ [0, 1] (5)

PRprecision =
Approach Solution ∩ Expected Refactorings

Approach Solution
∈ [0, 1] (6)

When calculating the precision and recall, we consider a
refactoring as a correct recommendation if all the controlling
parameters are the same like the expected ones.
For RQ1-b, we considered another quantitative evaluation
which is the percentage of fixed code smells (NF) by the
refactoring solution. The detection of code smells after ap-
plying a refactoring solution is performed using the detec-
tion rules of [19]. Formally, NF is defined as:

NF =
#fixed code smells

#code smells
∈ [0, 1] (7)

The detection of code smells is very subjective and
some developers prefer not to fix some smells because the
code is stable or some of them are not important to fix.
To this end, we considered for RQ1-c another metric, G,
based on QMOOD that estimates the quality improvement

of the system by comparing the quality before and after
refactoring independently from the number of fixed design
defects. The average of the six QMOOD attributes were
used: reusability, flexibility, understandability, Extendibility,
Functionality and effectiveness. All of them are formalized
using a set of quality metrics. Hence, the gain for each of the
considered QMOOD quality attributes and the average total
gain in quality after refactoring can be easily estimated as:

G =

6∑
i=1

Gqi

6
and Gqi = q′i − qi (8)

where q′i and qi represents the value of the QMOOD
quality attribute i after and before refactoring, respectively.
For RQ1-d, we asked the participant in our study, as detailed
in Section 4.4, to evaluate, manually, whether the suggested
refactorings are feasible and efficient at improving the soft-
ware quality and achieving their maintainability objectives.
We define the metric Manual Correctness (MC) to mean
the number of meaningful refactorings divided by the to-
tal number of recommended refactorings. The meaningful
refactorings are recognized by taking the majority of votes
from the developers. This procedure is analogous to the
real-world situations based on our own experience with our
industrial partners. Therefore, MC is given by the following
equation:

MC =
# Meaningful Refactorings

# Recommended Refactorings
(9)

To avoid the computation of the MC metric being bi-
ased by the developer’s feedback, we asked the developers
to manually evaluate the correctness of the recommended
refactorings of our approach on the systems that they did
not refactor using our tool. Therefore, The developers did
not evaluate the results of their own results of interactive
refactoring but the resultant refactorings recommended on
other systems where other developers apllied our approach.
The main motivation for the manual correctness metric is
actually to address the concern that the deviation with the
expected refactorings could be just because of the prefer-
ences of the developers. The manual correctness metric is
evaluated manually on each refactoring one-by-one to check
their validity. Thus, we evaluated the results produced by
the different tools and we were not limited to the com-
parison with the expected results. We did the comparison
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with the expected results to provide an automated way to
evaluate the results and avoid the developers being biased
by the results of our tool (developers did not know anything
about the refactorings suggested by the different tools when
they provided their recommendations).
We used the metrics MC, RC, PR, NF and G to perform the
comparisons and answer respectively RQ1a-d.
We considered some other useful metrics to answer RQ2
that count the percentage of refactorings that were accepted
(NAR) or rejected (NRR) or applied with some modifications
(NMR). Formally, these metrics are defined as:

NAR =
# Accepted Refactorings

# Recommended Refactorings
∈ [0, 1] (10)

NRR =
# Rejected Refactorings

# Recommended Refactorings
∈ [0, 1] (11)

NMR =
# Modified Refactorings

# Recommended Refactorings
∈ [0, 1] (12)

To answer RQ2, we also evaluated the relevance of the
recommended refactorings in the top k where k =1, 5, 10 and
15 using the following metrics PR@k and MC@k. We used
the same equations defined for RQ1 with the only difference
that the considered suggested refactorings are exclusively
those located in the top k positions of the ranked list of
refactorings at multiple instances after the execution of the
innovization component.
To answer RQ3, we aimed to assess how the refactoring
actually increases the software quality and productivity in
that the effort to fixing bugs (R3-a) or adding new features
(R3-b) should reduce after performing the refactorings. We
asked the software developers participated in this study
to add new features and fix a set of bugs. To avoid that
the achieved results might be due to the different levels
of ability of the developers groups, we adapted a counter-
balanced design where each participant performed two
tasks, one on the original system and one on the refactored
system. The details of these scenarios will be described later
as detailed in Section 4.6. To estimate the impact of the
suggested refactorings on the productivity of developers,
we defined the following metric TP to measure the time
required to perform the same activities on the system with
and without refactoring:

TPi = 1− #minutes required to perform task i on the system after refactoring

#minutes required to perform task i on the system befor refactoring
(13)

We have also compared the productivity results of our
approach compared to Kessentini et al. [19], Ouni et al. [9]
and Harman et al. [17] to test the hypothesis if better quality
of the software may increase the productivity of developers.
To answer RQ3-b, we used a post-study questionnaire that
collects the opinions of developers on our tool as detailed in
the next section.

4.3 Studied Software Projects
We used a set of well-known open-source Java projects and
two systems from our industrial partner, the Ford Motor
Company. We applied our approach to eight open-source

Table 9
Statistics of the studied software projects.

System Release #classes KLOC #Code
smells

#Applicable
Refactorings

Xerces-J v2.7.0 991 240 61 80
JHotDraw v6.1 585 21 22 36
JFreeChart v1.0.9 521 170 51 96
GanttProject v1.10.2 245 41 60 63
Apache Ant v1.8.2 1191 255 61 74
Rhino v1.7R1 305 42 79 50
Log4J v1.2.1 189 31 27 41
Nutch v1.1 207 39 39 24
JDI-Ford v5.8 638 247 83 94
MROI-Ford V6.4 786 264 97 119

Java projects: Xerces-J, JHotDraw, JFreeChart, GanttProject,
Apache Ant, Rhino and Log4J and Nutch. Xerces-J is a
family of software packages for parsing XML. JFreeChart
is a free tool for generating charts. Apache Ant is a build
tool and library specifically conceived for Java applica-
tions. Rhino is a JavaScript interpreter and compiler written
in Java and developed for the Mozilla/Firefox browser.
GanttProject is a cross-platform tool for project scheduling.
Log4J is a popular logging package for Java. Nutch is
an Apache project for web crawling. JHotDraw is a GUI
framework for drawing editors.
In order to get feedback from the original developers of
a system, we considered in our experiments two large
industrial projects provided by our industrial partner, the
Ford Motor Company. The first project is a marketing return
on investment tool, called MROI, used by the marketing
department of Ford to predict the sales of cars based on
the demand, dealers information, advertisements, etc. The
tool can collect, analyze and synthesize a variety of data
types and sources related to customers and dealers. It was
implemented over a period of more than eight years and
frequently changed to include and remove new/redundant
features.
The second project is a Java-based software system, JDI,
which helps the Ford Motor Company to create the best
schedule of orders from the dealers based on thousands of
business constraints. This system is also used by Ford Motor
Company to improve their vehicles sales by selecting the
right vehicle configuration to match the expectations of their
customers. JDI is highly structured and software developers
have developed several versions of it at Ford over the past
10 years. Due to the importance of the application and the
high number of updates performed on both systems, it is
critical to ensure that they remain of high quality so to
reduce the time required by developers to introduce new
features in the future.
We selected these 10 systems for our validation because they
range from medium to large-sized open-source projects,
which have been actively developed over the past 10 years,
and their design has not been responsible for a slowdown
of their developments. Table 9 provides some descriptive
statistics about these 10 programs.
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4.4 Study Participants
Our study involved 14 participants from the University
of Michigan and 8 software developers from the Ford
Motor Company. Participants include 6 master students
in Software Engineering, 8 Ph.D. students in Software
Engineering and 8 software developers. All the participants
are volunteers and familiar with Java development and
refactoring. The experience of these participants on Java
programming ranged from 2 to 19 years. We carefully
selected the participants to make sure that they already
applied refactorings during their previous experiences in
development.
All the graduate students have already taken at least
one position as software engineer in industry for at least
two years as software developer and most of them (11
out of 14 students) participated in similar experiments
in the past, either as part of a research project or during
graduate courses on Software Quality Assurance or
Software Evolution offered at the University of Michigan.
Furthermore, 6 out the 14 students (the selected master
students) are working as full-time or part-time developers
in the software industry.
Participants were first asked to fill out a pre-study
questionnaire containing five questions. The questionnaire
helped to collect background information such as their role
within the company, their programming experience,
and their familiarity with software refactoring. In
addition, all the participants attended one lecture about
software refactoring and passed six tests to evaluate their
performance in evaluate and suggest refactoring solutions.
We formed 3 groups. The groups were formed based on
the pre-study questionnaire and the test results to ensure
that all the groups have almost the same average skill
level. We divided the participants into groups according
to the studied systems, the techniques to be tested and
developers’ experience.
Each of the first two groups (A and B) is composed of three
masters students and four Ph.D. students. The third group
is composed of eight software developers from the Ford
Motor company, since they agreed to participate only in the
evaluation of their two software systems. It is important to
note that the third group formed by the developers from
Ford is part of the original developers of the two evaluated
systems.

4.5 Techniques Studied
4.5.1 Overview of the used techniques
To answer our research questions from the perspec-
tive of evaluating our interactive approach performance
against the state-of-the-art refactoring techniques, we com-
pared our approach to four other existing fully-automated
search-based refactoring techniques and our multi-objective
approach without the interaction component (NSGA-II-
Innovization). Studied techniques includes: Kessentini et
al. [19], O’Keeffe and O’ Cinnide [18], Ouni et al. [9] and
Harman et al. [17] that consider the refactoring suggestion
task only from the quality improvement perspective.
Autors in [19], formulate software refactoring as a mono-
objective search problem where the main goal is to fix design

Table 10
Survey organization.

Participants
groups

Software
Projects

Approaches Tasks

Group A

Xerces-J
Interactive
NSGA-II,
[18],
[9],

JDeodorant [21],
[19],
[17]

-Interactive
refactoring
-Manual
refactoring
-Post-study
questionnaire
-Fixing bugs
-Adding
features

JHotDraw
JFreeChart
GanttProject

Group B

Apache Ant
Rhino
Log4J
Nutch

Group C
JDI-Ford

Interactive
NSGA-II,
[18],

[9],
JDeodorant [21]

MROI-Ford

defects and improve quality metrics. Also, [18] proposed a
mono-objective formulation to automate the refactoring pro-
cess by optimizing a set of quality metrics. The authors in [9]
and [17] proposed a multi-objective refactoring formulation
that generates solutions to fix code smells. Both techniques
are non-interactive and fully-automated.
We considered in our experiments another popular design
defects detection and correction tool JDeodorant [21] that
does not use heuristic search techniques. The current ver-
sion of JDeodorant is implemented as an Eclipse plug-in
that identifies some types of design defects using quality
metrics and then proposes a list of refactoring strategies to
fix them. Since JDeodorant just recommends a few types
of refactoring with respect to the ones considered by our
tool. We restricted, in this case, the comparison to the same
refactoring types supported by JDeodorant such as Move
Method, Extract Method and Extract Class.
Our approach differs with the above fully-automated tech-
niques in two factors: innovization and interactive features.
Therefore, it is important to evaluate the impact of every
factor on the quality of our results. If the innovization
makes the largest contribution, which is another fully au-
tomated search-based approach, the results cannot support
the hypothesis related to the outperformance of interactive
refactoring. Thus, we compared our approach to NSGA-II
with the innovization feature using the same multi-objective
optimization but without the use of the interactive feature.
All these existing techniques are fully-automated and do not
provide any interaction with the developers to update their
solutions.
Table 10 summarizes the survey organization including the
list of systems and algorithms evaluated by the groups of
participants.

4.5.2 Parameters setting
Parameter setting influences significantly the performance
of a search algorithm on a particular problem [55]. For this
reason, for each algorithm and for each system, we perform
a set of experiments using several population sizes: 50, 100,
200, 300 and 500. The stopping criterion was set to 100,000
evaluations for all algorithms in order to ensure fairness
of comparison. The other parameters’ values were fixed by
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trial and error and are as follows: crossover probability =
0.8; mutation probability = 0.5 where the probability of gene
modification is 0.3; stopping criterion = 100,000 evaluations.
In order to have significant results, for each couple (algo-
rithm, system), we use the trial and error method [62] in
order to obtain a good parameter configuration. Trial and
error is a fundamental method of problem solving. It is
characterized by repeated and varied attempts of algorithm
configurations.

Regarding the evaluation of fixed code smells, we focus
on the following code smell types: Blob, Spaghetti Code
(SC), Functional Decomposition (FD), Feature Envy (FE),
Data Class (DC), Lazy Class (LC), and Shotgun Surgery
(SS). We choose these code smell types in our experiments
because they are the most frequent and hard to fix based on
several studies [23, 25]. These design flaws are automatically
detected using the detection rules of our previous work
[19] based on genetic programming. We have generated and
manually validated, in [19] and several of our other previous
studies, a set of metrics-based rules that can automatically
detect the different types of code smells considered in our
experiments. Table 6 reports the number of code smells for
each system. Only real design flaws that were manually
validated in our previous work [19] are considered in this
validation.

The upper and lower bounds on the chromosome length
used in this study are set to 10 and 350 respectively. Several
SBSE problems including software refactoring are character-
ized by a varying chromosome length. This issue is similar
to the problem of bloat control in genetic programming
where the goal is to identify the tree size limits. To solve this
problem, we performed several trial and error experiments
where we assess the average performance of our algorithm
using the hypervolume (HV) performance indicator while
varying the size limits between 10 and 500 operations.

4.6 Case Studies Summary
Each group of participants received a questionnaire, a
manuscript guide to help them to fill the questionnaire,
the tools and results to evaluate and the source code of the
studied systems as described in the following five scenarios:

In the first scenario, we selected a total of 90 classes from
all the systems that include design defects (9 classes to fix
per system). Then we asked every participant to manually
apply refactorings to improve the quality of the systems by
fixing an average of two of these defects. As an outcome
of the this scenario, we have a set of expected refactorings
and we are able to calculate the differences between the
recommended refactorings and the expected ones (manually
suggested by the developers).

In the second scenario, we asked the developers to evalu-
ate the suggested solutions of our algorithm. We performed
a cross-validation between the ratings of each group to
avoid the computation of the MC metric being biased by the
developer’s feedback. Thus, the developers in each group
rated results generated by the other developers in the same
group.

In the third scenario, we collected a set of 6 bugs per
system from the bug reports of the studied release for every
project and asked the groups to fix them based on the refac-
tored and non-refactored version. The tasks are completely

different and they are applied to different packages/classes
of the same version of the systems. Furthermore, the par-
ticipants did not know if they are working on the system
before or after refactoring. We did not follow as well any
specific order when asking the developers to work on the
tasks. Only 3 out of the 22 participants worked as part of the
experiments on the systems before refactoring and then the
systems after refactoring. We adapted a counter-balanced
design where we asked every developer to fix 2 bugs on
the version before refactoring and then 2 other bugs in the
version after refactoring. We selected the bugs that require
almost the same effort to fix in terms of number of changes,
with an average of 15 changes.

In the fourth scenario, we asked the groups to add two
simple features to every system before refactoring, and then
two other features on the system after refactoring. All the
features require almost the same number of changes to be
introduced or deleted with an average of 23 code changes
per feature. In the third and fourth scenarios, the bugs to
fix and features to add are related to the classes that are
refactored by the developers when using our tool.
The participants were asked to justify their evaluation of
the solutions and these justifications are reviewed by the
organizers of the study (one faculty member, one postdoc,
one Ph.D. student and one Master’s student). Participants
do not know the particular experiment research questions
and the used algorithms.

In the fifth scenario, we asked the participants to use
our tool during a period of two hours on the different
systems and then we collected their opinions based on
a post-study questionnaire. To better understand subjects’
opinions with regard to usefulness of our approach in a
real setting, the post-study questionnaire was given to each
participant after completing the refactoring tasks using our
interactive approach and all the techniques considered in
our experiments. The questionnaires collected the opinions
of the participants about their experience in using our ap-
proach compared to manual and fully-automated refactor-
ing tools. We asked participants to rate their agreement on a
Likert scale from 1 (complete disagreement) to 5 (complete
agreement) with the following statements:

1) The interactive dynamic refactoring recommenda-
tions are a desirable feature in integrated develop-
ment environments (IDEs).

2) The interactive manner of recommending refactor-
ings by our approach is a useful and flexible way
to refactor systems compared to fully-automated
or manual refactorings.

The remaining questions of the post-study questionnaire
were about the benefits and also limitations (possible im-
provements) of our interactive approach.

4.7 RESULTS AND DISCUSSIONS

Statistical Analysis: Since meta-heuristic algorithms are
stochastic optimizers, they can provide different results for
the same problem instance from one run to another. For this
reason, our experimental study is based on 30 independent
simulation runs for each problem instance. The following
statistical tests show that all the comparisons performed
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between our approach and existing ones are statistically sig-
nificant based on all the metrics and the systems considered
in our experiments.

We used one-way ANOVA statistical test with a 95%
confidence level (α = 5%) to find out whether our sample
results of different approaches are different significantly.
Since one-way ANOVA is an omnibus test, A statistically
significant result determines whether three or more group
means differ in some undisclosed way in the population.
One-way ANOVA is conducted for the results obtained
from each software project to investigate and compare each
performance metric (dependent variable) between various
studied algorithms (independent variable - groups). We test
the null hypothesis (H0) that population means of each
metric are equal for all methods (∀ Software Projects :
µmetric
M1 = µmetric

M2 = ... = µmetric
M7 where metric ∈

{G,NF,MC,PR,RC}) against the alternative (H1) that
they are not all equal and at least one method population
mean is different.
There are some assumptions for one-way ANOVA test
which we assessed before applying the test on the data:
Outliers: There were no outliers in the data, as assessed
by inspection of a boxplot for values greater than 1.5 box-
lengths from the edge of the box.
Normal Distribution: Some of the dependent variables were
not normally distributed for each method, as assessed by
Shapiro-Wilk’s test. However, the one-way ANOVA is fairly
robust to deviation from normality. Since the sample size is
more than 15 (there are 30 observations in each group) and
the sample sizes are equal for all groups (balanced), non-
normality is not an issue and does not affect Type I error.
Homogeneity of variances: The one-way ANOVA assumes
that the population variances of the dependent variables
are equal for all groups of the independent variable. If
the variances are unequal, this can affect the Type I error
rate. There was homogeneity of variances, as assessed by
Levene’s test for equality of variances (p > 0.05).

The results of one-way ANOVA tests for all pair of
software projects and metrics indicates that The group
means were statistically significantly different (p < .0005)
and, therefore, we can reject the null hypothesis and accept
the alternative hypothesis which says there is difference in
population means between at least two groups. Table 11
reports the obtained value of F-statistics with the between
and within groups degree of freedoms equal to 6 and 203,
respectively. In one-way ANOVA, the F-statistic is the ratio
of variation between sample means over variation within
the samples. The larger value of F-statistics represents the
group means are further apart from each other and are
significantly different. Also, it shows that the observation
within each group are close to the group mean with a
low variance within samples. Therefore, a large F-value is
required to reject the null hypothesis that the group means
are equal. Our obtained F-statistics results are correspond to
very small p-values.

One-way ANOVA does not report the size of the dif-
ference. Therefore, we calculated Eta squared (η2) which is
a measure of the effect size (strength of association) and it
estimates the degree of association between the independent
factor and dependent variable for the sample. Eta squared
is the proportion of the total variance that is attributed to

Table 11
F-value results from one-way ANOVA statistical tests for corresponding

software project and metric between different methods.

Software G NF MC PR RC

ApacheAnt 335.7 224.8 803.9 379.1 757.1
GanttProject 209.6 593.0 1463.2 379.6 1130.4
JDIFord 135.6 320.3 1036.2 917.3 1032.8
JFreeChart 300.1 776.7 494.7 211.9 663.9
JHotDraw 181.7 408.2 1022.6 158.4 663.8
Log4J 297.8 306.2 477.8 617.9 1044.9
MROIFord 189.5 474.8 1260.2 1228.8 1217.2
Nutch 333.7 361.3 408.1 269.9 658.9
Rhino 121.2 606.2 872.8 598.0 702.2
XercesJ 155.0 214.5 598.0 492.3 633.8

Table 12
Effect Size values (Eta squared (η2)) for corresponding software

project and metric.

Software G NF MC PR RC

ApacheAnt 0.908 0.869 0.960 0.918 0.957
GanttProject 0.861 0.946 0.977 0.918 0.971
JDIFord 0.789 0.898 0.966 0.962 0.966
JFreeChart 0.899 0.958 0.936 0.862 0.952
JHotDraw 0.843 0.923 0.968 0.824 0.951
Log4J 0.898 0.900 0.934 0.948 0.969
MROIFord 0.839 0.929 0.972 0.971 0.971
Nutch 0.908 0.914 0.923 0.889 0.951
Rhino 0.782 0.947 0.963 0.946 0.954
XercesJ 0.821 0.864 0.946 0.936 0.949

a factor (the ”refactoring methods” in this study). Table 12
reports Eta squared values for each pair of software projects
and metrics. These values shows to what extent different
algorithms are the cause of variability of the metrics. For
instance, it says 90% of the total variance of metric G for
ApacheAnt software project is accounted for by different
algorithms effect, not error or other effects.

Tukey post hoc analysis [60] is carried out in order to
find out between which group(s) the significant difference is
occurred. Basically, it tests all possible group comparisons.
However, we only report the results of comparison of our
method and others in Table 13. This table represents the
point estimate of the difference between each pair of means
and is computed from the sample data. Also, it includes
the confidence interval showing the difference between
population means and is centered on point estimate. If
This interval does not include zero, indicates that the dif-
ference between the means is statistically significant. The
95% individual confidence level indicates that we can be
95% confident that each interval contains the real difference
for that particular comparison. The results shows that all
pairwise comparisons between our method and others’ for
each pair of (software / metric) are statistically significant
at the 0.05 level except for G and NF of JFreeChart as their
results highlighted in the table of the results. Therefore, the
difference between the means of these two metrics,G and
NF, for JFreeChart project is 0.
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Table 13
Tukey post hoc analysis results between our method(M1) and others reported by Mean difference and 95% confidence intervals. Label of the

methods: M1 (Our approach)=Interactive+Innovization NSGA-II, M2=Innovization NSGA-II, M3=Kessentini et al. [19], M4=Ouni et al. [9],
M5=Harman et al. [17], M6=O’Keeffe et al. [18], M7=Jdeodorant [21]

|Mean difference | 95% Confidence Interval|
Software Comparison G NF MC PR RC

ApacheAnt

M1-M2 0.10 (0.09,0.12) 0.05 (0.04,0.06) 0.07 (0.06,0.08) 0.09 (0.07,0.10) 0.07 (0.06,0.08)
M1-M3 0.15 (0.13,0.17) 0.07 (0.06,0.09) 0.12 (0.11,0.13) 0.14 (0.12,0.15) 0.18 (0.17,0.19)
M1-M4 0.12 (0.10,0.14) 0.05 (0.04,0.07) 0.10 (0.09,0.11) 0.12 (0.10,0.13) 0.13 (0.12,0.14)
M1-M5 0.21 (0.19,0.23) 0.10 (0.09,0.11) 0.17 (0.16,0.18) 0.13 (0.11,0.14) 0.18 (0.17,0.19)
M1-M6 0.16 (0.14,0.18) 0.04 (0.03,0.05) 0.14 (0.13,0.15) 0.12 (0.10,0.13) 0.10 (0.09,0.11)
M1-M7 0.18 (0.17,0.20) 0.15 (0.14,0.17) 0.29 (0.28,0.30) 0.23 (0.21,0.24) 0.28 (0.27,0.29)

GanttProject

M1-M2 0.05 (0.03,0.07) 0.02 (0.01,0.03) 0.11 (0.10,0.12) 0.10 (0.08,0.11) 0.03 (0.02,0.04)
M1-M3 0.09 (0.07,0.10) 0.06 (0.05,0.07) 0.15 (0.14,0.16) 0.12 (0.10,0.13) 0.08 (0.07,0.09)
M1-M4 0.07 (0.06,0.09) -0.04 (-0.05,-0.03) 0.22 (0.21,0.23) 0.12 (0.10,0.13) 0.06 (0.05,0.07)
M1-M5 0.15 (0.13,0.17) 0.17 (0.16,0.18) 0.30 (0.29,0.31) 0.20 (0.19,0.21) 0.29 (0.28,0.30)
M1-M6 0.15 (0.13,0.17) 0.14 (0.13,0.15) 0.26 (0.25,0.27) 0.16 (0.14,0.17) 0.10 (0.09,0.11)
M1-M7 0.12 (0.10,0.14) 0.14 (0.13,0.15) 0.33 (0.32,0.34) 0.18 (0.17,0.19) 0.22 (0.21,0.23)

JDIFord

M1-M2 0.03 (0.01,0.04) -0.02 (-0.03,-0.01) 0.07 (0.06,0.08) 0.08 (0.07,0.09) 0.06 (0.05,0.07)
M1-M3 - - - - - - - - - -
M1-M4 0.03 (0.01,0.04) -0.03 (-0.04,-0.02) 0.20 (0.19,0.21) 0.13 (0.12,0.14) 0.15 (0.14,0.16)
M1-M5 - - - - - - - - - -
M1-M6 0.07 (0.05,0.08) 0.10 (0.09,0.11) 0.20 (0.19,0.21) 0.17 (0.16,0.18) 0.06 (0.05,0.07)
M1-M7 0.11 (0.09,0.12) 0.08 (0.07,0.09) 0.25 (0.24,0.26) 0.25 (0.24,0.26) 0.27 (0.26,0.28)

JFreeChart

M1-M2 0.09 (0.07,0.11) 0.02 (0.00,0.03) 0.08 (0.07,0.09) 0.07 (0.06,0.08) 0.12 (0.11,0.13)
M1-M3 0.12 (0.10,0.14) 0.02 (0.01,0.03) 0.14 (0.13,0.15) 0.12 (0.11,0.13) 0.16 (0.15,0.17)
M1-M4 0.00 (-0.02,0.02) 0.00 (-0.01,0.01) 0.12 (0.11,0.13) 0.10 (0.09,0.11) 0.14 (0.12,0.15)
M1-M5 0.14 (0.12,0.16) 0.24 (0.22,0.25) 0.14 (0.13,0.16) 0.15 (0.14,0.16) 0.28 (0.26,0.29)
M1-M6 0.17 (0.15,0.19) 0.09 (0.08,0.10) 0.20 (0.19,0.22) 0.10 (0.09,0.12) 0.16 (0.15,0.17)
M1-M7 0.13 (0.11,0.15) 0.15 (0.13,0.16) 0.22 (0.21,0.24) 0.12 (0.11,0.13) 0.24 (0.23,0.25)

JHotDraw

M1-M2 0.02 (0.01,0.03) 0.05 (0.04,0.07) 0.08 (0.07,0.09) 0.04 (0.03,0.05) 0.06 (0.04,0.07)
M1-M3 0.06 (0.05,0.07) 0.04 (0.03,0.05) 0.16 (0.15,0.17) 0.09 (0.08,0.10) 0.10 (0.09,0.12)
M1-M4 0.03 (0.02,0.04) -0.02 (-0.03,-0.01) 0.14 (0.13,0.15) 0.07 (0.06,0.08) 0.09 (0.08,0.10)
M1-M5 0.08 (0.07,0.09) 0.14 (0.13,0.15) 0.30 (0.29,0.31) 0.12 (0.11,0.13) 0.21 (0.20,0.22)
M1-M6 0.04 (0.03,0.05) 0.14 (0.13,0.15) 0.24 (0.23,0.25) 0.10 (0.09,0.11) 0.17 (0.16,0.18)
M1-M7 0.11 (0.10,0.12) 0.08 (0.07,0.09) 0.24 (0.23,0.25) 0.10 (0.09,0.12) 0.24 (0.23,0.25)

Log4J

M1-M2 0.08 (0.07,0.10) 0.06 (0.05,0.07) 0.08 (0.07,0.10) 0.03 (0.01,0.04) 0.06 (0.05,0.07)
M1-M3 0.13 (0.12,0.14) 0.13 (0.12,0.14) 0.12 (0.11,0.13) 0.14 (0.12,0.15) 0.22 (0.21,0.23)
M1-M4 0.10 (0.09,0.11) 0.06 (0.05,0.07) 0.10 (0.09,0.11) 0.05 (0.03,0.06) 0.08 (0.06,0.09)
M1-M5 0.14 (0.13,0.15) 0.15 (0.14,0.16) 0.19 (0.18,0.20) 0.19 (0.17,0.20) 0.21 (0.20,0.22)
M1-M6 0.19 (0.18,0.21) 0.13 (0.12,0.14) 0.16 (0.15,0.17) 0.12 (0.11,0.13) 0.19 (0.18,0.20)
M1-M7 0.12 (0.10,0.13) 0.15 (0.14,0.16) 0.21 (0.20,0.22) 0.22 (0.21,0.23) 0.31 (0.30,0.32)

MROIFord

M1-M2 0.05 (0.04,0.07) 0.02 (0.01,0.04) 0.08 (0.07,0.09) 0.06 (0.05,0.07) 0.12 (0.11,0.13)
M1-M3 - - - - - - - - - -
M1-M4 0.08 (0.07,0.09) 0.03 (0.02,0.04) 0.16 (0.15,0.17) 0.09 (0.08,0.10) 0.16 (0.15,0.17)
M1-M5 - - - - - - - - - -
M1-M6 0.12 (0.10,0.13) 0.17 (0.16,0.19) 0.21 (0.20,0.22) 0.13 (0.12,0.14) 0.26 (0.25,0.27)
M1-M7 0.13 (0.11,0.14) 0.14 (0.13,0.15) 0.29 (0.28,0.30) 0.31 (0.30,0.32) 0.28 (0.27,0.29)

Nutch

M1-M2 0.07 (0.05,0.08) 0.06 (0.04,0.07) 0.07 (0.06,0.08) 0.04 (0.03,0.05) 0.05 (0.04,0.06)
M1-M3 0.14 (0.12,0.16) 0.11 (0.10,0.12) 0.11 (0.10,0.12) 0.08 (0.07,0.09) 0.14 (0.13,0.15)
M1-M4 0.10 (0.08,0.12) 0.05 (0.04,0.07) 0.09 (0.08,0.10) 0.08 (0.07,0.09) 0.05 (0.04,0.06)
M1-M5 0.20 (0.18,0.22) 0.19 (0.18,0.20) 0.18 (0.17,0.19) 0.12 (0.11,0.13) 0.19 (0.18,0.21)
M1-M6 0.14 (0.12,0.16) 0.15 (0.14,0.16) 0.14 (0.13,0.15) 0.06 (0.05,0.07) 0.17 (0.16,0.18)
M1-M7 0.17 (0.15,0.19) 0.09 (0.08,0.10) 0.19 (0.18,0.20) 0.16 (0.15,0.17) 0.22 (0.21,0.23)

Rhino

M1-M2 0.06 (0.04,0.08) 0.07 (0.06,0.09) 0.05 (0.03,0.06) 0.04 (0.03,0.05) 0.09 (0.08,0.10)
M1-M3 0.08 (0.06,0.10) 0.14 (0.13,0.15) 0.09 (0.08,0.10) 0.06 (0.05,0.07) 0.16 (0.15,0.17)
M1-M4 0.07 (0.05,0.09) 0.12 (0.11,0.13) 0.07 (0.06,0.08) 0.05 (0.04,0.06) 0.13 (0.12,0.15)
M1-M5 0.13 (0.11,0.15) 0.20 (0.19,0.22) 0.23 (0.21,0.24) 0.22 (0.21,0.23) 0.28 (0.27,0.29)
M1-M6 0.08 (0.06,0.10) 0.18 (0.17,0.19) 0.14 (0.13,0.15) 0.12 (0.11,0.13) 0.15 (0.14,0.17)
M1-M7 0.11 (0.09,0.13) 0.24 (0.23,0.26) 0.28 (0.27,0.29) 0.17 (0.16,0.18) 0.23 (0.22,0.24)

XercesJ

M1-M2 0.03 (0.02,0.04) 0.02 (0.01,0.03) 0.06 (0.05,0.07) 0.09 (0.08,0.11) 0.08 (0.07,0.09)
M1-M3 0.07 (0.06,0.08) 0.02 (0.01,0.04) 0.11 (0.10,0.12) 0.16 (0.15,0.17) 0.13 (0.12,0.14)
M1-M4 0.04 (0.03,0.05) -0.02 (-0.03,0.00) 0.08 (0.07,0.09) 0.13 (0.12,0.15) 0.10 (0.09,0.11)
M1-M5 0.12 (0.11,0.13) 0.12 (0.11,0.13) 0.20 (0.19,0.21) 0.19 (0.18,0.21) 0.22 (0.21,0.23)
M1-M6 0.08 (0.07,0.09) 0.08 (0.07,0.10) 0.23 (0.21,0.24) 0.16 (0.15,0.17) 0.20 (0.19,0.21)
M1-M7 0.09 (0.08,0.10) 0.06 (0.05,0.08) 0.17 (0.16,0.18) 0.23 (0.22,0.25) 0.20 (0.19,0.21)
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To this end, we used the Vargha-Delaney A measure
[57] which is a non-parametric effect size measure. In our
context, given the different performance metrics (such as
PR, RC, MC, etc.), the A statistic measures the probability
that running an algorithm B1 (interactive NSGA-II) yields
better performance than running another algorithm B2
(such as [19], [18], [9], etc.). If the two algorithms are
equivalent, then A = 0.5. In our experiments, we have
found the following results: a) On small and medium
scale software projects (GanttProject, Rhino, Log4J and
Nutch) our approach is better than all the other algorithms
based on all the performance metrics with an A effect size
higher than 0.94; and b) On large scale software projects
(JDI-Ford, MROI-Ford, Apache Ant, Xerces-J, JHotDraw
and JFreeChart), our approach is better than all the other
algorithms with an A effect size higher than 0.87.

Results for RQ1a: Fig. 4 summarizes our findings
regarding the obtained precision (PR) and recall (RC)
results on the 10 systems. We found that a considerable
number of proposed refactorings, with an average of more
than 82% and 86% respectively in terms of precision and
recall, were already applied by the software development
team and suggested manually (expected refactorings).
The recall scores are higher than precision ones since
we found that the refactorings suggested manually by
developers are incomplete compared to the solutions
provided by our approach. In addition, we found that the
slight deviation with the expected refactorings is not related
to incorrect operations but to the fact that the developers
were interested mainly in fixing the severest code smells
or improving the quality of the code fragments that they
frequently modify.
Fig. 4 also confirms the out-performance of our interactive
refactoring approach comparing to existing fully-automated
techniques and since we confirmed a statistically significant
difference between the means of metrics, we can say
that these better results are not obtained by chance. The
precision and recall scores were consistent on all the ten
systems which confirm that the results are independent
from the size of the systems, number of refactorings
and number of code smells. The closest results are those
obtained by NSGA-II based on innovization (without
interaction) and the multi-objective refactoring approach of
Ouni et al. This may confirm that the obtained results are
more due to the interaction component of our approach.
A detailed qualitative discussion will be presented later in
RQ1d.

Results for RQ1b: We evaluated also the ability of our
approach to fix several types of code smell. Fig. 4 depicts
the percentage of fixed code smells (NF). It is higher than
82% on all the ten systems, which is an acceptable score
since developers may reject or modify some refactorings
that fix some code smells because they do not consider
them very important (their goal is not to fix all code smells
in the system) or the current version of the code becomes
stable. Some systems, such as Rhino and Gantt, have a
higher percentage of fixed code smells with an average
of more than 88%. This can be explained by the fact that
these systems include a higher number of code smells than

others.
However, the percentage of fixed code smells (NF) is slightly
lower than some fully-automated refactoring techniques
such as [19] and [9]. This is can be explained by the reason
that the main goal of developers during the interaction
process is not to fix the maximum number the code smells
detected in the system (which was the goal of [19] and [9])
thus they rejected or modified some refactorings suggested
by our tool. In addition, our approach is based on a multi-
objective algorithm to find a trade-off between improving
the quality and reducing the number of changes. Therefore,
the slight loss in NF is explained by the fact that we are
not considering fixing code smells as one of the objectives,
and justified by a better improvement in the quality of the
refactored system.

Results for RQ1c: Fig. 4 and Table 13 show that the
refactorings recommended by the approach and applied
by developers improved the quality metrics value (G) of
the ten systems. For example, the average quality gain
for the two industrial systems was the highest among
the ten systems with more than 0.3. The improvements
in the quality gain confirm that the recommended
refactorings helped to optimize different quality metrics.
The functionality attribute has the lowest improvement on
the different systems. This may be explained by the fact
that refactoring is expected to preserve the behavior of
existing functionalities. Our interactive approach clearly
also outperforms existing fully-automated techniques.
One of the reasons could be related to the fact that the
optimization of the quality attributes is considered as
part of the fitness functions unlike some of the existing
techniques.

Results for RQ1d: We report the results of our
empirical qualitative evaluation (MC) in Fig. 4. As reported
in this figure, the majority of the refactoring solutions
recommended by our interactive approach were correct
and approved by developers. On average, for all of our ten
studied projects, 87% of the proposed refactoring operations
are considered as semantically feasible, improve the quality
and are found to be useful by the software developers of
our experiments. The highest MC score is 93% for the Gantt
project and the lowest score is 86% for JFreeChart. Thus,
it is clear that the results are independent of the size of
the systems and the number of recommended refactorings.
Most of the refactorings that were not manually approved
by the developers were found to be either violating some
post-conditions or introducing design incoherence.
Fig. 4 shows that our approach provides significantly higher
manual correctness results (MC) than all other approaches
having MC scores respectively between 60% and 78%, on
average as MC scores on the different systems.

Qualitative Evaluation of RQ1 Results: To provide
more qualitative evaluation, we considered some of the
feedback that we received from the developers at Ford
since they are part of the original developers of these
systems. For example, these developers rejected a set of
move methods because they believed that these methods
should stay in their original class. The original class in
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(a) Metrics of Apacheant (b) Metrics of GanttProject

(c) Metrics of JDIFord (d) Metrics of JFreeChart

(e) Metrics of JHotDraw (f) Metrics of Log4J

(g) Metrics of MROIFord (h) Metrics of Nutch

Figure 4. Boxplots of G, NF, MC, PR, and RC on all the ten systems based on 30 independent runs. (Continue on the next page.) Label of
the methods: M1 (Our approach)=Interactive+Innovization NSGA-II, M2=Innovization NSGA-II, M3=Kessentini et al. [19], M4=Ouni et al. [9],
M5=Harman et al. [17], M6=O’Keeffe et al. [18], M7=Jdeodorant [21]
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(i) Metrics of Rhino (j) Metrics of XercesJ

Figure 4. (Continue from the previous page.) Boxplots of G, NF, MC, PR, and RC on all the ten systems based on 30 independent runs. Label
of the methods: M1 (Our approach)=Interactive+Innovization NSGA-II, M2=Innovization NSGA-II, M3=Kessentini et al. [19], M4=Ouni et al. [9],
M5=Harman et al. [17], M6=O’Keeffe et al. [18], M7=Jdeodorant [21]

this case is responsible for implementing several security
constraints (e.g. login information) around database access.
The number of security constraints is very high and they
were implemented in several methods grouped into one
class. Although this set of methods created a blob, the
developers assessed that they should stay together because
there is a logic behind implementing them in that way,
and splitting the behavior may require a redesign of the
application.
In another case, the developers elected to extract a class
that regroups several methods implementing a parser to
extract dealer information. However, this refactoring was
not recommended by our approach since the methods
were located in a small class that did not contain any code
smell or quality violation symptoms. Thus, the refactoring
applied by the developers was more based on the features
implemented in the methods. This refactoring is hard to
recommend even with the considered semantics/textual
similarity measures since few comments exist in these
methods and furthermore their implementation structures
look very different. These observations explain the reasons
why some the refactorings recommended by our approach
was rejected by the developers and also the differences with
those that are manually recommended by the developers.
In general, we found that most of the common patterns in
the Pareto front are not individual operations, but a short
sequence of refactorings. Thus, we believe that most of
these patterns are targeting specific quality issues and hence
the applied refactorings are not individual operations but
small refactoring patterns. This observation was found to
be valid when we manually checked the interactive results
of our tool.
A general interesting observation from the experiments
is that evolutionary search involves both diversification
and convergence, so the question is does innovization
emphasize convergence at the cost of sacrificing divergence?
We would argue against this, for the following reasons:
In the context of our refactoring problem, it is very rare
to observe no overlap between non-dominated solutions
for several reasons such as the large size of refactoring

solutions and the fact that some common quality issues
should be fixed (high priority). In fact, at least few quality
issues (e.g. code smells) need to be fixed independently
from the other objectives. Thus, it is normal to always
observe some overlap between the refactoring solutions.
Regarding diversification, the ranking of the refactoring
solutions is only used after the generation of the Pareto
front so this ranking is not part of the fitness function used
in the search. The goal is to implicitly explore the front
based on the feedback of the developers to identify the
region of interest and prioritize the solutions that contain
common patterns. We believe that these common patterns
distinguish non-dominated solutions from dominated
ones. The diversification is not penalized because we
do not consider the innovization heuristic as part of the
fitness functions but as a post-processing step to prioritize
solutions (and not eliminating them).
We compared the results of our approach (M1) and
innovization NSGA-II method (M2) in Fig. 4 and Table 13
in order to contrast the impact of interactivity component.
The best solution (at the knee point) based on the
innovization feature (without interaction) was evaluated
based on all studied metrics. The results confirm that
our interactive approach outperforms NSGA-II with the
only use of innovation (without interaction) in terms of
G, NF, MC, PR, and RC. However, the results of NSGA-II
with innovization are better than regular multi-objective
refactoring approaches (e.g. Ouni et al., etc.) thus it is clear
that the positive results of our approach are due to the
combination of the two factors: innovization and interactive
features.
The superior performance of our interactive approach
can be explained by several factors. First, [19], [18] and
[17] use only structural indications (quality metrics) to
evaluate the refactoring solutions and thus a high number
of refactorings lead to a semantically incoherent design. Our
approach reduces the number of semantic incoherencies
when suggesting refactorings and during the interaction
with the developers. Second, the innovization component
improved the quality of the suggested refactoring solutions
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Figure 5. MC@k results on the different systems with k= 1, 5, 10 and
15.

Figure 6. PR@k results on the different systems with k= 1, 5, 10 and 15.

by using an interactive approach as compared to a regular
NSGA-II where the developers need to select one solution
from the Pareto front that cannot be updated dynamically.
Third, JDeodorant proposes some pre-defined patterns to
fix some types of code smells that cannot be sometimes
generalized.
To summarize and answer RQ1, the experimentation results
confirm that our interactive approach helps the participants
to refactor their systems efficiently by finding more relevant
refactoring solutions and improve the quality of all the ten
systems under study. In addition, our interactive approach
provides better results, on average, than all of the existing
fully-automated refactoring techniques.

Results for RQ2: We evaluated the ability of our ap-
proach to help software developers to find quickly good
refactorings based on an efficient ranking of the proposed
operations. We compared the MC@k and PR@k where k
was varied between 1, 5, 10 and 15 as described in Fig. 5
and Fig. 6 where show that the lowest MC@1 is 93% and the
highest is 100% on the different ten systems confirming that
the highest-ranked refactoring was almost always correct
and relevant for the developers.

The MC@15 presents the lowest results, which is to be
expected since we evaluated the manual correctness of the
top 15 recommended refactorings at several interactions and
this increases the probability that it contains few irrelevant

Figure 7. The median NMR, NRR and NAR results in the different
systems.

refactorings. However, the average MC@15 still could be
considered acceptable with an average of more than 81%.
The same observations are also valid for the PR@k; however
the results are a bit lower than for MC@k. The average PR@k
results were respectively 94%, 89%, 84% and 80% for k = 1,
5, 10 and 15. Thus, it is clear that the ranking function used
by our interactive approach to explore the Pareto front is
efficient.
Considering three other metrics NAR (percentage of ac-
cepted refactorings), NMR (percentage of modified refac-
torings) and NRR (percentage of rejected refactorings), we
seek to evaluate the efficiency of our interactive approach
to rank the refactorings. We recorded these metrics using a
feature that we implemented in our tool to record all the
actions performed by the developers during the refactoring
sessions. Fig. 7 shows that, on average, more than 71% of
the recommended refactorings were applied by the devel-
opers. In addition, an average of 17% of the recommended
refactorings were modified by the developers, while 12% of
the suggested refactorings were rejected by the developers.
Thus, it is clear that our recommendation tool successfully
suggested a good set of refactorings to apply.
To conclude, our approach efficiently ranked the recom-
mended refactorings and helped software developers to
quickly find good refactorings recommendations.

Results for RQ3a: Fig. 8 shows that the time is re-
duced by 61% and 57% to finalize respectively the two
tasks of fixing bugs when programmers worked on the
refactored program using our interactive approach. These
results outperform the productivity improvements obtained
when programmers worked on similar tasks of fixing bugs
of the refactored programs by Ouni et al. [9] and Harman et
al. [17]. For Ouni et al., the productivity improvements are
between 41% and 37% while Harman et al. [17] are between
33% and 31%. The results are correlated with the quality
improvements of the evaluated programs, as discussed in
the previous sections. Thus, a better quality of the software
may increase the productivity of programmers when fixing
bugs.

Results for RQ3b: Similar results to RQ3a are obtained
for the tasks of adding new features. Fig. 8 shows that the
time is reduced by 51% and 48% to finalize respectively
the two tasks of adding new features when programmers
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Figure 8. The average productivity difference (TP) results on the different
tasks performed by the three groups using our interactive approach,
Ouni et al. [9], Harman et al. [17]

worked on the refactored program using our interactive ap-
proach. These results outperform the productivity improve-
ments obtained when programmers worked on similar tasks
of adding features of the refactored programs by Ouni et al.
[9] and Harman et al. [17]. For Ouni et al., the productivity
improvements are between 38% and 31% while Harman et
al. [17] are between 29% and 23%. The results are correlated
with the quality improvements of the evaluated programs.
Thus, a better quality of the software may increase the
productivity of programmers when adding new features.
Overall, the productivity gain when programmers worked
on adding new features is lower than the one observed
for fixing bugs. This could be related to the fact that the
complexity of adding new features was higher than fixing
bugs and the locations where refactorings are introduced.

The metric (TP) to measure the time to perform the
different bugs fixing and adding new features task on the
systems before and after refactoring included the execution
time of the different (interactive and fully-automated) refac-
toring techniques to generate the new systems after refac-
toring. While the execution time of our interactive approach
is slightly higher than fully-automated approaches with an
average of 6 minutes comparing to Ouni et al. and Harman
et al. on the different systems used in both scenarios, the
overall time that developers spent to perform the new tasks
is much lower when working on the new systems after
refactoring based on our approach comparing to the state
of the art. Thus, the extra manual effort required by our
approach is compensated by higher productivity and better
accuracy of the results. We believe that the slightly higher
execution time by our interactive approach comparing to
fully automated search-based refactoring despite the extra-
manual effort is explained by the fact that the user feedback
can reduce dramatically the search space to converge toward
better recommendations. Furthermore, the efficient ranking
of refactorings to be inspected by programmers help a lot in
reducing the interaction time. Finally, we want to highlight
that programmers spend considerable time evaluating long
list of refactoring recommendations after the execution of
fully-automated approaches which is comparable to the
manual interaction effort required during the execution of
our interactive approach.

In the following, we describe a qualitative example to
illustrate the observed time reduction when updating a
feature on the refactored code. The scenario consists of mod-
ifying the existing loading and saving of CSV files feature
in Gant. The updated feature will enable the modification of
colors used in the charts to highlight specific project tasks
to match different priorities (e.g. red for high priority task,
green for low priority task, etc.) then modify the current
CSV format to support the use of colors in the Gantt chart.
To implement this feature, several methods have to be
modified that append to different classes before refactoring.
The main class related to this feature is GanttOptions that
includes 68 methods and highly coupled with 14 classes
which can be considered as a blob. Our interactive refactor-
ing tool proposed a sequence of 29 refactorings to be applied
to this class and some related classes (CSVOptions and
UIConfiguration). The sequence of refactorings included
Extract class, Move field, Move method, PushDown field,
PushDown method and Extract method that refactored the
GanttOptions as illustrated in Fig. 9.
The new version of GanttOptions contained only 43 meth-
ods and several methods and fields were moved from/to
CSVOptions and UIConfiguration. Thus, the developers
introduced less number of changes to update the methods
related to changing the colors of the chart tasks and the
format of the CSV files since they were cohesively moved
to GanttOptions after refactorings rather than being dis-
tributed between CSVOptions and UIConfiguration. These
refactorings not only reduced the number of changes but
also improved the coupling and cohesion within these
classes since other methods and fields were moved from
CSVOptions which reduced as well the time for developers
to identify the relevant methods and fields to modify to
integrate the new features.

Results for RQ3c: The post-study questionnaire results
show the average agreement of the participants was 4.8 and
4.3 based on a Likert scale for the first and second statements
(discussed in section 4.6), respectively. This confirms the
usefulness of our approach for the software developers
considered in our experiments.
We summarize in the following the feedback of the devel-
opers. Most of the participants mention that our interactive
approach is faster than manual refactoring since they spent
a long time with manual refactoring to find the locations
where refactorings should be applied. For example, devel-
opers spend time when they decide to extract a class to find
the methods to move to the newly created class or when
they want to move a method then it takes time to find the
best target class by manual exploration of the source code.
Thus, the developers liked the functionality of our tool that
helps them to modify a refactoring and finding quickly the
right parameters based on the recommendations.
Our interactive algorithm automatically suggests a list of
possible target classes ranked based on the history of
changes and semantic similarity. Furthermore, refactorings
may affect several locations in the source code, which is
a time-consuming task to perform manually, but they can
perform it instantly using our tool.
The participants found our tool helpful for both floss refactor-
ing, to maintain a good quality design and also for root canal
refactoring to fix some quality issues such as code smells.
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Figure 9. GanttOptions before and after refactoring.

The developers justify their conclusions by the following
interesting observations about our tool: a) the list of rec-
ommended refactorings helps them to choose the desired
refactoring very quickly, b) our tool offers them the possi-
bility to modify the source code (to add new functionality)
while doing refactoring since the list of recommendations
is updated dynamically. So developers can switch between
both activities: refactoring and modifying the source code to
modify existing functionalities. c) our tool allows developers
to access all the functionality of the IDE (e.g., Eclipse). d)
the suggested refactorings by our interactive tool can fix
code smells (root canal refactoring) or improve some quality
metrics (floss canal refactoring) due to the use of the multi-
objective approach.
Another important feature that the participants mention
is that our interactive approach allows them to take the
advantages of using multi-objective optimization for soft-
ware refactoring without the need to learn anything about
optimization and exploring explicitly the Pareto front to
select one ideal solution. The implicit exploration of the
Pareto front in an interactive fashion represents an impor-
tant advantage of our tool along with the dynamic update
of the recommended list of refactoring using innovization.
In fact, the developers found a lot of difficulties using the
multi-objective tool of [54] to explore the Pareto front to
find a good refactoring solution. In addition, they did not
appreciate the long list of refactoring suggested by [54] since
they want to take control of modifying and rejecting some
refactorings. In addition, the validation of this long list of
refactorings is time-consuming. Thus, they appreciate that
our tool suggests refactoring one by one and update the list
based on the feedback of developers.
The participants also suggested some possible improve-
ments to our interactive approach. Some participants believe
that it will be very helpful to extend the tool by adding a
new feature to apply automatically some regression testing

techniques to generate test cases to test applied refactorings.
Another possibly suggested improvement is to use some
visualization techniques to evaluate the impact of applying
a refactoring sequence.

5 THREATS TO VALIDITY
Following the methodology proposed by [58], there are
four types of threats that can affect the validity of our
experiments. We consider each of these in the following
paragraphs.
Conclusion validity is concerned with the statistical re-
lationship between the treatment and the outcome. We
addressed conclusion threats to validity by performing 30
independent simulation runs for each problem instance and
statistically analyzing the obtained results using one-way
ANOVA followed by Tukey’s post-hoc test. However, the
parameter tuning of the different optimization algorithms
used in our experiments creates another internal threat that
we need to evaluate in our future work. The parameters’
values used in our experiments are found by trial-and-
error, which is commonly used in the SBSE community [59].
However, it would be an interesting perspective to design
an adaptive parameter tuning strategy [56] for our approach
so that parameters are updated during the execution in
order to provide the best possible performance. In addition,
our multi-objective formulation treats the different types of
refactoring with the same weight in terms of complexity
when calculating one of the fitness functions. However,
some refactoring types can be more complex than others
to apply by developers.
Internal validity is concerned with the causal relationship
between the treatment and the outcome. We dealt with
internal threats to validity by performing 30 independent
simulation runs for each problem instance. This makes it
highly unlikely that the observed results to be explained by
random variation. The second internal threat is related to
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the variation of correctness and speed between the different
groups when using our approach and other tools such as
JDeodorant. In fact, our approach may not be the only
reason for the superior performance because the partic-
ipants have different programming skills and familiarity
with refactoring tools.
To counteract this, we assigned the developers to different
groups according to their programming experience so as to
reduce the gap between the different groups and we also
adapted a counter-balanced design. Regarding the selected
participants, we have taken precautions to ensure that our
participants represent a diverse set of software developers
with experience in refactoring, and also that the groups
formed had, in some sense, a similar average skill set in
the refactoring area. The results obtained by the developers
from Ford and those by the graduate students are consistent.
The evaluated open source and industrial systems provided
similar conclusions in our experiments. The industrial sys-
tems are mainly evaluated by the original developers and
the results are still consistent with the open source systems.
Construct validity is concerned with the relationship be-
tween theory and what is observed. To evaluate the results
of our approach, we selected solutions at the knee point
when we compared our approach with fully-automated
refactoring approaches, but the developers may select a
different solution based on their preferences to give dif-
ferent weights to the objectives when selecting the best
refactoring solution. The different developers involved in
our experiments may have divergent opinions about the
recommended refactorings in terms of correctness and read-
ability. We considered in our experiments the majority of
votes from the developers. We selected the majority of votes
as the technique to aggregate the data since it is similar to
real-world situations. Almost all of our industrial collabora-
tors in the refactoring area are selecting major refactoring
strategies based on discussions between the architects to
adopt the best alternative. The architects discuss several
possibilities to refactor the current architecture and they
will decide the best one based on the majority. We adopted
this strategy for our experiments to simulate real-world
scenarios. For the selection threat, the participant diversity
in terms of experience could affect the results of our study.
We addressed the selection threat by giving a lecture and
examples of refactorings already evaluated with arguments
and justification. For the fatigue threat, we did not limit
the time to fill the questionnaire and we also sent the
questionnaires to the participants by email and gave them
the required time to complete each of the required tasks. We
believe that one of the principal strengths of our approach
is the interaction component with the developer since many
aspects of software quality are subjective and impossible
to formalize precisely using quality metrics alone. The in-
teraction with the developer (i.e., developer feedback) can
help to improve the refactoring recommendations, by criti-
cally augmenting the objective metric values with subjective
developer insight. However, a better fitness function may
indeed reduce the interaction effort. Thus, the use of the
QMOOD model in a fitness function can be considered as a
possible threat since the use of quality metrics to solutions’
evaluation is subjective.
External validity refers to the generalizability of our find-

ings. In this study, we performed our experiments on
eight different widely used open-source systems belonging
to different domains and having different sizes, and two
industrial projects. However, we cannot assert that our
results can be generalized to other applications, and to
other practitioners. Future replications of this study are
necessary to confirm our findings. Further empirical studies
are also required to deeply evaluate the performance of the
interactive NSGA-II using the same problem formulation.
The first threat is the limited number of participants and
evaluated systems, which externally threatens the general-
izability of our results. In addition, our study was limited to
the use of specific refactoring types and types of code smell.
Future replications of this study are necessary to confirm
our findings.

6 RELATED WORK
We summarize, in the following, existing studies in the
area of software refactoring. We classify them into three
categories: manual, automated and interactive refactoring.

6.1 Manual Refactoring

We start, this section, by summarizing existing manual
approaches for software refactoring. In Fowler’s book [23]
a non-exhaustive list of low-level design problems in source
code has been defined. For each type of code smell, a list of
possible refactorings is suggested that can be applied by the
developers. Du Bois et al. [24] start from the hypothesis that
refactoring opportunities correspond to those that improve
cohesion and coupling metrics, and use this to perform an
optimal distribution of features over classes. They analyze
how refactorings manipulate coupling and cohesion metrics,
and how to identify refactoring opportunities that improve
these metrics. However, this approach is limited to only cer-
tain refactoring types and a small number of quality metrics.
Murphy-Hill et al. [25, 26] proposed several techniques and
empirical studies to support refactoring activities. In [26,
27], the authors proposed new tools to assist software de-
velopers in applying refactoring such as selection assistant,
box view, and refactoring annotation based on structural
information and program analysis techniques.
Recently, Ge and Murphy-Hill [28] have proposed a new
refactoring tool called GhostFactor that allows the developer
to transform code manually, but checks the correctness
of the transformation automatically. BeneFactor [29] and
WitchDoctor [30] can detect manual refactorings and then
complete them automatically. Tahvildari et al. [31] also
propose a framework of object-oriented metrics used to
suggest to the software developer refactoring opportunities
to improve the quality of an object-oriented legacy system.
Dig [32] proposes an interactive refactoring technique to im-
prove the parallelism of software systems. Other contribu-
tions are based on rules that can be expressed as assertions
(invariants, pre- and post-conditions). All these techniques
are more concerned around the correctness of manually ap-
plied refactorings rather than interactive recommendations.
The use of invariants has been proposed to detect parts
of the program that require refactoring [33]. In addition,
Opdyke [34] has proposed the definition and use of pre- and
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post-conditions with invariants to preserve the behavior of
the software when applying refactorings. Hence, behavior
preservation is based on the verification/satisfaction of a
set of pre- and post-condition. All these conditions are
expressed as first-order logic constraints expressed over the
elements of the program.
To summarize, manual refactoring is a tedious task for
developers that involves exploring the software system to
find the best refactoring solution that improves the quality
of the software and fix design defects.

6.2 Automated Refactoring

To automate refactoring activities, new approaches have
been proposed. JDeodorant [35] is an automated refactoring
tool implemented as an Eclipse plug-in that identifies cer-
tain types of design defect using quality metrics and then
proposes a list of refactoring strategies to fix them. Search-
based techniques [36] are widely studied to automate soft-
ware refactoring and consider it as an optimization problem,
where the goal is to improve the design quality of a system
based mainly on a set of software metrics. The majority of
existing work combines several metrics in a single fitness
function to find the best sequence of refactorings. Seng et al.
[37] have proposed a single-objective optimization approach
using a genetic algorithm to suggest a list of refactorings
to improve software quality. The work of O’Keeffe et al.
[18] uses various local search-based techniques such as hill
climbing and simulated annealing to provide an automated
refactoring support. They use the QMOOD metrics suite [38]
to evaluate the improvement in quality.
Kessentini et al. [19] have proposed single-objective com-
binatorial optimization using a genetic algorithm to find
the best sequence of refactoring operations that improve the
quality of the code by minimizing as much as possible the
number of design defects detected in the source code. Kilic
et al. [40] explore the use of a variety of population-based
approaches to search-based parallel refactoring, finding that
local beam search could find the best solutions. Harman
et al. [17] have proposed a search-based approach using
Pareto optimality that combines two quality metrics, CBO
(coupling between objects) and SDMPC (standard deviation
of methods per class), in two separate fitness functions.
Ouni et al. [41] proposed also a multi-objective refactoring
formulation that generates solutions to fix code smells.
Cinnide et al. [42] have proposed a multi-objective search-
based refactoring to conduct an empirical investigation to
assess some structural metrics and to explore relationships
between them. They have used a variety of search tech-
niques (Pareto-optimal search, semi-random search) guided
by a set of cohesion metrics.
The majority of existing multi-objective refactoring tech-
niques propose as output a set of non-dominated refac-
toring solutions (the Pareto front) that find a good trade-
off between the considered maintainability objectives. This
leaves it to the software developers to select the best solution
from a set of possible refactoring solutions, which can be a
challenging task as it is not natural for developers to ex-
press their preferences in terms of a fitness functions value.
Thus, the exploration of the Pareto front is still performed
manually, which limits the use of multi-objective search

techniques to address software engineering problems. An
intelligent exploration of the Pareto front is required to
expand the applicability of multi-objective techniques for
search-based software engineering problems.
In summary, developers should accept the entire refactor-
ing solution and existing tools do not provide the flex-
ibility to adapt the suggested solution in existing fully-
automated refactoring techniques. Furthermore, existing au-
tomated refactoring tools execute the whole algorithm again
to suggest new refactorings after a number of code changes
are introduced by developers, rather than simply trying
to update the proposed solutions based on the new code
changes. While automation is important, it is essential to un-
derstand the points at which human oversight, intervention,
and decision-making should impact on automation. Human
developers might reject changes made by any automated
programming technique. Especially if they feel that they
have little control, there will be a natural reluctance to trust
and use the automated refactoring tool [6].

6.3 Interactive Refactoring

Interactive techniques have been generally introduced in
the literature of Search-Based Software Engineering and
especially in the area of software modularization. Hall et
al. [43] treated software modularization as a constraint
satisfaction problem. The idea of this work is to provide
a baseline distribution of software elements using good
design principles (e.g. minimal coupling and maximal
cohesion) that will be refined by a set of corrections
introduced interactively by the designer.
The approach, called SUMO (Supervised Re-
modularization), consists of iteratively feeding domain
knowledge into the remodularization process. The process
is performed by the designer in terms of constraints that
can be introduced to refine the current modularizations.
Initially, the system begins with generating a module
dependency graph from an input system. This dependency
is based on the correlation between software elements
(coupling between methods, shared attributes etc.). Possible
modularizations are then generated from the graph using
multiple simulated authoritative decompositions. Then,
using a clustering technique called Bunch, an initial set of
clusters is generated that serves as an input to SUMO.
The SUMO algorithm provides a hypothesized
modularization to the user, who will agree with some
relations, and disagree with others. The user’s corrections
are then integrated into the modularization process, to
generate a more satisfactory modularization. The SUMO
algorithm does not necessarily rely on clustering techniques,
but it can benefit from their output as a starting point for its
refinement process.
Bavota et al. [44] presented the adoption of single objective
interactive genetic algorithms in software re-modularization
process. The main idea is to incorporate the user in the
evaluation of the generated remodularizations. Interactive
Genetic Algorithms (IGAs) extend the classic Genetic
Algorithms (GAs) by partially or entirely involving the user
in the determination of the solutions fitness function. The
basic idea of the Interactive GA (IGA) is to periodically add
a constraint to the GA such that some specific components
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shall be put in a given cluster among those created so far.
Initially, the IGA evolves similarly to the non-interactive
GA.
After a user-defined set of iterations, the individual with the
highest fitness value is selected from the population set (in
the case of single-objective GA) or from the first front (in the
case of multi-objective GA) and presented to the user. After
analyzing the current modularization, the user provides
feedback in terms of constraints dictating for example, that
a specific element needs to be in the same cluster as another
one. Although user feedback is important in guaranteeing
convergence, it is essential not to overload the user by
asking for a decision about all the current relationships
between elements, especially for a large system.
Overall, the above existing studies of interactive
remodularization are limited to few types of refactoring
such as moving classes between packages and splitting
packages. Furthermore, the interaction mechanism is based
on the manual evaluation of proposed remodularization
solutions which could be a time-consuming process. The
proposed interactive remdoularization techniques are also
based on a mono-objective algorithm and did not consider
multiple objectives when evaluating the solutions. A recent
study [45] extended our previous work [22] to propose
an interactive search based approach for refactoring
recommendations. The developers have to specify a desired
design at the architecture level then the proposed approach
try to find the relevant refactorings that can generate a
similar design to the expected one. In our work, we do not
consider the use of a desired design, thus developers are not
required to manually modify the current architecture of the
system to get refactoring recommendations. Furthermore,
developers maybe interested to change the architecture
mainly when they want to introduce an extensive number
of refactorings that radically change the architecture to
support new features.
Several possible levels of interaction are not considered by
existing refactoring techniques. It is easy for developers
to identify large classes or long methods that should be
refactored, but they find it is difficult, in general, to locate a
target class when applying a move method refactoring [20].
In addition, existing refactoring tools do not update their
recommended refactoring solutions based on the software
developer’s feedback such as accepting, modifying or
rejecting certain refactoring operations.
To address the above-mentioned limitations, we proposed
in this paper a new way for software developers to refactor
their software systems as a sequence of transformations
based on different levels of interaction, implicit exploration
of non-dominated refactoring solutions and dynamic
adaptive ranking of the suggested refactorings.

7 CONCLUSION AND FUTURE WORK
We proposed, in this paper, an interactive recommendation
tool for software refactoring that dynamically adapts and
suggests refactorings to developers based on their feedback
and introduced code changes. Our interactive approach
allows developers to benefit from search-based refactoring
tools without explicitly involving any knowledge about

optimization and multi-objective optimization algorithms.
In fact, the exploration of the non-dominated refactoring so-
lutions is implicitly performed based on the interaction with
the developers. The feedback received from the developers
is used to reduce the search space and converge to better
solutions. To evaluate the effectiveness of our tool, we con-
ducted a human study on a set of software developers who
evaluated the tool and compared it with the state-of-the-
art refactoring techniques. Our evaluation results provide
strong evidence that our tool improves the applicability of
software refactoring, and proposes a novel way for software
developers to refactor their systems interactively.
Future work involves validating our technique with addi-
tional refactoring types, programming languages and code
smell types in order to conclude about the general applica-
bility of our methodology. Furthermore, we only focused,
in this paper, on the recommendation of refactorings. We
plan to extend the approach by automating the test and
verification of applied refactorings. In addition, we will
consider the importance of code smells during the correction
step using previous code changes, class complexity, etc.
Another future research direction related to our work is to
build an interactive software engineering framework that
applies a similar approach to other software engineering
problems such as the next release problem.
The exploration of Pareto front is a very challenging prob-
lem, and this work is the first to apply an interactive
approach on a large number of Pareto optimal refactoring
solutions. Thus, several extensions could be proposed to
make the interaction with the users better and less time-
consuming including the use of machine learning which is
part of our future work.
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