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Abstract: With the increasing utilization of fossil fuels in today’s technological world, the
atmosphere’s concentration of greenhouse gases is increasing and needs to be controlled. In order to
achieve this goal, it is imperative to have sensors that can provide data on the greenhouse gases in
the environment. The recent literature contains a few publications that detail the use of new methods
and materials for sensing these gases. The first part of this review is focused on the possible effects of
greenhouse gases in the atmosphere, and the second part surveys the developments of sensors for
greenhouse gases with coverage on carbon nano-materials and composites directed towards sensing
gases like CO2, CH4, and NOx. With carbon dioxide measurements, due consideration is given to the
dissolved carbon dioxide gas in water (moisture). The density functional calculations project that
Pd-doped single-walled carbon nanotubes are ideal for the development of NOx sensors. The current
trend is to make sensors using 3D printing or inkjet printing in order to allow for the achievement of
ppb levels of sensitivity that have not been realized before. This review is to elaborate on the need for
the development of greenhouse gas sensors for climatic usage by using selected examples.

Keywords: greenhouse gases; carbon dioxide; methane; nitrogen oxides; fluorocarbons; optical
methods; wireless sensors; resistive sensors; conducting polymer

1. Introduction

The entire world desires an atmosphere that provides clean air and has reduced levels of carbon
dioxide, nitrous oxide, methane, ozone, and fluorocarbons, which contribute to global disturbances.
These gases are called greenhouse effect gases. The atmosphere now faces two problems that
contribute to the increased greenhouse effect gases. The first is the rapid deforestation caused
by forest fires and land requirements for developmental purposes. The other is the use of fossil
fuels for a variety of purposes. Fossil fuels generate gases that contribute to the greenhouse gas
effect. The real concern is in the state of the global climate for the generations ahead. The United
Nations (UN) has proclaimed several steps to mitigate greenhouse gas emissions. By this effort, it has
reduced the burning of 64,000 kilotons of wood and reduced the release of 118,000 tons of CO2 into
the environment (http://www.undp.org/content/undp/en/home/ourwork/climate-and-disaster-
resilience/climate-change/mitigating-greenhouse-gas-emissions.html). By encouraging the use of
renewable sources of energy, several wind farms and solar panels have been developed to reduce
greenhouse effect gases.

Among the greenhouse gases involved in environmental disturbances, carbon dioxide, nitrogen
oxides, and methane are given utmost importance, as the concentrations of these gases change more
than the others, thus requiring immediate attention. Hence, this review is devoted to these gases.
The climatic conditions are influenced by greenhouse gases [1,2]. This study is not aimed at correlating
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the gas levels to climate changes, although indirect relationships have been established, and hopefully
this article will stimulate an interest in evolving such correlations.

Weather and climatic conditions are often considered important in our day-to-day life and, as a
result, we hear/learn of these environmental conditions through the radio and TV. These channels
often give us information such the temperature, wind speed, rain, snow, ice conditions, UV index,
cloud cover, humidity, dew point, and barometric pressure, as shown in Figure 1. The weather channel
seldom gives the CO2, CH4, N2O, or O3 levels. This may be because of the non-availability of data and
the methodology needed to be adapted to measure the concentrations of greenhouse gases. In 2012, a
network of three tall tower stations was set up to obtain the long-term background levels of CO2, CH4,
and NOX in the United Kingdom. The results obtained from the network showed that the greenhouse
gases were increasing in mole fractions. The CO2 and CH4 concentrations showed nighttime maxima
and daytime minima [3].
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1.1. Status of Greenhouse Gases

The concentrations of greenhouse effect gases in the environment have been periodically
monitored by several agencies, and in this section we review the concentrations of these gases in the
environment with a view to developing sensors.

1.1.1. Status of Carbon Dioxide Gas

The carbon dioxide level in the atmosphere is currently reported to be at about 400 ppm, compared
to a low value of about 200 ppm in 800,000 BC (Figure 2). This reveals a rapid growth of the
carbon dioxide levels in the atmosphere. This increase is attributed to fuel combustion, forest fires,
volcanic eruption, and volatile organic compounds. The obvious choice to overcome this problem
is to reduce the use of fossil fuels, increase the use of nonpolluting fuels, begin forest conservation
efforts, and stop volcanoes from erupting [1,2]. The effectiveness of the measures to be taken requires
sensors to monitor the carbon dioxide levels in the atmosphere. This has resulted in the evolution
of gravimetric sensors. These sensors fall into the category of micro-to-nano electromechanical
systems that are based on chemical, electrical conductivity, optical, magnetic, acoustic, capacitive,
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1.1.2. Status of Methane

Methane is another important gas contributing to the greenhouse gas effect. Its increase is
greatly changing the climatic condition. It absorbs the sun’s heat and warms the atmosphere.
It is 84 times more potent than carbon dioxide in this activity. It is produced by the natural
decomposition of rice paddies, marshes, the guts of animals, the rotting of rubbish and the
distribution of fossil fuels like coal, oil, or gas. The use of alternatives to natural gas such as
hydrogen in a variety of living conditions [4] could certainly reduce the contribution of this
gas towards the greenhouse gas effect. Methane gas in the atmosphere has not been a serious
concern, as it was increasing by 0.5 parts per billion per year until the year 2000. The current
statistics show that it increased by 12.5 parts per billion in 2014. The methane mole fraction (ppb)
is expected to reach about 1850 by 2018, and was approximately 1780 in the year 2000 (https:
//www.washingtonpost.com/news/energy-environment/wp/2016/12/11/atmospheric-levels-
of-methane-a-powerful-greenhouse-gas-are-spiking-scientists-report/?utm_term=.4a77e6472f2c).
A recently published review [5] demonstrated that a sensor developed for carbon dioxide should
consider its response to methane in the atmosphere. Figure 3 shows the simulated effect of methane
interference in the measurement of carbon dioxide gas. The error in measurement of carbon dioxide
concentration is indicated in the Figure for different concentration ratios of carbon dioxide to methane.

The effect of methane and carbon dioxide gases on the environment was recently analyzed by
Charnay et al. [6] using a 3D climate carbon model, and their results showed a change in the global
albedo from 0.40 to 0.23 depending on the relative proportions of carbon dioxide and methane levels.
The global temperature was estimated by using the albedo value to increase from −11.5 ◦C to 65 ◦C.
This model predicts that a carbon dioxide level of 1 bar could produce hot climates at a low land
fraction and cloud feedback. For the Earth to reach the high temperature requires carbon dioxide in
the atmosphere to be 1 bar at 3.8 Ga.
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concentration, 390 ppm, b: Ratio of carbon dioxide/methane, c: methane concentration 80 ppm;
Group 6 a: CO2 concentration, 390 ppm, b: Ratio of carbon dioxide/methane, c: methane concentration
100 ppm. Reproduced with permission from Reference [5]. Nonappearance of c in 1, 2 and 3 indicates
negligible values.

1.1.3. Status of NOx

Nitrogen oxides have a pronounced influence in the environment. They are responsible for
producing yellow-brown smog, often called photochemical smog. The sources for nitrogen oxides are
automobile exhaust and fuel burning (including bio-diesel). It is to be controlled at 0.03 ppm over a
one-year period for human health and environmental factors. Levels are currently estimated to be at
325 ppb in the environment (https://www.epa.gov/climate-indicators/climate-change-indicators-
atmospheric-concentrations-greenhouse-gases).

1.1.4. Status of Fluorocarbons

The fluorocarbons are innumerable, and they can be divided into two classes: one class acting
on the ozone layer that reduces the ultraviolet rays reaching the Earth, and another class having
environmental effects. The first-class compounds are methyl chloroform, halon-1211, CFC-12, HCFC-22,
and HCFC-141b. The other class includes sulfur hexafluoride, HFC-23, HFC-134a, PFC-14, PFC-16,
and nitrogen trifluoride. The ozone-depleting fluorocarbons, except for methyl chloroform, are either
increasing or reaching a constant value. Their levels range from about 5 to 400 parts per thousand (ppt)
in the atmosphere (https://www.epa.gov/climate-indicators/climate-change-indicators-atmospheric-
concentrations-greenhouse-gases). Since fluorocarbons are not at the concentration levels of CO2 or
CH4, they will not be considered here.

1.2. Sensors for Greenhouse Gases

Since the importance of the influence of greenhouse gases on the environment was understood,
several different sensors have been developed and are well-reviewed in the literature [7–12].
Figure 4 describes the six different types of sensors used in the measurement of greenhouse gases.
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Figure 4. Types of sensors developed for greenhouse gas measurements. M: digital multimeter; C:
computer with software for monitoring the measuring multimeter; P: potentiostat (monitors the field
effect transistor parameters); D: detector (e.g., photomultiplier or bolometer); GG: greenhouse gas;
IDT: inter digitized electrode.

Type 1 sensors generally have a nonmetallic substrate on which the active material is deposited
and kept in either ambient or selected experimental conditions (e.g., inert atmosphere) in the measuring
chamber. The change in resistance of the active material is measured as a function of concentration of
the greenhouse gas. The successive measurement requires flushing the measuring chamber. The type 2
sensor is a field effect transistor having active material placed between the source and drain. The source,
drain, and gate electrodes are connected to a potentiostat. The drain current is measured as a function
of greenhouse gas concentration. The type 3 sensor is a modification of the type 2 sensor, in that
the voltage is plotted as a function of greenhouse gas concentration. The type 4 sensor depicts the
general scheme for electromagnetic interaction with the greenhouse gas. The photons used in these
measurements are generally in the energy range of 104–10−2 kcal. Type 5 sensors utilize a piezo electric
crystal carrying interdigitized electrodes. The active material is placed between digitized electrodes.
The radio frequency (Rf) shift is measured with different greenhouse gas concentrations. This type of
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sensor is also called a SAW (surface acoustic wave) sensor. The type 6 sensor is a micromechanical
sensor using a cantilever beam which has a coating of an active material. The resonant frequency of the
cantilever beam is measured as a function of the greenhouse gas concentration. This review contains
examples of all six different sensor types.

Conventional instrumental analysis such as optical spectroscopy, Fourier transform infrared
spectroscopy (FTIR), semiconducting devices, mass spectroscopy, and Raman spectroscopy were
used to analyze the greenhouse gases. These techniques will continue to be used, as they provide
the advantages of selectivity and sensitivity. With the discovery of new nanomaterials, several
less-expensive methods such as using resistance measurement (Type 1 sensor), field effect transistor
(Types 2 and 3 sensors), optoacoustic (Type 4 sensor), wireless measurements (Type 5 sensor;
surface acoustic wave (SAW)) and micromechanical measurements (Type 6) have recently been
developed. These new methods and new research oriented towards new materials have provided
speed and accuracy in the measurement of greenhouse gases.

2. Carbon Dioxide Sensors

Carbon dioxide gas is safe for humans up to 5000 ppm, and is dangerous when it reaches
concentrations of 40,000 ppm. A short-term exposure of 30,000 ppm is bearable (http://www.cdc.gov/
niosh/idlh/intridl4.html) [13,14]. The level of carbon dioxide in the atmosphere is changing every
year. The present level of carbon dioxide in the atmosphere is over 400 ppm. The presence of it in
the atmosphere affects the albedo value of the Earth in reflecting the solar radiation and is currently
estimated at 0.39. While the planet Mercury has an albedo value of 0.1 (receives the maximum amount
of sunlight), the planet Venus has a value 0.84 [4]. The temperature of the Venus is estimated at 462 ◦C,
with carbon dioxide levels in the atmosphere amounting to 96.5%. Based on these facts, the need for
limiting carbon dioxide in the Earth’s atmosphere is of the utmost importance. Hence, a good and
reliable sensor for carbon dioxide is required to monitor the atmospheric carbon dioxide. A variety
of sensors have been developed based on optical absorption, change in semiconducting property,
electrical resistance, amperometry, and field effect transistors. The semiconducting materials used
in these sensors operate at high temperatures (>200 ◦C). The optical detectors use either fiber optics
methods with sophisticated instrumentation or conventional infrared detectors. The electrical methods
have been successfully used for the detection of carbon dioxide in biomedical applications.

The main thrust in this decade has been to find new materials that enable easy detection and
determination. Gravimetric sensors have been of great interest in this category. The infrared sensors
are developed using a combination of a wavelength filter and a detector. This technology can reach a
detection limit of 10 ppm of CO2, with an upper limit of 10,000 ppm [15–18]. Mayrwögera et al. [15]
proposed a Fabry–Perot-based bolometer using a glass plate as a simple infrared filter for carbon
dioxide determination (Type 4 sensor). Figure 5 shows the analyte that is mixed with nitrogen
for analysis.
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The interference coming from water vapor in the measurement of carbon dioxide concentration
was removed by using a glass filter, as shown in Figure 6.
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Several conducting polymer-based resistive sensors have been developed for the detection
of carbon dioxide. Doping polyaniline (PANI) has been shown to play a role in the detection of
CO2 [18–20]. The working range of the CO2 sensor has been reported as 102–104 ppm. Figure 7 shows
the conductivity change with the concentration of CO2. The conductivity decreases when carbon
dioxide is adsorbed on the sensor material (PANI; Type 1 sensor). The sensor performance has been
shown to depend on whether it has an emeraldine base or sulfonated polymer as its active material.
Both of them respond to carbon dioxide, but the emeraldine base’s response to lower ppm levels has
been reported to be negligible.
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The carbon dioxide concentrations in the atmosphere and the corresponding pH are controlled
by the humidity in the atmosphere. The dissolved carbon dioxide is in equilibrium with other
species [19,20], and Table 1 shows the calculated concentrations of the equilibrating species.

Table 1. The CO2 concentrations in the atmosphere, pH value, and equilibrating species concentrations.

CO2
(Gas, ppm) pH Concentration

[CO2]
Concentration

[H2CO3]
Concentration

[HCO3]
Concentration

[CO3
2−]

1.0 × 10−1 6.94 3.36 nM 5.71 pM 5.90 nM 1.90 pM
1.0 × 100 6.81 33.6 nM 57.1 pM 91.6 nM 33.0 pM
1.0 × 101 6.42 0.33 µM 5.71 nM 0.378 µM 55.7 pM
1.0 × 102 5.92 3.36 µM 5.71 nM 0.378 µM 56.0 pM
1.0 × 103 5.42 33.6 µM 57.1 nM 3.78 µM 56.1 pM
1.0 × 104 4.92 0.336 mM 0.571 µM 0.119 µM 56.1 pM
1.0 × 105 4.42 3.36 mM 5.71 µM 0.378 µM 56.1 pM
1.0 × 106 3.92 33.6 mM 57.1 µM 12.0 mM 56.1 pM

The true concentration of CO2 in the atmosphere can be evaluated by taking the concentrations in
Table 1 into consideration, as there is equilibrium between CO2 and the protonated species as

CO2 + H2O = H2CO3 → HCO3
− + H+. (1)

An infrared fiber optic optical spark plug sensor was used for measuring CO2 and water. As both
the molecules are infrared-active with strong overlap, the spark plug was kept close to the electrodes
for the in-cylinder measurement of CO2 and gaseous water (Type 4 sensor). A tungsten halide lamp
with two infrared detectors having different optical band pass filter was used. The test was carried
out using a spark-ignited engine [21]. Air quality monitoring sensors using a cluster of metal oxide
(MOX;MiCS-5525) [22] or electrochemical sensors were used for the analysis of a mixture of nitrogen
monoxide and carbon dioxide. The measurements were used to assess the practicality of the carbon
dioxide sensor for a data quality objective with 25% uncertainty [23]. Table 2 shows the sensors used
for data acquisition. Figure 8 shows the carbon dioxide levels obtained from the sensor with linear
regression analysis.
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Table 2. Commercialized carbon dioxide sensors for field experiments.

Marketed by Model Concentration Range Sensitivity Response Time Resolution Comments

ELT Sensors S-100H 0–5 mmol/mol 1
V/mmol/mol 60 s 70 nmol/mol

Uses 16 bits
ADC with DAQ

range of 5 V

Edinburgh sensors Gas card NG 0–1 mmol/mol 1 V/0.1
mmol/mol 10 s 60 nmol/mol

Uses 14 bits
ADC with DAQ

range of 10 V

Resistive sensor. (Type 1 sensor) Rs: resistance of the sensor in ambient air; Ro: is the resistance when not exposed
to air. ADC: analog-to-digital converter; DAQ: data acquisition.

It was shown that the predicted values were lower compared to calibration. When an
electrochemical sensor was used for the measurement of CO2, the interference of ozone was
encountered and was removed by linear/multi linear regression [23,24].

Carbon nanotube (CNT)-based sensors have been developed for carbon dioxide gas utilizing the
principle of physicochemical adsorption of the gas by the carbon nanotubes. Two types of sensors
have been developed based on this principle. One type is based on resistance change upon adsorption
of the gas on the active material, and the other is dependent on the adsorption of the gas on the
active material having effects on transistor properties such as the voltage or current in the field effect
transistor [13] (Types 2 and 3 sensors). The adsorption of carbon dioxide gas produces an increase in
resistance that is attributed to an increase in the energy barrier for electron movement, as shown in
Figure 9.
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A number of reports directed towards measuring CO2 using a chemoresistive method with CNTs
have been reported in the literature [13,15]. Trans et al. [25] have fabricated a field effect transistor
using carbon nanotubes (NTFET) whose sensitivity was examined by Star et al. [26–28]. A prototype
sensor chip was packaged for measuring the carbon dioxide level using a computer. Figure 10 shows
the response of the sensor for carbon dioxide in breath analysis. The reproducibility in the response to
successive injections of the gas was established by these measurements. The NTFET board containing
the field effect transistor [29,30] is shown in Figure 11. The reproducibility of the pulses shows the
feasibility of its usage for successive measurements.
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Figure 10. Field effect transistor using carbon nanotubes (NTFET) sensor fabricated for carbon dioxide.
Reproduced with permission from Reference [28].

The sensor monitors the %CO2 that can be detected by the NTFET, which can be used conveniently
in several locations, such as in hospitals and on-site by paramedics. Being a noninvasive and disposable
device, it can be used in the monitoring of greenhouse gas for about 6 h. The performance of the
NTFET in measuring the concentration of CO2 in the presence of moisture has also been carried out.
It had a tolerance up to 80% RH (relative humidity). Sensors made with CNTs for gases generally
have the following advantages: (a) room-temperature operation; (b) facile property adjustment;
(c) high sensitivity and response time; (d) easy device fabrication; (e) low selectivity; and (f) long time
instability [10,31–39].
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The low selectivity and long time instability have been an active area of investigation in the
past decade, and several new composites of carbon nanotubes have been recommended for gas
detection. Chen et al. [19] have reported that cleaning the carbon nanotubes with ultraviolet light
resulted in a dramatically enhanced performance. The mechanism by which ultra violet light enhances
the performance has not been explored in this work. Presumably it makes the surface active by
the oxidation of amorphous carbon or defect centers in the nanotubes. A quantum mechanical
investigation of carbon dioxide adsorption on S-functionalized boron nitride and aluminum nitride
(AlN) nanotubes has shown it to be exothermic, opening the prospects of developing a thermal
sensor for carbon dioxide [40]. The adsorption of carbon dioxide on AlN nanocages and nanosheets
has also been investigated using density functional calculations [41,42], with emphasis on chirality.
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Amine-functionalized TiO2 has been used to capture the carbon dioxide from flue gases, and is
amenable for the development of a gas sensor. The presence of moisture has been demonstrated to
have a significant effect on adsorption/desorption processes [43].

A nano thin film functionalized chemiresistor sensor operating at room temperature (Type 1
sensor) has been reported for the detection of carbon dioxide in the range of 50−500 ppm [44].
The sensor had negligible interference from ammonia, carbon monoxide, methane, and nitrogen
dioxide. The sensing of carbon dioxide using a wireless network [13,45–47] (Type 5 sensor) uses
analyte-induced changes such as in mass, elasticity, or complex permittivity [48]. The diverse
temperature requirements in this class of carbon network are shown in Figure 12.
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A SAW (surface acoustic wave) sensor using random copolymer Teflon AF2400 (Figure 13)
prepared from tetrafluoroethylene and 2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole showed
variations in carbon dioxide detection depending on the amount of water present. The phase shift
changes with carbon dioxide level are shown in Figure 14, showing a phase shift of about 1.14◦/ppm
of CO2.
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The permittivity and conductivity of multiwalled carbon nanotubes has been used for the
detection of carbon dioxide [48]. The incorporation of a SiO2 matrix along with the incorporation of
a wireless inductor-capacitor resonator in the sensor showed a decrease in the effective permittivity
(see Figure 15). The analyte induced changes in complex permittivity (εr’− j εr”), where εr’ and εr” are
the real and imaginary parts of the complex permittivity are measured in this approach. The imaginary
permittivity of the sensing material is directly proportional to its conductivity. A hysteresis-free
operation of the sensor is remarkable and advantageous for fast measurements.
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The sensor operates through a dipole–dipole interaction mechanism as shown below (Figure 16A).
The functionalized multiwalled carbon nanotubes (MWCNTs) have a partial negative charge to which
the analyte is bridged through its partial positive charge end, as shown in the above illustration [10].
The optical sensing of carbon dioxide has been reported using different types of membranes [38]. As an
offshoot of carbon nanotubes, the discovery of graphene by Novoselov and Geim in 2004 has opened
up new sensors based on carbon [39]. In one approach, 3 µL of a 1 mg/mL graphene oxide solution
was spin-coated on silicon fingers of 3 µm width. The graphene resistive sensor’s response in the
concentration range of 0–1500 ppm was measured [49–52]. Figure 16B provides the resistance response
with carbon dioxide concentration at ppm levels.
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The initial resistance measurement of the sensor was carried out in nitrogen atmosphere (RN2).
The change in resistance [46] of the sensor when carbon dioxide gas was injected (Rx) was used in the
construction of the graph in Figure 16. Recently, a miniature resistive carbon dioxide sensor has been
reported that operates in the concentration range of 50–50,000 ppm. A photoacoustic spectroscopic
method has been developed for the simultaneous determination of carbon dioxide and methane
gases [52] with high precision and a large dynamic range.

A new silicon substrate micro sensor has been developed [5] using a composite made of carbon
nanotube and Baytron-P that senses carbon dioxide at 22 ◦C. The sensor was constructed with a Si
chip by depositing the composite between two gold electrodes. Two identical Si chips were connected
in a parallel configuration (Figure 17) to reduce the initial resistance of the sensor. The resistance of the
sensor decreased proportionally upon exposure to the concentration of carbon dioxide.
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Figure 17. Twin sensors in parallel configuration. (A) The arrangement of the sensors and the
measurement details. (B) The equivalent circuit of the arrangement of the sensors (S1 and S2). (C) Sensor
dimensions. Reproduced with permission from Reference [5].

The sensor showed a semiconducting behavior with a negative temperature coefficient (Type
1 sensor). The response time of the sensor was about 40 s. Fourier transform infrared spectroscopy
showed peaks for the nanocomposite at 1056 cm−1, 1195 cm−1, 1296 cm−1, 1635 cm−1, 2083 cm−1,
2345 cm−1, and 3278 cm−1. The carbon dioxide adsorption on the composite resulted in the polystyrene
sulfonate absorption band shifting from 1195 cm−1 to 1176 cm−1, suggesting a phase separation
occurring in the nanocomposite that resulted in the increased conductivity.

Metal oxide semiconductor (MOS) films, nanowires, nanocage, powder, and microspheres
have been investigated [53–69] for carbon dioxide sensing. The sensors developed using this
approach operate at a temperature range of 200–700 ◦C and can detect concentrations in the range of
100–10,000 ppm with a response time falling in the range of 3 s to 9.5 h. The recovery times are also in
the range 4–700 s. The performance of an MOS sensor depends on its morphology and composition.
The results obtained here have shown that the grain size significantly influences the performance
sensitivity (Types 2 and 3 sensors).

Poly (ionic liquid)-wrapped single-walled carbon nanotubes have been found to be sensitive for
carbon dioxide detection at low concentrations of CO2 (500 ppt) [67–72]. The chemiresistive dynamic
response of the carbon nanotubes is shown in Figure 18 (Type 1 sensor), where the mechanism for
sensing is based on the interaction between BF4 anion and CO2. The charge transfer interaction
between BF4

- and CO2 is depicted in Figure 18E.
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Figure 18. (A) shows the response of pristine single walled carbon nanotubes (B) Change in resistance
with respect to CO2 concentrations. (C) Successive injections of 1 ppm CO2 to the sensor. (D) Response
of the sensor to: CO2 (10 ppm); CO2 (10 ppm) + relative humidity (42%); 100 ppm H2; 100 ppm CH4;
50 ppm ethanol; 10 ppm O2 and relative humidity (42%). (E) Sensor mechanism. Reproduced with
permission from [67].

An impressive type 4 sensor for CO2 has been reported using optical fiber coated with a metal
oxide-zeolitic imidazole framework (ZIF)-8 MOF [69].

A high sensitivity for CO2 with negligible response for gases such as H2, N2, O2, and CO has
been reported. The percentage transmission of 242 nm radiation has been monitored as a function of
CO2 concentration, as shown in Figure 19b. The linear change in the transmission of radiation with
concentration with very little interference from other gases provides reliability for usage in the field.

Table 3 gives a list of sensor materials and their responses.
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Figure 19. (a) CO2 sensor with metal oxide-zeolitic imidazole framework on the optical fiber.
Reproduced with permission from Reference [69]. (b) Performance characteristics of CO2 sensor
giving percentage transmission and absorbance features. MOF: Metal organic framework. Reproduced
with permission from Reference [69].

Table 3. Carbon dioxide sensing materials.

Material Detection
Method

Operating
Temperature (◦C)

Detection
Concentration

Response
Time Reference

Carbon nanotubes Resistance 0–2000 ppm 3 s [13]
Gascard-NG Current–Voltage 0–1000 µmol/mol 10 s [23]
Germanium IR sensor 30–70 10 ppm [15,18]

PANI Resistance Room temperature 102–105 ppm [18,19]
Graphene 22–60 0–100 ppm [50]

Graphene
Devise

Conductance
Resistance

10–100 ppm 10 s [50]

LaOCl/SnO2 Resistance 350–450 0–4000 ppm [53]
La/SnO2 Resistance >100 500–2500 ppm [53]

CNT-polyionic liquids Resistance 500 ppt [53,60]
Graphene Resistance Room temperature 0–1500 ppm [61]

Polypyrrole Resistance 60 100–700 ppm [62]
1-Ethyl-3-methyl-imidazolium

Tetrafuloroborate ([EMIM][BF4])
as ionic liquid and polyvinylidene
fluoridecohexafluoro propylene

(PVDF-HFP) as polymer.

Impedance
change

Ambient
temperature 0–3000 ppm 50 min [63]

Graphene oxide Resistance 0–2000 ppm 3 s [64]
Pristine graphine/UV light 200 ppt [65]

Flexible graphene Resistance Variable Low to high [66]
ZnSb2O6 Resistance 400 ◦C 100–400 [68]
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Solid-State Electrochemical Sensor

There have been attempts to develop a solid-sate electrochemical sensor for carbon dioxide [71].
Mason et al. [71] developed solid-state reference measuring electrodes and a beta alumina electrolyte
substrate with a provision for heating, and made measurements at a temperature of 530 ◦C. At this
temperature, the carbon dioxide sensing was found to be selective from other gases. A novel
electrochemical sensor using a ceramic-type component of Na-β/β” alumina and a reference electrode
of glass sealed elemental Na has been developed for measuring CO2 gas in the temperature range of
300 to 600 ◦C [72] with a response time of seconds to minutes.

3. NOx Gas Sensors

Faraday rotation spectroscopy has been proposed for NO2 determination (Type 4 sensor) [67–73].
It uses a widely tunable external cavity quantum cascade laser (EC-QCL) and operates mode-hop free
between 1600 cm−1 to 1650 cm−1 and allows Q-branch transition of NO2 at 1613.2 cm−1. A detection
limit of 95 ppt has been reported. Meyyappan et al. [73] used a simple casting of single-walled carbon
nanotubes on an interdigitated electrode for the detection of NO2 ranging from sub-ppm to 44 ppb.
The response time of the sensor was on the order of seconds.

Among the sensors reported in the literature, there are a few sensors reaching the lowest detection
limits of 0.01–0.5 ppb (Table 4). The ZnO [74–76], In2O3 [77], and WO3 [78,79] sensors showing
variable response times fall into this category of low detection limits. A sensor developed with
reduced graphene oxide–Cu2O nanowire interestingly reached the lowest detection concentration of
0.064 ppm [79–84].

Table 4. Several metal–oxide–semiconductor (MOS) materials have been examined for NOx detection.

MOS Operating Temperature (◦C) Response Time (s) Detection Concentration ppm Reference

ZnO RT 240 0.01 [74]
ZnO 200 60 0.1–1 [75]

In2O3 250 600 0.1–100 [77]
WO3 300 80–300 0.5 [78]
WO3 300 0.5–2.5 [79]
SnO2 300 0.5 [85]
WO3 350 180 1 [86]

Nitrous oxide (N2O) is released into the atmosphere from chemical plants producing nitric acid
and polymers (https://www.eia.gov/environment/emissions/ghg_report/ghg_nitrous.cfm). N2O is
a colorless toxic pollutant gas with a slightly sweet odor. It is widely used as an anesthetic and analgesic
agent in the clinical field, and also as a propellant for pressurized containers in the food industry. It is
neither flammable nor explosive. One molecule of N2O has the same greenhouse warming power as
300 molecules of carbon dioxide. Two-thirds of anthropogenic N2O emissions arise from agricultural
soils [86], where N2O is formed as part of the bacterial denitrification pathway, in which soil and marine
bacteria use oxidized nitrogen compounds as terminal electron acceptors for anaerobic respiration [87].
Once that N2O molecule reaches the upper atmosphere, it can stay there for more than 100 years before
getting destroyed naturally. Even though nitrous oxide is a moderately undisruptive substance unlike
pollutants known as NOx, it has recently been reported to participate in the depletion of the ozone layer
in the stratosphere (https://www.eia.gov/environment/emissions/ghg_report/ghg_nitrous.cfm).
So, it is crucial to control and convert N2O to a harmless gas by catalytic surface reactions.

Yoosefian [88] performed density functional studies on the adsorption behavior of nitrous oxide
(N2O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube
(Pd-CNT). Pd dopant facilitates the adsorption of N2O on the otherwise inert nanotube, as observed
from the adsorption energies and global reactivity descriptor values. The adsorption energy of N2O
on CNT was investigated in three orientations: vertical (VC) and horizontal (HC) to the nanotube

https://www.eia.gov/environment/emissions/ghg_report/ghg_nitrous.cfm
https://www.eia.gov/environment/emissions/ghg_report/ghg_nitrous.cfm
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axis, and the nitrogen atom toward the C–C bond (NC). The full optimized structures are indicated in
Figure 20.
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The adsorption of N2O changes the electronic conductivity of Pd-CNT, which is attractive for
developing the sensor. Recently, heterojunction sensors have been constructed with SnO2/SnS2,
operating at 80 ◦C (Type 1), sensitive to NO2 concentrations in the range of 1–8 ppm [89–96].
The response of the sensor to other analytes is shown in Figure 21.
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Figure 21. Response of heterojunction sensor to different analytes. Hydrogen (H2), acetylene (C2H2),
ethanol (C2H5OH), carbon dioxide (CO2), Nitrogen doxide (NO2). Reproduced with permission from
reference [89].

Table 5 gives the relative performances of different sensors for NO2.
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Table 5. The NO2 sensors fabricated with different materials.

Sensor Material Operating
Temperature Concentration ppm Response, S (%) Response/Recovery

Time (s) Reference

SnO2 nanofibers 200 ◦C 1–5 97%/5 ppm 85/110 [94]
SnO2 core/ZnO shell RT, UV assisted 1–5 600%/5 ppm 100/220 [95]

Reduced graphene oxide-ZnO 80 ◦C 1–25 25%/5 ppm 164/499 [96]
Graphene-WO3 250 ◦C 1–20 140%/5 ppm 45/50 [97]
CNT thin film 165 ◦C 10–100 71%/100 ppb >30 min [98]

ZnO nano structure RT 5–20 1100%/5 ppm 72/69 [99]

In comparison to these sensors, several N2O gas sensors have been developed using metal
oxides. Table 6 gives the performance of N2O sensors (Type 1). These oxide sensors operate at high
temperatures in the region of 300–600 ◦C.

Table 6. Metal oxide sensors for N2O.

Oxide Resistance in Air, Ra (Ω) Sensitivity to 300 ppm N2O Temperature (◦C)

Cr2O3 3.5 × 105 0.98 400
Mn2O3 2.8 × 105 1.00 400
CO3O4 1.0 × 104 0.98 400

NiO 2.8 × 105 1.00 450
CuO 2.2 × 106 0.98 300
CdO 5.3 × 109 1.03 400
MgO 2.4 × 1010 1.00 500
SrO 5.6 × 109 1.02 400
BaO 2.2 × 1010 1.02 500

In2O3 3.6 × 104 1.05 450
SnO2 5.8 × 105 1.66 450
WO3 8.5 × 105 1.32 450
ZnO 2.8 × 106 1.21 450
TiO2 4.9 × 107 1.01 600
V2O3 8.7 × 105 1.00 400
Fe2O3 3.9 × 107 1.00 500
GeO2 l.2 × 108 1.00 400

Nb2O5 9.6 × 108 1.00 600
MoO3 3.l × 109 1.00 500
Ta2O5 2.7 × 1010 1.00 600
La2O3 1.4 × 109 1.10 600
CeO2 3.9 × 109 1.01 600

Nd2O3 5.3 × 109 1.00 500

Reproduced with permission from Reference [9]; Rg represents the resistance of the sensor in N2O.
Sensitivity = (Rg/Ra).

4. Methane Sensors

A number of detectors [97–105] have been developed in the last couple of decades for
the detection of methane, mainly to detect the leakage of natural gas as the combination
of methane and air constitutes an explosive mixture. These detectors are based on
optical fiber sensing [98–100], resistive change [98–103] using graphene–polyaniline composite,
cataluminescence [104], and refractive index [105,106]. The lower detection limit that can be reached
with these methods is about 10 ppm [98–100]. A theoretical calculation of methane adsorption on
graphene has been investigated, and it shows an opening of the band structure of graphene upon
adsorption [106]. It predicts that the adsorption energy of defected graphene is increased with the
number of layers. A low-cost sensor has been developed [107] using a metal oxide that has suitability
for detecting methane leaks. The detection of the sensor is in the range of 0.8–2.7 ppm. It is ideally
suited for the environmental analysis of methane.
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Humayun et al. [108,109] fabricated a highly sensitive, low-cost, and energy-efficient distributed
methane (CH4) sensor system (DMSS) comprising a metal oxide nanocrystals (MONC)-functionalized
MWCNT-based CH4 chemiresistor sensor (Type 1 sensor). The sensor could sense below 10 ppm of
CH4 in dry air at room temperature. They developed a Gaussian plume triangulation algorithm for
the DMSS by which if a geometric model of the surrounding environment is given, then the algorithm
can precisely detect and localize a CH4 leak as well as estimate its mass emission rate. To facilitate
faster leak detection, a control algorithm based on the UV-accelerated recovery was developed.

A methane chemiresistive sensor was fabricated using multiwalled carbon nanotubes/metal
oxide nano particles that showed a detection limit of 10 ppm. The sensor response to methane and
water vapor was measured in this work, showing that the sensor was inactive to water. A modulation
spectroscopy sensor (Type 4) using a multi-pass cell with a detection sensitivity of 1.2 ppb has recently
been reported for methane [109,110]. Using this sensor, the concentration of methane in ambient air
was determined to be about 2.01 ppm. With this concentration of methane in the atmosphere referring
to Figure 3, the percentage error in CO2 measurement will be about 4% unless the CO2 selected sensor
is not influenced by methane gas.

5. Modern Technology Using 3D and Ink Jet Printing of Gas Sensors

With rapid developments in finding active materials suitable for greenhouse gas sensors, there
is need for consideration of the cost of making these devices. In this context, the 3D-printing of the
active material would be of interest. High-quality 3D-printed desk-top devices have been produced at
a low cost without conventional micromechanical systems. Taylor and Velásquez-García [111] have
reported a novel electrospray printed nanostructured graphene oxide for gas detection. A number
of gases were examined in this work with a variety of detection limits. For CO2, the detection limit
was set at 1000 ppm. The preliminary reports opened up opportunities to modify the spray printing
for extension to lower detection limits. Rieu et al. [112] developed an ink jet-printed SnO2 gas sensor
on a plastic substrate. Both the gas-sensitive layer and the heating transducer were ink jet-printed.
This method of making the sensor compares well with sol-gel tin oxide film. The following detection
limits have been reported for CO and NO2 (Table 7) The limit of detection fell far above the other
methods discussed in the earlier sections. Furthermore, the operating temperature of the sensor
was in the range of 200–300 ◦C (Table 7). Sulfonated graphene was used for detecting NO2 at room
temperature by Liua et al. [113]. Sulfonated graphene and SnO2 particles are combined to form the
active material of the sensor. The process involves the direct deposition of SnO2 nanoparticles on
reduced graphene oxide. A high performance and a good sensitivity were achieved by this active
material. A detection limit of 1 ppm of NO2 was reached with this sensor. The room-temperature
detection using sulfonated graphene opens up opportunities for developing other greenhouse gas
sensors. A screen-printed piezoelectric microcantilever (Type 6 sensor) has been used to detect and
determine NO2 and CO gases using oxygen plasma-treated multiwalled carbon nanotubes as the
sensitive layer [114]. Figure 22 shows the response of the cantilever for the two gases, with both
positive and negative shifts in resonant frequency, attributed to stress and mass effects at different
analyte concentrations.

Table 7. Limits of detection of CO and NO2 using the SnO2 ink jet-printed sensors.

Gas Detection Level (ppm)

CO (ppm) 0.5 (300 ◦C, dry air) 24 (300 ◦C, wet air) 0.4 (200 ◦C, dry air) 46 (200 ◦C, wet air)
NO2 (ppm) 6 (300 ◦C, dry air) 9 (300 ◦C, wet air) 1 (200 ◦C, dry air) 6 (200 ◦C, wet air)
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Figure 22. Screen-printed cantilever with multiwalled carbon nanotube functionalized by oxygen-argon
plasma as sensitive material. Reproduced with permission from Reference [114].

The sensor’s response to NO2 was remarkable at ppb levels. A new generation of sensors for
greenhouse gases utilizing 3D printing and ink jet printing is to be expected in the future, and are
being researched in the literature [114–119]. Although some of the analytes described in this section
do not fall into the class of greenhouse gases, they provide the pathway for the development of
new greenhouse gas sensors through ink jet printing. With this technology, the sensors will have
high reproducibility, sensitivity, and low cost. A 3D-printed CO2 sensor was constructed with a
double layer of PEDOT/PSS (poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate) and graphene
on interdigitated electrodes that was made by inkjet printing using conductive silver nanoparticles.
The sensor works on the principle illustrated for type 1 and has sensitivity of 45 µohm/ppm [117].
Figure 23 shows the different layers in the sensor and the interdigitated fingers.
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Figure 23. (a) Device dimensions: 1.8 cm by 1 cm with a thickness of about 140 µm. IDT fingers:
width (200 µm), length (6 mm), thickness (200 nm), track spacing (350 µm); (b) Schematic of the sensor
structure PET: Polyethylene terephthalate. Reproduced with permission from Reference [117].
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The sensor’s responses at two different temperatures are given in Figure 24.
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3D inkjet printing has provided an economical manufacturing technique for the CO2

sensor [118]. It uses a colloidal dispersion in the printing ink and is composed of La0.8Sr0.2MnO3

(LSM)(Y2O3)0.08(ZrO2)0.92(YSZ). It uses an electrochemical cell Ni-YSZ|YSZ|YSZ-LSM|LSM, with
YSZ (yittria stabilized zirconia) as electrolyte sintered to a Ni-yittria stabilized zirconia (Ni-YSZ).
The carbon dioxide reaction in the electrochemical fuel cell is

CO2 + 2e− → CO +
1
2

O2. (2)

The inkjet 3D printing performance is dependent on the formation and ejection of droplets. Its
propagation depends on acoustic pressure waves in the fluid held in the chamber behind the printing
nozzle and in the YSZ-LSM LSM ((La1−xSrx)1−yMnO3) sensor. The droplets time interval is shown
in Figure 25. The colloidal LSM dispersions are stabilized using electrostatic dispersants which are
commercially available from different manufacturers, as shown in Table 8.
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Table 8. Electrostatic Dispersants for Inkjet printing.

Dispersant Trade Name Supplier

Aurintricarboxylic acid ammonium salt Aluminon Sigma-Aldrich, Saint Louis, MI, USA
Ammonium citrate Sigma-Aldrich, Saint Louis, MI, USA
Sodium sulfonate Trion Sigma-Aldrich, Saint Louis, MI, USA

Ammonium polyacrylate Dispex-A40 BASF, Ludwigshafen, Germany

Polymethylmethacrylate Darvan-C Vanderbilt Minerals, Saint Lawrence
County, NY, USA

Ammonium polyacrylate Dispex-A40 BASF, Ludwigshafen, Germany

The performance of the fuel cell is linked to the concentration of CO2, and it is in the initial
stages of development. As discussed in the previous section on carbon dioxide, a pH electrode can
be used as a CO2 sensor. A large-scale layer-by-layer ink jet printing of flexible iridium oxide for a
hydrogen ion sensor (Figure 26) has been reported [119]. The sensor’s active material is iridium oxide,
which interacts with the analyte.
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Figure 26. Deposition of positively charged poly(diallydimethylammonium chloride) (PDDA, 20% wt.
in water, medium molecular weight MW 200,000–350,000) and positively charged particles by inkjet
printing. ITO: indium tin oxide glass; IrOx: iridium oxide; PET: polyethylene terepthalate. The feedback
arrow indicates layer-by-layer deposition. Reproduced with permission from Reference [119].

A flexible tin oxide gas sensor was developed by an inkjet printing process. Here the active
material was tin oxide, printed on gold deposited in a digitated electrode spacing of 500 and 200 µm.
Carbon monoxide was the analyte, and the measurements were done at 300 ◦C in the concentration
range of 20–200 ppm [120].

A type 3 sensor for CO2 was recently been reported [121] using a sodium ion conducting solid
electrolyte having a floating gate passivated by an insulator stack and a control gate made of an
interdigitated field gate (Figure 27). The sensing material, (3-aminopropyl) triethoxysilane (APTES),
was added by inkjet printing. The sensor operated at 160 ◦C in the concentration range of 125–325 ppm.
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Inkjet printing technology has very high commercial value, and the developments have been
rapidly pursued for long-term testing. Inkjet-printed graphene sensors (Type 1) for nitrogen oxide
gas and inkjet printed platinum decorated tungsten oxide nanoparticles on silicon substrate for gas
sensing (Type 1) have been reported [122,123]. The methodologies reported in these publications are
interesting, and may be extendable to greenhouse gases in the future [124–126].

6. Outlook and Conclusions

The recent reports of monitoring greenhouse effect gases have conclusively shown that CO2 levels
in the atmosphere have been steadily increasing. The UN reports have consistently been promoting
the use of renewable energies for controlling the atmospheric conditions. The atmospheric conditions
need to be steadily monitored, and for this purpose we need to have reliable measurements of the
greenhouse effect gases. The acquisition of the data requires the development of cheap, robust,
and accurate sensors. Although the area of sensors has been growing rapidly, sensors directed towards
the greenhouse effect gases using nano materials have been recent. This survey of the greenhouse
effect gas sensors suggests that there has been active interest in developing gas sensing technologies.
The first part of the paper projects the progressive increase in the concentrations of greenhouse gases
in the atmosphere and its consequences. The second part discusses the developments in the areas of
carbon dioxide, nitrogen oxide, and methane sensors using carbon nanotubes and polymer composites.
A few reports on using graphene, which is a material having large surface area relative to carbon
nanotubes, with high electrical and thermal conductivities, opens opportunities for developing novel
greenhouse gas sensors. The current trend is to use 3D printing or ink jet printing in making the sensor
devices. This survey of greenhouse gas sensors shows that so far the developments have been based
on discovering new active materials and examining their characteristics limited to either pure gases
with limited interferences. There are very few sensors that would respond to only one greenhouse gas.
This short review is to focus on the need to have reliable sensors for greenhouse gases in every city or
town for a periodical review of their concentrations.
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