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EXISTENCE THEORY FOR THE RADIALLY SYMMETRIC
CONTACT LENS EQUATION∗

DAVID S. ROSS† , KARA L. MAKI† , AND EMILY K. HOLZ‡

Abstract. In this paper we present a variational formulation of the problem of determining the
elastic stresses in a contact lens on an eye and the induced suction pressure distribution in the tear
film between the eye and the lens. This complements the force-balance derivation that we used in
earlier work [K. L. Maki and D. S. Ross, J. Bio. Sys., 22 (2014), pp. 235–248]. We investigate the
existence of solutions of the relevant boundary value problem for the singular, second-order Euler–
Lagrange equation. We prove that, for lenses of constant thickness, solutions exist. We present an
example to show that in some cases in which the lens thickness increases with distance from the lens
center no solution exists.
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1. Introduction. About one in ten Americans wears contact lenses [28]. How-
ever, for every three persons who wear contact lenses, one person tries them but stops
using them; the majority of such dropouts stop using contact lenses because they find
them uncomfortable [30]. Improving comfort is a central challenge for the contact
lens industry. Improving comfort will expand the market for contact lenses and could
bring the benefits of contact lenses to millions. In addition, comfort will be crucial to
the success of novel applications for contact lenses, such as metabolic monitoring [29],
drug delivery [4], augmented-reality [1] displays, and sensory enhancement [32].

In order to understand what makes contact lenses comfortable or uncomfortable, it
is important to understand the solid mechanics and fluid mechanics of the interactions
of a lens with an eye. A contact lens is a suction cup; it stays on the eye because
any perturbation that might jostle it off the eye induces a negative pressure in the
tear film between the lens and the eye, the postlens tear film, which holds the lens
in place. In equilibrium the pressure in the tear film integrates to zero, but the
elastic stresses in the lens—which is distorted from its rest shape when it is on the
eye—induce a pressure distribution in the tear film. That distribution mediates the
eye’s feeling the contact lens, and so understanding it is crucial to understanding and
improving comfort. We undertook the work whose mathematical aspects we discuss
in this paper in order to characterize such pressure distributions and to understand
how they depend on the elastic properties of lenses and on the shapes of lenses and
eyes.

In the early days of the study of contact lenses it was thought that surface tension
held lenses in place [18, 21, 25]. In addition to experimental investigations [10, 11, 24],
by the 1980s theoretical researchers had begun to investigate the pressure in the
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postlens tear film treated as a squeeze film [2, 7, 8, 13]. More recently researchers have
addressed, computationally, the interaction of the lens with the tear film [5, 12, 16].
We developed the model that we present in the next section in order to identify the
essential mechanical contributions to the suction pressure distribution. Our model
is mathematically simpler than other approaches; the equation that expresses it is a
single, nonlinear, singular, second-order ordinary differential equation (ODE). In this
paper, we investigate the mathematical structure of the equation.

2. Suction pressure model. In recent papers we developed [22] and applied
[23] a mathematical model of the elastic equilibrium of a radially symmetric, soft,
hydrogel, contact lens in the tear film of an eye. The purpose of the model is to
predict the suction pressure under a contact lens and to help us understand how that
pressure distribution depends on the shapes of the lens and the eye.

A typical contact lens is between 50 and 200 microns thick and has a radius of
about 0.7 cm. So it’s thin: its thickness is a small fraction of its radius. When it is
deformed from its rest shape and placed on the eye, it is submerged in the tear film.
(The term submerged may be misleading, as the tear film is only a few microns thick.)
The lens is separated from the eye by the postlens tear film, which is 1 or 2 microns
thick; a prelens tear film of roughly the same thickness separates the lens from the
air [27]. See Figure 1.

In Maki and Ross [22], we presented estimates to establish that bending stresses
within the lens are negligible and that shear stresses in the tear film are resolved so
quickly that they, too, are negligible. This leaves three stresses that must balance
in equilibrium: the radial stress in the lens, the hoop stress in the lens, and the
pressure in the postlens tear film which acts on the eye-facing surface of the lens. We
follow common usage and refer to this pressure as the suction pressure; however, it is
important to note that this pressure changes sign; it acts to draw the lens toward the
eye at some places, and to push the lens away from the eye at others. Because it is an
equilibrium distribution, it must produce no net force on the lens; it must integrate
to zero. Thus the pressure distribution in the postlens tear film has the quality of a
squeeze film in some regions [17] and that of an adhesive film in others [26].

An interesting quirk of this problem is that although the suction pressure is what
matters in the application, it has no role in the mathematical problem; it is computed
from the radial tension once that tension has been determined by solving the problem.

We consider a radially symmetric contact lens, with the unstressed shape of the
lens given by the graph of a function z = g(r), where r is the radial distance from
the center of the lens, on a radially symmetric eye. The lens is deformed so that it
conforms to the shape of the eye, which is the graph of a function z = f(R), where R
is the radial distance from the center of the corneal surface. In fact, the postlens tear
film is between the lens and the eye, but it is so thin—on the order of two percent
of the thickness of the lens—that we neglect it. The deformed shape of the contact
lens on the eye is characterized by the function R(r): each point (r, g(r)) on the
undeformed lens moves to a point (R(r), f(R(r))) on the deformed lens.

We take g(r) and f(R) to be C2 functions on the nonnegative reals, and we take
them to have bounded derivatives. This implies that there are positive numbersm < 1
and M > 1 such that

m <

√
1 + g′(r)2√
1 + f ′(R)2

< M

for all nonnegative r and R. We take τ(r), a positive C1 function on the nonnegative
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Fig. 1. A schematic of the eye and the lens. This schematic is not drawn to scale; in particular,
the thickness of the lens is generally on the order of 100 times that of the post-lens tear film. In the
schematic, the lens is shown twice: in its undeformed state and in its deformed state, conformed
to the eye. The graphs of the known functions z = g(r) and z = f(r) specify the shapes of the
undeformed lens and the deformed lens, respectively. The unknown function for which we solve is
R(r), the radial coordinate, in the deformed state, of the point on the lens whose radial coordinate
in the undeformed state is r. The radial coordinate of the edge of the undeformed lens is ρ; the
radial coordinate R(ρ) of the deformed lens is determined as part of the solution.

reals, to be the thickness of the lens at a distance r from its center. Because of the
symmetry of the problem we must have g′(0) = f ′(0) = τ ′(0) = 0.

We treat the lens as a linearly elastic material [20]. The radial and hoop strains
of the deformed lens are

dR
dr

√
1 + f ′(R(r))2√
1 + g′(r)2

− 1

and

R(r) − r

r
,

respectively. Because the lens is thin and we regard its stresses as uniform across
its thickness, we formulate our equations in terms of tensions (force/length) rather
than in terms of stresses; the tensions, in this problem, are simply the products of the
stresses with the thickness τ(r). If E and σ are the Young’s modulus and the Poisson
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ratio of the hydrogel, then the radial and hoop tensions are, respectively,

Srr(r) =
E

1− σ2

((
dR
dr

√
1 + f ′(R(r))2√
1 + g′(r)2

− 1

)
+ σ

(
R(r) − r

r

))
τ(r),

Sθθ(r) =
E

1− σ2

(
σ

(
dR
dr

√
1 + f ′(R(r))2√
1 + g′(r)2

− 1

)
+

(
R(r)− r

r

))
τ(r).

The Young’s modulus E is positive; the Poisson’s ratio σ is bounded, 0 < σ ≤ 1
2 .

The undeformed lens lies within the cylinder r ≤ ρ, where ρ > 0 is a known, specified
parameter. At the edge of the lens, r = ρ, the radial tension must be 0 because there
is nothing there to exert any force:

Srr(ρ) = 0.(2.1)

At the center of the lens, by symmetry,

R(0) = 0.(2.2)

We can characterize equilibrium deformations as those associated with functions
R(r) that satisfy the boundary conditions of (2.1) and (2.2) and which minimize the
energy functional:

1

2

(
E

1− σ2

)∫ ρ

0

⎡
⎣
(

dR
dr

√
1 + f ′(R(r))2√
1 + g′(r)2

− 1

)2

+

(
R(r)− r

r

)2

+2σ

(
dR
dr

√
1 + f ′(R(r))2√
1 + g′(r)2

− 1

)(
R(r) − r

r

)]
τ(r)

√
1 + g′(r)2rdr.

The Euler–Lagrange equation associated with this functional is

d

dr
(rSrr(r)) = Sθθ(r)

√
1 + g′(r)2√

1 + f ′(R(r))2
.(2.3)

The suction pressure p(r) in the tear film must balance the radial stress in the
lens:

2π

∫ r

0

ξp(ξ)dξ + 2πrSrr(r)
f ′(R(r))√

1 + f ′(R(r))2
= 0.

By differentiating, we obtain

p(r) = −1

r

d

dr

(
rSrr(r)

f ′(R(r))√
1 + f ′(R(r))2

)
.

For the analyses that we present in this paper it is convenient to introduce a new
variable,

T (r) =
1− σ2

E

rSrr

τ(r)
,
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and to write the Euler–Lagrange equation, (2.3), as a first-order system,

dT

dr
=
(
σT + (1 − σ2)(R − r)

) √
1 + g′(r)2

r
√

1 + f ′(R(r))2
− τ ′

τ
T,(2.4)

dR

dr
= (T + (1 + σ)r − σR)

√
1 + g′(r)2

r
√
1 + f ′(R(r))2

.(2.5)

There are three boundary conditions for the problem with which we are concerned:

R(0) = 0,(2.6)

T (0) = 0,(2.7)

T (ρ) = 0.(2.8)

The equilibria of a contact lens are characterized by the ODE system that com-
prises (2.4) and (2.5) and by the boundary conditions defined in (2.6), (2.7), and
(2.8). Physically realistic solutions satisfy two other conditions: dR

dr > 0 on the entire
interval [0, ρ] and R > 0 for positive r. (Note that the second condition, R(r) > 0
for positive r, is an immediate consequence of the first; if R increases monotonically
from 0, it must be positive.) We refer to the condition dR

dr > 0 as the monotonicity

condition. If dR
dr were negative, the lens material would have penetrated itself, which

is impossible. In fact, for real materials there will be a positive lower bound on this
derivative, as there will be a limit to the degree to which a material can be compressed.
In cases in which this derivative is near zero, our model no longer reflects reality; in
fact, in such cases, the theory of linear elasticity does not apply. Throughout this
paper we will use the notation Γ = dR

dr (0), and we will consider only positive values of
Γ because only those can be associated with physically realistic solutions. Note that
the structure of the equations implies directly that dT

dr (0) = (1 + σ)(Γ − 1). In order
to emphasize the dependence of solutions on Γ we will use the notation R(r,Γ) and
T (r,Γ).

This paper has six sections and an appendix. In the appendix we establish the
existence of solutions of the singular initial value problem defined by (2.4)–(2.7).
This problem is not the essential one in the contact lens application, but we use
the fact that it is well-posed in our analyses of the boundary value problems with
which we are concerned. Specifically, we use the facts that for every Γ > 0 there is
a unique solution, R(r,Γ), T (r,Γ), of (2.4)–(2.7) defined on [0,∞); that this solution
depends continuously on Γ; that R(0,Γ) = T (0,Γ) = 0; and that dR

dr (0,Γ) = Γ and
dT
dr (0,Γ) = (1 + σ)(Γ − 1). In section 3 we establish the existence of solutions of
the boundary value problem defined by (2.4)–(2.8) in cases in which τ(r) is constant.
In section 4 we prove, with an example, that in some cases in which τ(r) increases
with r no solution of this boundary value problem exists. In section 5 we present a
closed-form solution for the case in which the lens has constant thickness and the eye
is flat; this solution provides both an alternate proof of existence for this case and a
proof of uniqueness. In section 6 we review our results in the context of the contact
lens problem.

3. Existence of solutions in the case of a lens of constant thickness. We
take the lens to be of uniform thickness, τ ′ ≡ 0, and we introduce two new variables,
P (r,Γ) = T (r,Γ)+ (1− σ)R(r,Γ) and Q(r,Γ) = T (r,Γ)− (1+ σ)R(r,Γ). In the limit

as r approaches 0, P (r,Γ)
r and Q(r,Γ)

r approach 2Γ− (1+σ) and −(1+σ), respectively.
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In terms of these variables, the differential equations become

d

dr
P =

P

r

√
1 + g′(r)2√
1 + f ′(R)2

,(3.1)

d

dr
Q =

(−Q− 2r(1 + σ)

r

) √
1 + g′(r)2√
1 + f ′(R)2

.(3.2)

These equations have a simple structure that allows us to characterize solutions crisply.
We first prove several lemmas that will allow us to establish the existence result.

Lemma 3.1. The solution P (r,Γ) of (3.1) is identically zero if Γ = 1+σ
2 , it is

strictly positive if Γ > 1+σ
2 , and it is strictly negative if Γ < 1+σ

2 . The solution
Q(r,Γ) of (3.2) is strictly negative for all Γ, and Q(r,Γ) > −2r(1 + σ) for r > 0.

Proof. We establish in the appendix that P (r,Γ) is smooth at r = 0. For r > 0,
the form of (3.1) implies that P (r,Γ) is either positive for all r or negative for all r.
This establishes the result for Γ �= 1+σ

2 , and the fact that P (r, 1+σ
2 ) ≡ 0 follows from

this function’s continuous dependence on Γ.
The function Q(r,Γ) is zero at r = 0 and is smooth at 0, and it has a negative

derivative near 0, so it is negative in a small neighborhood of 0. If δ is the right
endpoint of such a neighborhood, Q(δ,Γ) ≤ 0, by continuity. But if Q(δ,Γ) = 0, then
dQ
dr (δ,Γ) < 0, contradicting the fact that Q(r,Γ) < 0 in a small one-sided neighbor-
hood to the left of δ. So Q(r,Γ) is strictly negative. The smoothness of Q(r,Γ) near

0 and the fact that Q(r,Γ)
r approaches −(1 + σ) as r approaches 0 imply that there is

a neighborhood of 0 in which Q(r,Γ) > −2r(1 + σ). Because

d

dr
(−Q(r,Γ)− 2r(1 + σ)) =

(
Q(r,Γ) + 2r(1 + σ)

r

) √
1 + g′(r)2√

1 + f ′(R(r,Γ))2
− 2(1 + σ),

if −Q(r,Γ)− 2r(1 + σ) were to approach 0 at some positive r, its derivative would be
negative in a neighborhood of that point, which would be a contradiction.

Lemma 3.2. If Γ ≥ 1+σ
2 , then R(r,Γ) satisfies the monotonicity condition.

Proof. Lemma 3.1 established that for Γ ≥ 1+σ
2 , P (r,Γ) ≥ 0 and

0 > Q(r,Γ) > −2r(1 + σ).

Thus

P (r,Γ) +Q(r,Γ)

2
> −r(1 + σ).

By rewriting (2.5) in the form

d

dr
R(r,Γ) =

P (r,Γ)+Q(r,Γ)
2 + r(1 + σ)

r

√
1 + g′(r)2√
1 + f ′(R)2

> 0,

we find that R(r,Γ) is strictly monotone in r.

Lemma 3.3. There are constants B > 1 and C such that for Γ > 1+σ
2 and r > 0

P (r,Γ) ≤ (2Γ− (1 + σ))r(1 + C2r2)
B−1

2

and

R(r,Γ) ≤ (2Γ)r(1 + C2r2)
B−1

2 .
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Proof. The conditions on the function g(r) ensure that
√
1 + g′(r)2 is bounded

by a positive constant B, and that for C sufficiently large,

√
1 + g′(r)2 ≤ 1 + (B − 1)

C2r2

1 + C2r2
.

Thus it follows from (3.1) that

d
drP (r,Γ)

r
≤ P (r,Γ)

r2

(
1 + (B − 1)

C2r2

1 + C2r2

)

or

d

dr
log

(
P (r,Γ)

r

)
≤ (B − 1)

C2r

1 + C2r2
=

(B − 1)

2

d

dr
log(1 + C2r2).

By integrating and applying the initial condition on P
r at r = 0, we obtain

P (r,Γ) ≤ (2Γ− (1 + σ))r(1 + C2r2)
B−1

2 .

The inequality

R(r,Γ) ≤
(
Γ− (1 + σ)

2

)
r(1 + C2r2)

B−1
2 + (1 + σ)r ≤ (2Γ)r(1 + C2r2)

B−1
2

follows from Lemma 3.1 and the bound on P (r,Γ) because R(r,Γ) = P (r,Γ)−Q(r,Γ)
2 .

Lemma 3.4. For a fixed η > 0, as Γ → ∞, R(η,Γ) → ∞.

Proof. Lemma 3.3 established that

R(r,Γ) ≤ (2Γ)r(1 + C2r2)
B−1

2

for sufficiently large Γ. Thus, if we let

K = 2(1 + C2η2)
B−1

2 ,

we have R(r,Γ) ≤ KΓr on [0, η]. The properties of f(R) and our definition of the
bound m imply that for sufficiently large constants V ,

1− (1−m)V 2R2

1 + V 2R2
≤ 1√

1 + f ′(R)2

for all R. Thus, on [0, η], we have

1− (1−m)V 2K2Γ2r2

1 + V 2K2Γ2r2
≤ 1√

1 + f ′(R)2
.

Thus it follows from (3.1) that

d
drP (r,Γ)

r
≥ P (r,Γ)

r2

(
1− (1−m)V 2K2Γ2r2

1 + V 2K2Γ2r2

)

or

d

dr
log

(
P (r,Γ)

r

)
≥ −(1−m)

V 2K2Γ2r

1 + V 2K2Γ2r2
= − (1−m)

2

d

dr
log(1 + V 2K2Γ2r2).



834 DAVID S. ROSS, KARA L. MAKI, AND EMILY K. HOLZ

By integrating and applying the boundary condition on P (r,Γ)
r at r = 0, we obtain

P (r,Γ) ≥ 2Γ− (1 + σ)

(1 + V 2K2Γ2r2)
1−m

2

.

Thus

P (η,Γ) ≥ 2Γm

(V Kη)1−m
+ o(1)

as Γ → ∞, which, because m is positive and R(r,Γ) = P (r,Γ)−Q(r,Γ)
2 , establishes the

lemma.

Lemmas 3.1–3.4 provide the groundwork we need to prove the existence of a
solution of the boundary value problem defined by (2.4)–(2.8).

Theorem 3.5. There is a pair of functions, R(r,Γ) and T (r,Γ), that constitute
a physically realistic solution of the boundary value problem defined by (2.4)–(2.8).

Proof. Lemma 3.1 implies that

P
(
r, (1+σ)

2

)
+Q

(
r, (1+σ)

2

)
2

< 0

and

P

(
r,
(1 + σ)

2

)
= 0

for all r > 0. Because

P
(
r, (1+σ)

2

)
+Q

(
r, (1+σ)

2

)
2

= T

(
r,
(1 + σ)

2

)
− σR

(
r,
(1 + σ)

2

)

and

P

(
r,
(1 + σ)

2

)
= T

(
r,
(1 + σ)

2

)
+ (1− σ)R

(
r,
(1 + σ)

2

)
,

this further implies that R
(
r, (1+σ)

2

)
> 0 and T

(
r, (1+σ)

2

)
< 0. Lemma 3.1 established

that Q(r,Γ) is bounded below independent of Γ, and Lemma 3.4 established that
R(r,Γ) → ∞ as Γ → ∞, so for Γ sufficiently large the function

T (r,Γ) = (1 + σ)R(r,Γ) +Q(r,Γ) > 0.

Thus, by continuous dependence on Γ, there is a Γ > 1+σ
2 at which T (r,Γ) = 0.

Lemma 3.2 established that for this value of Γ, R(r,Γ) satisfies the monotonicity
condition.

4. Nonexistence of a solution in a case in which the lens thickness in-
creases as a function of distance from the lens center. Numerical experiments
suggested that no solution of the boundary value problem exists in certain cases in
which the lens thickness τ(r) increases rapidly as a function of r. Here we simply
establish that in some such cases no solution exists.
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We consider cases in which the eye is flat and the lens has radius 1; that is,
f ′(R) ≡ 0 and ρ = 1. We consider the particular lens shape for which√

1 + g′(r)2 = 1 + r2,

and we consider exponentially increasing thickness profiles: τ(r) = eλr, with λ a
positive real number. We show that for λ sufficiently large no physically realistic
solution of the boundary value problem defined by (2.4)–(2.8) exists. In such cases
(2.4) and (2.5) become

d

dr
T (r,Γ) =

(
σT + (1− σ2)(R(r,Γ)− r)

) 1 + r2

r
− λT (r,Γ),(4.1)

d

dr
R(r,Γ) = (T + (1 + σ)r − σR(r,Γ))

1 + r2

r
.(4.2)

We prove this result via two lemmas. We first establish in Lemma 4.1 a negative,
O( 1λ) lower bound on T . Then in Lemma 4.2, we use this bound to prove that R− r
is larger than a positive multiple of r3 in the limit of large λ. We then use both of
these bounds to prove, in Theorem 4.3, that T (1,Γ) is strictly positive, for all Γ, for
sufficiently large λ. Because T (1,Γ) must equal 0 for a physically realistic solution,
this establishes that no such solution exists.

Lemma 4.1. If T (r,Γ) and R(r,Γ) constitute a physically realistic solution of
(4.1) and (4.2), then

T (r,Γ) ≥ −2(1 + σ)e
σ
2
(1− e−λr)

λ
.

Proof. A physically realistic solution has R(r,Γ) ≥ 0, so (4.1) implies that

dT

dr
≥
(
σ

(
1

r
+ r

)
− λ

)
T − (1 − σ2)(1 + r2).

By using the integrating factor r−σeλr−
σ
2 r2 , we obtain

T ≥ −(1− σ2)rσe−λr+σ
2 r

2

∫ r

0

eλξ−
σ
2 ξ

2

(ξ2−σ + ξ−σ)dξ.

The simple bounds 1 ≤ e
σ
2 r

2 ≤ e
σ
2 on [0, 1] yield

T ≥ −(1− σ2)rσe−λr+σ
2

∫ r

0

eλξ(ξ2−σ + ξ−σ)dξ ≥ −2(1− σ2)rσe−λr+σ
2

∫ r

0

eλξξ−σdξ.

Because 0 < σ ≤ 1
2 ,∫ r

0

eλξξ−σdξ =

∫ r

0

∞∑
0

λjξj−σ

j!
dξ =

∞∑
0

λjrj+1−σ

j!(j + 1− σ)

≤ r−σ

1− σ

∞∑
0

λjrj+1

(j + 1)!
=

r−σ

(1− σ)

(eλr − 1)

λ
.

So,

T (r,Γ) ≥ −2(1 + σ)e
σ
2
(1− e−λr)

λ
.
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Lemma 4.2. If T (r,Γ) and R(r,Γ) constitute a physically realistic solution of
(4.1) and (4.2), then

R(r,Γ) ≥ −eσ

λ

4(1 + σ)2

σ(2 + σ)
+ r + e−

σ
2

(
1− σ − σ2

3 + σ

)
r3.

Proof. By incorporating into (4.2) the lower bound on T (r,Γ) that we established
in Lemma 4.1, we obtain

dR

dr
+ σ

(
1

r
+ r

)
R ≥

(
−2(1 + σ)e

σ
2
(1 − e−λr)

λ

(
1

r
+ r

)
+ (1 + σ)(1 + r2)

)
.

By multiplying by the integrating factor rσe
σ
2 r2 and integrating, we obtain

R ≥ r−σe
−σ
2 r2

(
−2(1 + σ)e

σ
2

∫ r

0

(1− e−λξ)

λ
e

σ
2 ξ2(ξσ−1 + ξσ+1)dξ

+(1 + σ)

∫ r

0

e
σ
2 ξ

2

(ξσ + ξσ+2)dξ

)
.

By using the bounds 1− e−λr ≤ 1 and 1 ≤ e
σ
2 r

2 ≤ e
σ
2 , we obtain

R ≥ r−σe
−σ
2 r2

(
−2(1 + σ)eσ

λ

∫ r

0

(ξσ−1 + ξσ+1)dξ + (1 + σ)

∫ r

0

(ξσ + ξσ+2)dξ

)

≥ −2(1 + σ)eσ

λ

(
1

σ
+

r2

2 + σ

)
+ r

(
1 + 1+σ

3+σ r
2

e
σ
2 r

2

)

≥ −eσ

λ

4(1 + σ)2

σ(2 + σ)
+ r

(
1 + 1+σ

3+σ r
2

e
σ
2 r2

)
.

Because (1 + 1+σ
3+σ r

2)/e
σ
2 r

2 − 1− e−
σ
2 (1−σ−σ2

3+σ )r2 = 0 when r = 0, and

d

dr

[(
1 + 1+σ

3+σ r
2

e
σ
2 r2

)
− 1− e−

σ
2

(
1− σ − σ2

3 + σ

)
r2

]

= 2r

[
1+σ
3+σ − σ

2 (1 +
1+σ
3+σ r

2)

e
σ
2 r

2 − e−
σ
2

(
1− σ − σ2

3 + σ

)]

≥ 2r

[
1+σ
3+σ − σ

2 (1 +
1+σ
3+σ )

e
σ
2 r

2 − e−
σ
2

(
1− σ − σ2

3 + σ

)]

= 2r

[
1−σ−σ2

3+σ

e
σ
2 r

2 − e−
σ
2

(
1− σ − σ2

3 + σ

)]
= 2r

(1−σ−σ2

3+σ )

e
σ
2 r2

(
1− e

σ
2 (r

2−1)
)
≥ 0

on [0, 1], the result follows.

Theorem 4.3. For λ sufficiently large there is no physically realistic solution of
(4.1) and (4.2).

Proof. The bound on T (r,Γ) that we established in Lemma 4.1 and the bound
on R(r,Γ) that we established in Lemma 4.2 imply that

dT

dr
+ λT ≥ σT + (1− σ2)(R− r)

≥ − 1

λ

(
eσ
(
2σ(1 + σ) +

4(1− σ2)(1 + σ)2

σ(2 + σ)

))
+ (1− σ2)e−

σ
2
1− σ − σ2

3 + σ
r3.
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Thus,

T ≥ −1− e−λr

λ2

(
eσ
(
2σ(1 + σ) +

4(1− σ2)(1 + σ)2

σ(2 + σ)

))

+ (1− σ2)e−
σ
2
1− σ − σ2

3 + σ

(
r3

λ
− 3

r2

λ2
+ 6

r

λ3
− 6

(1− e−λr)

λ4

)
.

So

T (1,Γ) ≥ (1 − σ2)e−
σ
2
1− σ − σ2

3 + σ

(
1

λ

)

−
(
eσ
(
2σ(1 + σ) +

4(1− σ2)(1 + σ)2

σ(2 + σ)

)
+ 3(1− σ2)e−

σ
2
1− σ − σ2

3 + σ

)(
1

λ2

)

− (1− σ2)e−
σ
2
1− σ − σ2

3 + σ

(
6

λ4

)
.

The right-hand side of this inequality is positive for λ sufficiently large, so T (1,Γ)
is also positive for such values of λ, so no physically realistic solution exists in such
cases.

5. Closed-form solutions, existence, and uniqueness for cases in which
the eye is flat and the lens thickness is constant. If the eye is flat, i.e., if
f ′(R) ≡ 0, the system is linear, and if τ ′ ≡ 0, the equations have this form:

dT

dr
=
(
σT + (1− σ2)(R− r)

) √1 + g′(r)2

r
,(5.1)

dR

dr
= (T + (1 + σ)r − σR)

√
1 + g′(r)2

r
.(5.2)

In such cases we have a closed-form solution in terms of the function

φ(r) = e
∫ r
0

√
1+g′(ξ)2−1

ξ dξ.

That solution is

T (r,Γ) =

(
Γ− (1 + σ)

2

)
(1 + σ)rφ(r) − (1− σ2)

rφ(r)

∫ r

0

ξ
√
1 + g′(ξ)2φ(ξ)dξ,(5.3)

R(r,Γ) =

(
Γ− (1 + σ)

2

)
rφ(r) +

(1 + σ)

rφ(r)

∫ r

0

ξ
√

1 + g′(ξ)2φ(ξ)dξ.(5.4)

It follows directly from these expressions that both T (r,Γ) and R(r,Γ) increase
monotonically with Γ; that T (r,Γ) is strictly negative for positive r if Γ ≤ 1+σ

2 ;
that the solution is physically realistic if Γ > 1+σ

2 ; and that, at any fixed positive
r, T (r,Γ) > 0 for Γ sufficiently large. These facts establish both the existence and
the uniqueness of solutions in such cases for any ρ > 0. The more general existence
result, Theorem 3.5, applies in this case, so here we simply formulate the uniqueness
of solutions in a theorem, as follows.

Theorem 5.1. The physically realistic solution of the boundary value problem de-
fined by (5.1), (5.2), (2.6), (2.7), and (2.8), whose existence is established in Theorem
3.5, is unique.
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Proof. It follows from (5.3) that

∂

∂Γ
T (ρ,Γ) = (1 + σ)ρφ(ρ) > 0

if ρ > 0. So T (ρ,Γ) has at most one root as a function of Γ for fixed positive ρ.

6. Conclusions. The analyses that we have presented here are a foundation, but
just a foundation, for a full theory of well-posedness of the boundary value problem
for the contact lens equation. Taken together, the results of sections 3 and 4 suggest
that the existence of solutions depends in a subtle way on thickness variations of the
lens. Given the nonlinearity of the problem, it seems likely that it will also depend
on the shapes of the eye and the lens.

After we discovered—by solving the equation numerically—the nonexistence re-
sult that is Theorem 4.3, we investigated other classes of shapes numerically. In cases
in which the thickness of the lens decreases monotonically as a function of distance
from the center, our numerical experiments have always yielded unique solutions of
the boundary value problem. Our current, tentative, conjecture is that if dτ

dr ≤ 0 for
all r, a solution of the boundary value problem exists.

Real lenses are generally tapered toward their edges. This is true of most lenses
produced by major manufacturers and in use today [3, 19, 31], and of many designs for
cutting-edge applications [9], too. However, there are some common hydrogel lenses
whose thicknesses increase, in some intervals, with distance from the lens center [14].

Regarding uniqueness of solutions we have no rigorous results and no conjecture.
On one hand, the strongly nonlinear structure that our mild conditions on f(R) allow
suggests the possibility of nonuniqueness; to put the matter colloquially, if the eye
shape has lots of bumps, it seems possible that there will be two or more equilibria
of the lens. On the other hand, we have not found any cases of nonuniqueness in our
numerical experiments.

Our theoretical results have implications for lens design; they indicate the im-
portance of thickness variations to the mechanics of contact lenses. The contact lens
industry is exploring the tailoring of thickness profiles as a way of improving patient
comfort. The fundamental question is what thickness profiles are associated with com-
fortable lenses; this work establishes a basic mathematical framework for addressing
that question.

In addition, the model that we have analyzed in this paper is an essential step in
understanding the problem of the centering of a contact lens, because it is an account
of how the shapes of the eye and the lens determine the suction pressure distribution.
Gradients in this pressure distribution produce flow in the postlens tear film [23], and
the consequent drag on the lens is the driving force of lens centration.

Appendix. In this appendix we prove the existence and uniqueness of solutions
of the initial value problem defined by (2.4)–(2.7). The well-posedness of this problem
is a foundation for the other proofs in this paper.

In this section we will use slightly different variables. We let S(r,Γ) = τ(r)T (r,Γ)
r

(= Srr), and we rewrite the ODE as a system:

d

dr
(rS(r,Γ)) =

(
σS(r,Γ) + (1 − σ2)

(
R(r,Γ)− r

r

)
τ(r)

) √
1 + g′(r)2√

1 + f ′(R(r,Γ))2
,(A.1)

d

dr
R(r,Γ) =

(
S(r,Γ)

τ(r)
+ 1− σ

R(r,Γ)− r

r

) √
1 + g′(r)2√

1 + f ′(R(r,Γ))2
.(A.2)
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This system (like the ODE in (2.3)) is singular at r = 0; this is why the existence
and uniqueness of solutions doesn’t follow from standard ODE theory. However,
the initial value problem for this equation at any point r > 0 is well-posed by the
standard theory. So, here we need only establish existence and uniqueness in some
arbitrarily small interval with 0 as its left endpoint. With that established, we can
invoke standard results [6, 15] to show that unique solutions exist on r ≥ 0.

We re-express the system given by (A.1) and (A.2) as a first-order system of
integral equations:

S(r,Γ) =
1

r

∫ r

0

(
σS(ξ,Γ)

+ (1− σ2)

(
R(ξ,Γ)− ξ

ξ

)
τ(ξ)

) √
1 + g′(ξ)2√

1 + f ′(R(ξ,Γ))2
dξ,(A.3)

R(r,Γ) =

∫ r

0

(
S(ξ,Γ)

τ(ξ)
+ 1− σ

(
R(ξ,Γ)− ξ

ξ

)) √
1 + g′(ξ)2√

1 + f ′(R(ξ,Γ))2
dξ.(A.4)

Lemma A.1. If S(r,Γ) and R(r,Γ) are smooth functions on [0, ρ] and S(0,Γ) =
(Γ− 1)(σ + 1)τ(0) and R(0,Γ) = 0 and R′(0,Γ) = Γ, then if

S̃(r,Γ) =
1

r

∫ r

0

(
σS(ξ,Γ)

+ (1− σ2)

(
R(ξ,Γ)− ξ

ξ

)
τ(ξ)

) √
1 + g′(ξ)2√

1 + f ′(R(ξ,Γ))2
dξ,(A.5)

R̃(r,Γ) =

∫ r

0

(
S(ξ,Γ)

τ(ξ)
+ 1− σ

(
R(ξ,Γ)− ξ

ξ

)) √
1 + g′(ξ)2√

1 + f ′(R(ξ,Γ))2
dξ,(A.6)

S̃(r,Γ) and R̃(r,Γ) are smooth on [0, ρ] and S̃(0,Γ) = (Γ−1)(σ+1)τ(0) and R̃(0,Γ) =
0 and R̃′(0,Γ) = Γ.

Proof. The smoothness of the integrands ensures that S̃(r,Γ) and R̃(r,Γ) are

smooth (the apparent singularity in the term R(ξ,Γ)−ξ
ξ is removable), and it ensures

that

S̃(r,Γ) =
1

r

∫ r

0

(Γ− 1)(σ + 1)τ(0) +O(ξ)dξ = (Γ− 1)(σ + 1)τ(0) +O(r),(A.7)

R̃(r,Γ) =

∫ r

0

Γ +O(ξ)dξ = Γr +O(r2).(A.8)

Lemma A.2. If Γ > 0, there are positive numbers γ and ρ such that if
∣∣S(r,Γ)

τ(0) −
(Γ − 1)(1 + σ)

∣∣ ≤ γr and |R(r,Γ) − Γr| ≤ γr2 on [0, ρ), and S̃(r,Γ) and R̃(r,Γ) are

defined by (A.5) and (A.6), then S̃(r,Γ) and R̃(r,Γ) satisfy these same inequalities
on the same interval. Further, γ can be chosen to depend continuously on Γ.

Proof. Because τ(r) is positive and bounded away from 0 and is smooth with a
bounded derivative, and because g(r) is C2 with bounded first and second derivatives

and g′(0) = 0, there is a positive constant β such that
√
1 + g′(r)2,

√
1 + g′(r)2 τ(r)

τ(0) ,

and
√
1 + g′(r)2 τ(0)

τ(r) are all bounded above by 1+βr and below by 1−βr. We restrict

ρ so that 1 − βρ > 0, and we will restrict ρ further. The smoothness conditions on
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f(R) ensure that there is a positive constant K such that 1√
1+f ′(R)2

≥ 1 −KR. So,

if R(r,Γ) satisfies the bound given in the statement of the lemma, then

1√
1 + f ′(R)2

≥ 1−KΓr −Kγr2 ≥ 1− (KΓ +Kγρ)r.

Taken together, these bounds imply that

√
1+g′(r)2√
1+f ′(R)2

,

√
1+g′(r)2√
1+f ′(R)2

τ(r)
τ(0) , and

√
1+g′(r)2√
1+f ′(R)2

τ(0)
τ(r)

are all bounded above by 1 + βr and below by 1 − (KΓ + β + Kγρ)r. We let
b = K(Γ+1)+β, and we restrict ρ so that ργ < 1. (Thus ρ will depend on our choice
of γ.) Thus we have that all of the expressions we have been considering are bounded
above and below by 1+ br and 1− br, respectively. Of course, we now further restrict
ρ so that bρ < 1.

By using these bounds and the bounds on S(r,Γ)
τ(0) andR(r,Γ) given in the statement

of the lemma, in (A.5) and (A.6), we obtain bounds on S̃(r,Γ) and R̃(r,Γ).
If Γ ≥ 1, we obtain

(1 + σ)(Γ − 1)−
(
γ(1 + σ − σ2)

2
+

b(1 + σ)(Γ− 1)

2

)
r ≤ S̃(r,Γ)

τ(0)

≤ (1 + σ)(Γ− 1) +

(
(1 + σ − σ2)γ

2
+

b(1 + σ)(Γ− 1)

2
+

(1 + σ − σ2)γbρ

3

)
r

and

Γr −
(
(1 + σ)γ

2
+

b((σ + 1)Γ− 1)

2

)
r2 ≤ R̃(r,Γ)

≤ Γr +

(
(1 + σ)γ

2
+

b((σ + 1)Γ− 1)

2
+

(1− σ)γbρ

3

)
r2.

So if we choose γ = 3Γb + 1 and we further restrict ρ so that ρ < 1
γb , these

constants have the required properties.
If Γ < 1, we obtain

(1 + σ)(Γ− 1)−
(
γ(1 + σ − σ2)

2
− b(1 + σ)(Γ− 1)

2
+

(1 + σ − σ2)γbρ

3

)
r ≤ S̃(r,Γ)

τ(0)

≤ (1 + σ)(Γ− 1) +

(
(1 + σ − σ2)γ

2
− b(1 + σ)(Γ − 1)

2

)
r

and

Γr −
(
(1 + σ)γ

2
− b((σ + 1)Γ− 1)

2
+

(1− σ)γbρ

3

)
r2 ≤ R̃(r,Γ)

≤ Γr +

(
(1 + σ)γ

2
− b((σ + 1)Γ− 1)

2

)
r2.

So if we choose γ = 3b+1 and we further restrict ρ so that ρ < 1
γb , these constants

have the required properties.
Our choices of γ in the two cases make it a continuous function of Γ.
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We prove existence and uniqueness by a modified Picard iteration. We define
R0(r,Γ) ≡ Γr and S0(r,Γ) ≡ (Γ− 1)(σ + 1)τ(0), and

Sj+1(r,Γ) =
1

r

∫ r

0

(
σSj(ξ,Γ)

+ (1 − σ2)

(
Rj(ξ,Γ)− ξ

ξ

)
τ(ξ)

) √
1 + g′(ξ)2√

1 + f ′(Rj(ξ,Γ))2
dξ,(A.9)

Rj+1(r,Γ) =

∫ r

0

(
Sj(ξ,Γ)

τ(ξ)
+ 1− σ

(
Rj(ξ,Γ)− ξ

ξ

)) √
1 + g′(ξ)2√

1 + f ′(Rj(ξ,Γ))2
dξ.(A.10)

Theorem A.3. If ρ is the positive constant whose existence is guaranteed by
Lemma A.2, then there is a subinterval [0, ρ′) of [0, ρ) on which Sj(r,Γ) and Rj(r,Γ)
converge uniformly.

Proof. By Lemma A.2 we know that the expressions∣∣∣∣σSj(r,Γ) + (1− σ2)

(
Rj(r,Γ)− r

r

)
τ(r)

∣∣∣∣(A.11)

and ∣∣∣∣Sj(r,Γ)

τ(r)
+ 1− σ

(
Rj(r,Γ)− r)

r

)∣∣∣∣(A.12)

are bounded on [0, ρ) independent of j. The conditions on τ(r), g(r), and f(R), along

with Lemma A.2, establish that there is a positive constant c such that τ(r)
τ(0) ,

τ(0)
τ(r) ,

and

√
1+g′(r)2√
1+f ′(Rj)2

are all bounded by 1 + cr2. The lemma and the conditions on these

functions also imply that there is a positive constant W such that∣∣∣∣∣
√
1 + g′(r)2√
1 + f ′(Rj)2

−
√
1 + g′(r)2√

1 + f ′(Rj−1)2

∣∣∣∣∣ < Wr

on [0, ρ).
With these bounds, from the definitions

ΔSj+1(r,Γ) =
1

r

∫ r

0

(
σΔSj(ξ,Γ) + (1− σ2)

(
ΔRj(ξ,Γ)

ξ

)
τ(ξ)

) √
1 + g′(ξ)2√

1 + f ′(Rj(ξ,Γ))2

+

(
σSj−1(ξ,Γ) + (1 − σ2)

(
Rj−1(ξ,Γ)− ξ

ξ

)
τ(ξ)

)

·
( √

1 + g′(r)2√
1 + f ′(Rj(ξ,Γ))2

−
√
1 + g′(ξ)2√

1 + f ′(Rj−1(ξ,Γ))2

)
dξ,

ΔRj+1(r,Γ) =

∫ r

0

(
ΔSj(ξ,Γ)

τ(ξ)
− σ

(
ΔRj(ξ,Γ)

ξ

)) √
1 + g′(ξ)2√

1 + f ′(Rj(ξ,Γ))2

+

(
Sj−1(ξ,Γ)

τ(ξ)
+ 1− σ

(
Rj−1(ξ,Γ)− ξ

ξ

))

·
( √

1 + g′(ξ)2√
1 + f ′(Rj(ξ,Γ))2

−
√
1 + g′(ξ)2√

1 + f ′(Rj−1(ξ,Γ))2

)
dξ,
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we have

|ΔSj+1(r,Γ)| ≤ 1

r

∫ r

0

(
σ|ΔSj(ξ,Γ)|+ (1− σ2)

( |ΔRj(ξ,Γ)|
ξ

)
(1 + cξ2)

)
(1 + cξ2)

+MWξ|ΔRj(ξ,Γ)|dξ,

|ΔRj+1(r,Γ)| ≤
∫ r

0

( |ΔSj(ξ,Γ)|
τ(0)

(1 + cξ2) + σ

(
ΔRj(ξ,Γ)

ξ

))
(1 + cξ2)

+MWξ|ΔRj(ξ,Γ)|dξ.

Now suppose that
|ΔSj(r,Γ)|

τ(0) ≤ Ajr and |ΔRj(r,Γ)| ≤ Bjr
2. Our inequalities

imply that

|ΔSj+1(r,Γ)|
τ(0)

≤ 1

r

∫ r

0

(σAjξ + (1− σ2)Bjξ)(1 + cξ2)(1 + cξ2) +MWBjξ
3dξ

=
σ

2

(
r +

c

2
r2
)
Aj + (1− σ2)

(
r

2
+

2cr3

4
+

c2r5

6
+MW

r3

4

)
Bj ,

|ΔRj+1(r,Γ)| ≤
∫ r

0

Ajξ(1 + cξ2)2 + σBjξ(1 + cξ2) +MWBjξ
3dξ

=

(
r2

2
+

cr4

2
+

c2r6

6

)
Aj + σ

(
r2

2
+

cr4

4
+MW

r4

4

)
Bj .

Because we’re on the interval [0, ρ′), these inequalities imply

|ΔSj+1(r,Γ)|
τ(0)

≤ r

(
σ

2

(
1 +

c

2
ρ′
)
Aj + (1− σ2)

(
1

2
+

2cρ′2

4
+

c2ρ′4

6
+MW

ρ′2

4

)
Bj

)
,

|ΔRj+1(r,Γ)| ≤ r2
((

1

2
+

cρ′2

2
+

c2ρ′4

6

)
Aj + σ

(
1

2
+

cρ′2

4
+MW

ρ′2

4

)
Bj

)
.

Given ε > 0, we can choose ρ′ > 0 sufficiently small that these inequalities imply

|ΔSj+1(r,Γ)|
τ(0)

≤ r

((σ
2
+ ε
)
Aj +

(
1

2
+ ε

)
Bj

)
,

|ΔRj+1(r,Γ)| ≤ r2
((

1

2
+ ε

)
Aj +

(σ
2
+ ε
)
Bj

)
.

If we take A1 = B1 = 2γ, where γ is the constant defined in Lemma A.2, and we
define

Aj+1 =
(σ
2
+ ε
)
Aj +

(
1

2
+ ε

)
Bj ,

Bj+1 =

(
1

2
+ ε

)
Aj +

(σ
2
+ ε
)
Bj ,

then we find that

|ΔSj+1(r,Γ)|
τ(0)

≤ rAj+1,

|ΔRj+1(r,Γ)| ≤ r2Bj+1,
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Aj = Bj = 2γ(1+σ+2ε
2 )j−1, and (1+σ+2ε

2 ) < 1 for ε < 1
4 , because the Poisson’s ratio,

σ, is between 0 and 1
2 .

This means that the sums S0(r,Γ)+
∑∞

j=1 ΔSj(r,Γ) andR0(r,Γ)+
∑∞

j=1 ΔRj(r,Γ)
converge absolutely and uniformly on [0, ρ′), because each is dominated by a multiple
of the geometric series

∑∞
j=1(

1+σ+2ε
2 )j−1.

Corollary A.4. If both pairs (S(r,Γ), R(r,Γ)) and (Ŝ(r,Γ), R̂(r,Γ)) satisfy (A.1)

and (A.2), and if both satisfy |S(r,Γ)
τ(0) − (Γ− 1)(1 + σ)| ≤ γr and |R(r,Γ)− Γr| ≤ γr2

on an interval [0, ρ), then S(r,Γ) ≡ Ŝ(r,Γ) and R(r,Γ) ≡ R̂(r,Γ) on that interval.

Proof. The contraction argument that established Theorem A.4 establishes that
for any ε > 0 (we’re concerned with small values of ε), on some subinterval [0, ρ′),
both |S(r,Γ)−Ŝ(r,Γ)|

τ(0) and |R(r,Γ) − R̂(r,Γ)| are less than or equal to 2γ(1+σ+2ε
2 )j−1

for every j, and thus S(r,Γ) ≡ Ŝ(r,Γ) and R(r,Γ) ≡ R̂(r,Γ) on that interval. The
ODE system defined by (A.1) and (A.2) is not singular for r > 0, and the requisite
Lipschitz condition applies, so by choosing any point interior to [0, ρ′) as an initial
point, we can invoke standard ODE theory to establish that S(r,Γ) ≡ Ŝ(r,Γ) and
R(r,Γ) ≡ R̂(r,Γ) on [0, ρ).

Theorem A.5. For each Γ > 0 there is a unique solution S(r,Γ) and R(r,Γ) of

(A.1) and (A.2) on [0,∞) that satisfies bounds of the form
∣∣S(r,Γ)

τ(0) −(Γ−1)(1+σ)
∣∣ ≤ γr

and |R(r,Γ)−Γr| ≤ δr2 in some one-sided neighborhood of 0. These solutions depend
continuously on Γ.

Proof. The fact that S(r,Γ) and R(r,Γ) are uniform limits of continuous func-
tions, as we established in the proof of Theorem A.4, ensures that they are continuous
and that they satisfy (A.3) and (A.4). Their satisfying this system of integral equa-
tions ensures that they are differentiable and that they satisfy the ODE systems of
(A.1) and (A.2) on the small interval [0, ρ′) on which they are defined by the con-

struction. On that interval they satisfy the bounds |S(r,Γ)
τ(0) − (Γ− 1)(1 + σ)| ≤ γr and

|R(r,Γ) − Γr| ≤ γr2 because they are constructed as limits of functions that satisfy
these bounds. Because, by Lemma A.2, γ depends continuously on Γ, the functions
S(r,Γ) and R(r,Γ) are continuous as functions of Γ on [0, ρ′).

By Corollary A.4, S(r,Γ) and R(r,Γ) constitute the unique such solution of (A.1)
and (A.2) that satisfies the bounds in the statement of this theorem.

If ρ′′ is in (0, ρ′), we can invoke standard existence theory [6, 15] to extend the
functions S(r,Γ) and R(r,Γ). Consider the initial value problem for (A.1) and (A.2)
with the initial values being S(ρ′′,Γ) and R(ρ′′,Γ). In a neighborhood of ρ′′ and for
r ≥ ρ′′, the system satisfies the necessary Lipschitz condition to ensure existence and
uniqueness (Theorems 1.21 and 1.41 in Hu and Li [15]). Moreover, on any interval

with ρ′′ as its left endpoint,

√
1+g′(r)2√
1+f ′(R)2

, r, 1
r , and τ(r) are all bounded above and

below, so by Theorem 1.7.1 in Hu and Li [15], the solution exists for r ≥ 0.
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