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This work provides a detailed theoretical and numerical study of the inverse problem of identifying flexural rigidity in Kirchhoff
plate models. From a mathematical standpoint, this inverse problem requires estimating a variable coefficient in a fourth-order
boundary value problem.This inverse problem and related estimation problems associatedwith general plates and shellmodels have
been investigated by numerous researchers through an optimization framework using the output least-squares (OLSs) formulation.
OLS yields a nonconvex framework and hence it is suitable for investigating only the local behavior of the solution. In this work,
we propose a new convex framework for the inverse problem of identifying a variable parameter in a fourth-order inverse problem.
Existence results, optimality conditions, and discretization issues are discussed in detail. The discrete inverse problem is solved by
using a continuous Newton method. Numerical results show the feasibility of the proposed framework.

1. Introduction

Let Ω be a nonempty bounded domain in R2 with a
sufficiently smooth boundary Γ. We consider the following
fourth-order elliptic boundary value problem (BVP):

Δ (𝑎Δ𝑢) = 𝑓 in Ω, (1a)

𝑢 = 0 on Γ, (1b)

𝜕𝑢

𝜕𝑛
= 0 on Γ, (1c)

where 𝜕𝑢/𝜕𝑛 is the usual normal derivative.
The above BVP models the pure bending (without twist-

ing) of a Kirchhoff plate occupying the region Ω. Here, the
parameter 𝑎(𝑥, 𝑦) is the flexural rigidity and the solution 𝑢 is
the lateral deflection under the force 𝑓 per unit area (see [1]
for details). The parameter 𝑎 is connected to the thickness of
the plate, Young’s modulus of elasticity, and the Poisson ratio
of the material. Boundary conditions (1b) and (1c) are the so-
called clamped boundary conditions. However, all the results

given below can easily be transferred to the pinned boundary
conditions given by

𝑢 = Δ𝑢 = 0 on Γ. (2)

Moreover, the proposed framework can be extended to
the following more general plate model [2]:

𝜇Δ (𝑎Δ𝑢)

+ (1 − 𝜇) ((𝑎𝑢
𝑥𝑥
)
𝑥𝑥
+ 2 (𝑎𝑢

𝑥𝑦
)
𝑥𝑦
+ (𝑎𝑢

𝑦𝑦
)
𝑦𝑦
) = 𝑓

in Ω,

𝑢 =
𝜕𝑢

𝜕𝑛
= 0 on Γ.

(3)

Given the force 𝑓 and the flexural rigidity 𝑎, the direct
problem is to find the lateral deflection 𝑢. In this work, our
objective is to identify the flexural rigidity 𝑎(𝑥, 𝑦) so that
the corresponding deflection 𝑢 is the nearest to a deflection
measurement 𝑧 in a certain sense. This inverse problem and

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 290301, 11 pages
http://dx.doi.org/10.1155/2015/290301



2 Mathematical Problems in Engineering

its dynamic analogue have been explored mostly through the
output least-squares formulation. In the present context, the
output least-squares (OLSs) approach seeks to minimize the
functional:

𝑎 󳨀→
1

2
‖𝑢 (𝑎) − 𝑧‖

2
, (4)

defined by an appropriate norm. Here, 𝑧 is the data (a
measurement of𝑢) and𝑢(𝑎) is the unique solution of theweak
form of (1a), (1b), and (1c) that corresponds to the flexural
rigidity 𝑎(𝑥, 𝑦).

One of the major difficulties associated with the OLS
approach is the fact that the coefficient-to-solution map
𝑢 : 𝑎 → 𝑢(𝑎) is nonlinear and hence, in general,
the OLS functional is nonconvex. Consequently, the OLS-
based approach only allows the study of local properties of
the inverse problem. Moreover, the numerical algorithms
designed through the necessary optimality conditions can
only ensure convergence to a local optimizer and such
conditions are not sufficient optimality conditions.

In the following, we will give a quick overview of some
related works. In an interesting paper, Lesnic et al. [3]
investigate the coefficient identification problem in a fourth-
order differential equation that governs the deflection 𝑢 of
the Euler-Bernoulli beam and give useful stability estimates.
An optimization-based approach for the same problem was
recently given in [4]. In a recent paper, Marinov and Mari-
nova [5] developed a numerical method by using the so-
calledmethodof variational embedding for solving an inverse
problem for bending stiffness estimation in a Kirchhoff-Love
plate from overdetermined data. Ewing et al. [6] study a
nonlinear analogue of this problem using the mixed finite
element method.

Manservisi andGunzburger [7] studied a control problem
associated with a plate model and give interesting applica-
tions to a simplified model for the “sag bending process”
in the manufacturing of automobile windscreens. Inspired
by this inverse problem and its useful application, Engl and
Kügler [8] and Kügler [9] presented a regularized Landweber
method for its numerical solution. Salazar and Westbrook
[10] studied the identification of the flexural rigidity of
a nonhomogeneous plate of uniform thickness under the
assumption that Poisson’s ratio is constant and only theYoung
modulus varies pointwise. Lopes et al. [11] used identification
techniques to detect holes in plates. In a related work, Kim
and Kreider [12] conducted a numerical study of the inverse
problem of parameter identification in nonlinear elastic and
viscoelastic plates. They presented numerical results for a
variety of constitutive models. In an intriguing paper by
Yuan and Yamamoto [13], they studied Lipschitz stability
estimates for both inverse problems of determining spatially
varying Lamé coefficients and determining the mass density
by a finite number of boundary observations. This inverse
problem for the case of interior measurement was studied in
[14–16]. A systematic study of inverse problems of parameter
identification in plates and shells models was conducted in
a series of excellent papers by White [2, 17, 18] where the
author investigates various aspects of the inverse problem.An

overview of various approaches for parameter identification
problems in inverse problems can be found in [19].

In this work, our primary objective is to employ a new
convex functional for the identification of flexural rigidity
𝑎(𝑥, 𝑦). The convexity of the new functional circumvents
one of the major drawbacks, nonconvexity, of the OLS
functional. Furthermore, the proposed convex objective
functional characterizes global optimality, and the associated
variational inequality is a necessary as well as a sufficient
optimality condition.The new objective functional also has a
computational advantage in that to compute its gradient one
does not need to compute the derivative of the coefficient-to-
solution map.

This paper is divided into six sections. Section 2 begins
with the essential background material and continues with
the introduction of the related minimization problem which
is subsequently shown to have a solution.The problem is dis-
cretized using finite elements in Section 3 and it is shown that
the continuous minimization problem can be approximated
by the discrete one. A description of the continuous Newton
method is given in Section 4 and the details of numerical
experiments and their results are provided in Section 5. The
paper concludes with some remarks concerning the outlined
approach and other related issues.

2. Modified Output Least-Squares (MOLSs)

The variational formulation of (1a), (1b), and (1c) plays an
important role in formulating theMOLS approach.Assuming
that the feasible parameters 𝑎(𝑥, 𝑦) are in 𝐿∞(Ω), 𝑓 ∈ 𝐿

2
(Ω),

and by taking 𝑉 = 𝐻
2

0
(Ω), the weak form of (1a), (1b), and

(1c) reads: find 𝑢 ∈ 𝑉 such that

∫
Ω

𝑎Δ𝑢ΔV = ∫
Ω

𝑓V, ∀V ∈ 𝑉. (5)

In the following, we take 𝐾 := {𝑎 ∈ 𝐿
∞
| 0 < 𝑐 ≤ 𝑎(𝑥, 𝑦)}

to be the set of admissible coefficients. A variety of other
conditions can be imposed on the feasible coefficients 𝑎(𝑥, 𝑦)
so that the following two inequalities hold for some constants
𝛼 > 0 and 𝛽 > 0:

∫
Ω

𝑎Δ𝑢ΔV ≤ 𝛽 ‖𝑎‖∞ ‖𝑢‖𝑉 ‖V‖𝑉 , ∀𝑢, V ∈ 𝑉, ∀𝑎 ∈ 𝐾, (6)

𝛼 ‖𝑢‖
2

𝑉
≤ ∫
Ω

𝑎Δ𝑢Δ𝑢, ∀𝑢 ∈ 𝑉, ∀𝑎 ∈ 𝐾. (7)

Motivated by [20, 21], we propose the following objective
functional to identify the flexural rigidity:

𝐽 (𝑎) =
1

2
∫
Ω

𝑎Δ (𝑢 (𝑎) − 𝑧) Δ (𝑢 (𝑎) − 𝑧) , (8)

where 𝑧 is the measured data and 𝑢(𝑎) solves the weak form
(5).

To give optimality conditions for the above minimization
problem using (8) and to design some derivative-based
numerical schemes, we need to compute the derivatives of
𝐽(⋅). Since 𝐽 depends on 𝑢(𝑎), the derivatives of the solution
map are instrumental to evaluate the derivatives of the func-
tional 𝐽. For this, we give the following result.
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Lemma 1. For each 𝑎 in the interior of 𝐾, 𝑢 is infinitely
differentiable at 𝑎. Given 𝑢 = 𝑢(𝑎), the first derivative 𝛿𝑢 =

𝐷𝑢(𝑎)𝛿𝑎 is the unique solution of the variational equation:

∫
Ω

𝑎Δ𝛿𝑢ΔV = −∫
Ω

𝛿𝑎Δ𝑢ΔV, 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 V ∈ 𝑉, (9)

and the second derivative 𝛿2𝑢 = 𝐷
2
𝑢(𝑎)(𝛿𝑎

1
, 𝛿𝑎
2
) is the unique

solution of the variational equation:

∫
Ω

𝑎Δ (𝛿
2
𝑢)ΔV = −∫

Ω

𝛿𝑎
2
Δ (𝐷𝑢 (𝑎) 𝛿𝑎

1
) ΔV

− ∫
Ω

𝛿𝑎
1
Δ (𝐷𝑢 (𝑎) 𝛿𝑎

2
) ΔV,

𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 V ∈ 𝑉.

(10)

Proof. A direct proof relying on (6) and (7) can be extracted
from [20]. A proof based on the implicit function theorem
can be found in [2].

The following result gives derivative formulas for (8).

Theorem 2. Let 𝑎 be an arbitrary element in the interior of𝐾.
Then, consider the following:

(1) The first derivative of 𝐽 is given by

𝐷𝐽 (𝑎) 𝛿𝑎 = −
1

2
∫
Ω

𝛿𝑎Δ (𝑢 (𝑎) + 𝑧) Δ (𝑢 (𝑎) − 𝑧) . (11)

(2) The second derivative of 𝐽 is given by

𝐷
2
𝐽 (𝑎) (𝛿𝑎, 𝛿𝑎) = ∫

Ω

𝑎Δ (𝐷𝑢 (𝑎) 𝛿𝑎) Δ (𝐷𝑢 (𝑎) 𝛿𝑎) . (12)

Proof. The first derivative of 𝐽 is a direct consequence of the
chain rule:

𝐷𝐽 (𝑎) 𝛿𝑎 =
1

2
∫
Ω

𝛿𝑎Δ (𝑢 (𝑎) − 𝑧) Δ (𝑢 (𝑎) − 𝑧)

+ ∫
Ω

𝛿𝑎Δ (𝐷𝑢 (𝑎) 𝛿𝑎) Δ (𝑢 (𝑎) − 𝑧) .

(13)

We note that, from (9), we have

∫
Ω

𝑎Δ (𝐷𝑢 (𝑎) 𝛿𝑎) Δ (𝑢 (𝑎) − 𝑧)

= −∫
Ω

𝛿𝑎Δ𝑢 (𝑎) Δ (𝑢 (𝑎) − 𝑧) ,

(14)

and hence

𝐷𝐽 (𝑎) 𝛿𝑎 =
1

2
∫
Ω

𝛿𝑎Δ (𝑢 (𝑎) − 𝑧) Δ (𝑢 (𝑎) − 𝑧)

− ∫
Ω

𝛿𝑎Δ𝑢 (𝑎) Δ (𝑢 (𝑎) − 𝑧)

= −
1

2
∫
Ω

𝛿𝑎Δ (𝑢 (𝑎) + 𝑧) Δ (𝑢 (𝑎) − 𝑧) .

(15)

It now follows that

𝐷
2
𝐽 (𝑎) (𝛿𝑎, 𝛿𝑎)

= −
1

2
∫
Ω

𝛿𝑎Δ (𝐷𝑢 (𝑎) 𝛿𝑎) Δ (𝑢 (𝑎) − 𝑧)

−
1

2
∫
Ω

𝛿𝑎Δ (𝑢 (𝑎) + 𝑧) Δ (𝐷𝑢 (𝑎) 𝛿𝑎)

= −∫
Ω

𝛿𝑎Δ (𝐷𝑢 (𝑎) 𝛿𝑎) Δ𝑢 (𝑎)

= ∫
Ω

𝑎Δ (𝐷𝑢 (𝑎) 𝛿𝑎) Δ (𝐷𝑢 (𝑎) 𝛿𝑎) ,

(16)

where in the last step we applied (9) again.

The following result gives a useful feature of MOLS.

Theorem 3. The modified output least-squares functional 𝐽
defined in (8) is convex in the interior of the set 𝐾.

Proof. In view of the form of the second derivative of 𝐽, it
follows from (7) that the following inequality holds for all 𝑎
in the interior of𝐾:

𝐷
2
𝐽 (𝑎) (𝛿𝑎, 𝛿𝑎) ≥ 𝛼 ‖𝐷𝑢 (𝑎) 𝛿𝑎‖

2
, (17)

which proves the convexity of the functional 𝐽.

The inverse problemof identifying parameters is ill-posed
and hence we need to regularize the MOLS functional. In
the following, we assume that 𝐾 is the set of admissible
coefficients which we further assume to be closed and convex
subset of 𝐵 := 𝐻

2
(Ω). We also assume that 𝐾 is in the

interior of the domain of the parameter-to-solution map so
that we can use the convexity of MOLS. We now consider the
following regularized minimization problem: find 𝑎∗ ∈ 𝐾 by
solving

min
𝑎∈𝐾

𝐽
𝜀
(𝑎) :=

1

2
∫
Ω

𝑎Δ (𝑢 (𝑎) − 𝑧) Δ (𝑢 (𝑎) − 𝑧)

+
𝜀

2
𝑅 (𝑎) ,

(18)

where 𝜀 > 0 is the regularization parameter, 𝑧 ∈ 𝑉 is the
data, and 𝑅(𝑎) is a regularizationmap.Throughout this work,
we take 𝑅(𝑎) := ‖𝑎‖

2

𝐻
2
(Ω)

. The associated inner product is
denoted by ⟨⋅, ⋅⟩.

We have the following useful information concerning a
minimizer of the MOLS functional.

Theorem 4. The regularized minimization problem (18) is
uniquely solvable. Moreover, 𝑎 ∈ 𝐾 is a minimizer if and only
if the following variational inequality holds:

−
1

2
∫
Ω

(𝑏 − 𝑎) Δ (𝑢 (𝑎) + 𝑧) Δ (𝑢 (𝑎) − 𝑧)

+ 𝜀 ⟨DR (𝑎) , 𝑏 − 𝑎⟩ ≥ 0, 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑏 ∈ 𝐾.

(19)
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Proof. Since 𝐽
𝜀
(𝑎) ≥ 0, for every 𝑎 ∈ 𝐾, we can find a

minimizing sequence {𝑎
𝑛
} ⊂ 𝐾 such that

lim
𝑛→∞

𝐽
𝜀
(𝑎
𝑛
) = inf
𝑎∈𝐾

𝐽
𝜀
(𝑎) . (20)

The inequality

𝜀

2

󵄩󵄩󵄩󵄩𝑎𝑛
󵄩󵄩󵄩󵄩

2

𝐻
2
(Ω)

≤
1

2
∫
Ω

𝑎
𝑛
Δ (𝑢 (𝑎

𝑛
) − 𝑧) Δ (𝑢 (𝑎

𝑛
) − 𝑧)

+
𝜀

2

󵄩󵄩󵄩󵄩𝑎𝑛
󵄩󵄩󵄩󵄩

2

𝐻
2
(Ω)

(21)

confirms that the sequence {𝑎
𝑛
} is bounded in ‖ ⋅ ‖

𝐻
2
(Ω)

. By
the compact embedding of 𝐻2(Ω) into 𝐿∞(Ω), there exists
a subsequence that converges weakly in 𝐻2(Ω) and strongly
in 𝐿∞(Ω). By using the same notation for the subsequences
as well, we obtain that 𝑎

𝑛
⇀ 𝑎 ∈ 𝐾 in 𝐻2(Ω) and 𝑎

𝑛
→ 𝑎

in 𝐿∞(Ω). Let 𝑢
𝑛
= 𝑢(𝑎

𝑛
) be the corresponding sequence of

the solutions of the weak form (5). It follows from (6) and (7)
that {𝑢

𝑛
} is uniformly bounded in 𝐻

2
(Ω) and consequently

there exists a weakly convergent subsequence. Once again by
using the same notion for the subsequences, we assume that
𝑢
𝑛
⇀ 𝑢̃. By the definition of 𝑢

𝑛
, we have

∫
Ω

𝑎
𝑛
Δ𝑢
𝑛
ΔV = ∫

Ω

𝑓V, ∀V ∈ 𝑉, (22)

which, in view of the convergence properties of 𝑎
𝑛
and 𝑢

𝑛
,

after passing to the limit implies that

∫
Ω

𝑎Δ𝑢̃ΔV = ∫
Ω

𝑓V, (23)

where V ∈ 𝑉 is arbitrary. Since the solution to the above
variational problem is unique, we deduce that 𝑢̃ = 𝑢(𝑎). In
fact, 𝑢

𝑛
converges to 𝑢̃ strongly in𝐻2(Ω). From the identities,

∫
Ω

𝑎
𝑛
Δ𝑢
𝑛
ΔV = ∫

Ω

𝑓V, ∀V ∈ 𝑉,

∫
Ω

𝑎Δ𝑢̃ΔV = ∫
Ω

𝑓V, ∀V ∈ 𝑉.
(24)

After a rearrangement of the terms, we deduce that

∫
Ω

𝑎
𝑛
Δ (𝑢
𝑛
− 𝑢̃) ΔV = ∫

Ω

(𝑎 − 𝑎
𝑛
) Δ𝑢̃ΔV, (25)

and the strong convergence follows at once from (6) and (7).
We next claim that

∫
Ω

𝑎
𝑛
Δ (𝑢
𝑛
− 𝑧) Δ (𝑢

𝑛
− 𝑧)

󳨀→ ∫
Ω

𝑎Δ (𝑢 (𝑎) − 𝑧) Δ (𝑢 (𝑎) − 𝑧) .

(26)

For this, we notice that the following identities hold due
to the definitions of 𝑢

𝑛
, 𝑎
𝑛
, 𝑢̃, and 𝑎:

∫
Ω

𝑎
𝑛
Δ (𝑢
𝑛
− 𝑧) Δ (𝑢

𝑛
− 𝑧)

= ∫
Ω

𝑓 (𝑢
𝑛
− 𝑧) − ∫

Ω

𝑎
𝑛
Δ𝑧Δ (𝑢

𝑛
− 𝑧) ,

∫
Ω

𝑎Δ (𝑢 (𝑎) − 𝑧) Δ (𝑢 (𝑎) − 𝑧)

= ∫
Ω

𝑓 (𝑢 − 𝑧) − ∫
Ω

𝑎Δ𝑧Δ (𝑢 (𝑎) − 𝑧) .

(27)

For (26), we note that ∫
Ω
𝑓(𝑢
𝑛
− 𝑧) → ∫

Ω
𝑓(𝑢̃ − 𝑧) and

∫
Ω
𝑎
𝑛
Δ𝑧Δ(𝑢

𝑛
− 𝑧) → ∫

Ω
𝑎Δ𝑧Δ(𝑢(𝑎) − 𝑧).

Finally, we have

𝐽
𝜀
(𝑎) =

1

2
∫
Ω

𝑎Δ (𝑢 (𝑎) − 𝑧) Δ (𝑢 (𝑎) − 𝑧)

+
𝜀

2
‖𝑎‖
2

𝐻
2
(Ω)

= lim
𝑛→∞

1

2
∫
Ω

𝑎
𝑛
Δ (𝑢
𝑛
− 𝑧) Δ (𝑢

𝑛
− 𝑧)

+
𝜀

2
‖𝑎‖
2

𝐻
2
(Ω)

≤ lim inf
𝑛→∞

𝐽
𝜀
(𝑎
𝑛
)

= inf {𝐽
𝜀
(𝑎) , 𝑎 ∈ 𝐾} ,

(28)

where we used the weak-lower semicontinuity of ‖ ⋅ ‖
𝐻
2
(Ω)
.

The uniqueness follows from the fact that the regularizer is
strictly convex. Finally, since 𝐽

𝜀
(𝑎) is a convex functional, the

variational inequality is a necessary and sufficient optimality
condition. The proof is complete.

The continuous problem (18) has to be discretized to
obtain a numerical solution. In this work, we use the finite
element discretization on a triangulation {𝑇

ℎ
} of Ω. We

choose𝐵
𝑛
to be the finite-dimensional space of the parameter

space 𝐵 := 𝐻
2
(Ω) relative to 𝑇

ℎ
.Analogously, we assume that

{𝑉
𝑛
} is a sequence of finite-dimensional subspaces of 𝑉 and,

for each 𝑛, 𝑃
𝑛
: 𝑉 → 𝑉

𝑛
is a projection operator. We suppose

that 𝑉
𝑛
and 𝑃

𝑛
have the property that, for every V ∈ 𝑉,
󵄩󵄩󵄩󵄩V − 𝑃𝑛V

󵄩󵄩󵄩󵄩𝑉
󳨀→ 0 as 𝑛 󳨀→ ∞. (29)

We define 𝐾
𝑛
= 𝐵
𝑛
∩ 𝐾 and assume that
∞

⋂

𝑛=1

𝐾
𝑛

̸= 0. (30)

To keep the structure of finite-dimensional set of admis-
sible sets quite general and also to allow other regularizers,
we impose approximation properties given by the following
assumption: for any 𝑎 ∈ 𝐾, there exists a sequence {𝑎

𝑛
} such

that

𝑎
𝑛
∈ 𝐾
𝑛

∀𝑛, (31a)

𝑎
𝑛
󳨀→ 𝑎 in 𝐿

∞
(Ω) , (31b)

𝑅 (𝑎
𝑛
) 󳨀→ 𝑅 (𝑎) . (31c)
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The above property is an analogue of (29) for the set of
feasible constraints.

We now define 𝐽(𝑛) : 𝐾
𝑛
→ R as the following discrete

analogue of (8):

𝐽
(𝑛)
(𝑎) =

1

2
∫
Ω

𝑎Δ (𝑢
𝑛
(𝑎) − 𝑃

𝑛
𝑧) Δ (𝑢

𝑛
(𝑎) − 𝑃

𝑛
𝑧) , (32)

where 𝑢
𝑛
(𝑎) is the solution of the following discrete varia-

tional problem:

∫
Ω

𝑎Δ𝑢
𝑛
(𝑎) ΔV = ∫

Ω

𝑓V, for every V ∈ 𝑉
𝑛
. (33)

Here, the data 𝑧 is replaced by the projected data 𝑃
𝑛
𝑧 for

computational convenience. Since𝑃
𝑛
𝑧 converges to 𝑧 strongly

in 𝑉, all of the following results hold irrespective of whether
𝑧 or 𝑃

𝑛
𝑧 is used in the definition of 𝐽(𝑛). We then define the

following regularized analogue of the above discrete MOLS

𝐽
(𝑛)

𝜀
(𝑎) = 𝐽

(𝑛)
(𝑎) + 𝜀𝑅 (𝑎) (34)

and solve

min
𝑎∈𝐾
𝑛

𝐽
(𝑛)

𝜀
(𝑎) . (35)

The solvability of the above regularized problems can
easily be proved by arguments used above.

We can now prove the following convergence result.

Theorem 5. Assume that, for each 𝑛, 𝑎∗
𝑛
∈ 𝐾
𝑛
is a solution of

(35). Then, any weak𝐻2(Ω) limit point of the sequence {𝑎∗
𝑛
} is

a solution of (18).

Proof. By (30), there exists a constant 𝐶 such that 𝐽(𝑛)
𝜀
(𝑎
∗

𝑛
) ≤

𝐶, for all 𝑛.Therefore, the sequence {𝑎∗
𝑛
} is bounded in𝐻2(Ω)

and hence it has a subsequence that converges weakly in
𝐻
2
(Ω) and strongly in 𝐿∞(Ω). For simplicity of notation, we

assume that 𝑎∗
𝑛
⇀ 𝑎
∗
∈ 𝐾 in𝐻2(Ω) and 𝑎∗

𝑛
→ 𝑎
∗ in 𝐿∞(Ω).

We will show that 𝑎∗ is a solution of (18). Let 𝑢
𝑛
= 𝑢(𝑎

𝑛
) be

the corresponding solution of (33). Evidently, {𝑢
𝑛
} is bounded

and hence there is a subsequence that weakly converges to
some 𝑢∗ in 𝑉. We claim that 𝑢∗ = 𝑢(𝑎

∗
). In view of the

definition of 𝑢
𝑛
, we have

∫
Ω

𝑎
∗

𝑛
Δ𝑢
𝑛
ΔV
𝑛
= ∫
Ω

𝑓V
𝑛
, for every V

𝑛
∈ 𝑉
𝑛
. (36)

Let V ∈ 𝑉 be arbitrary. We set V
𝑛
= 𝑃
𝑛
V in the above

identity to get

∫
Ω

𝑎
∗

𝑛
Δ𝑢
𝑛
Δ𝑃
𝑛
V = ∫
Ω

𝑓𝑃
𝑛
V, (37)

which after a rearrangement of terms implies that

∫
Ω

𝑓𝑃
𝑛
V = ∫
Ω

𝑎
∗
Δ𝑢
𝑛
ΔV + ∫

Ω

(𝑎
∗

𝑛
− 𝑎
∗
) Δ𝑢
𝑛
ΔV

− ∫
Ω

𝑎
∗

𝑛
Δ𝑢
𝑛
Δ (𝑃
𝑛
V − V) ,

(38)

and after passing to the limit 𝑛 → ∞, we obtain that

∫
Ω

𝑎
∗
Δ𝑢 (𝑎
∗
) ΔV = ∫

Ω

𝑓V, (39)

and because Vwas chosen arbitrarily, we obtain that 𝑢∗ solves
(5). That is, 𝑢∗ = 𝑢(𝑎

∗
).

By using the arguments given in Theorem 4, we can also
show that

∫
Ω

𝑎
∗

𝑛
Δ (𝑢
𝑛
− 𝑧) Δ (𝑢

𝑛
− 𝑧)

󳨀→ ∫
Ω

𝑎
∗
Δ (𝑢 (𝑎

∗
) − 𝑧) Δ (𝑢 (𝑎

∗
) − 𝑧) ,

(40)

which, in view of the lower semicontinuity of 𝑅(⋅) = ‖ ⋅ ‖
2

𝐻
2
(Ω)

,
implies that

𝐽
𝜀
(𝑎
∗
) ≤ lim inf
𝑛→∞

𝐽
(𝑛)

𝜀
(𝑎
∗

𝑛
) . (41)

Now consider an arbitrary 𝑎 ∈ 𝐾. By (31a), (31b), and
(31c), there exists a sequence {𝑎

𝑛
} such that 𝑎

𝑛
∈ 𝐾
𝑛
, for all

𝑛, 𝑎
𝑛
→ 𝑎 in 𝐿∞, and 𝑅(𝑎

𝑛
) → 𝑅(𝑎). This, however, implies

that

lim
𝑛→∞

𝐽
(𝑛)

𝜌
(𝑎
𝑛
) = 𝐽 (𝑎) , (42)

and hence, by the optimality of 𝑎∗
𝑛
, we have

𝐽
𝜀
(𝑎
∗
) ≤ lim inf
𝑛→∞

𝐽
(𝑛)

𝜀
(𝑎
∗

𝑛
) ≤ lim inf
𝑛→∞

𝐽
(𝑛)

𝜀
(𝑎
𝑛
)

= lim
𝑛→∞

𝐽
(𝑛)

𝜀
(𝑎
𝑛
) = 𝐽
𝜀
(𝑎) .

(43)

Since 𝑎 ∈ 𝐾 was arbitrary, this shows that 𝑎∗ is a solution
of (8), which completes the proof.

3. Discrete Formulas

To represent the discrete weak form in a computable way,
we proceed as follows. We represent bases for 𝐵

𝑛
and 𝑉

𝑛
by

{𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑚
} and {𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑛
}, respectively. The space

𝐵
𝑛
is then isomorphic to R𝑚, and for any 𝑎 ∈ 𝐵

𝑛
, we define

𝐴 ∈ R𝑚 by 𝐴
𝑖
= 𝑎(𝑥

𝑖
), 𝑖 = 1, 2, . . . , 𝑚, where {𝜓

1
, 𝜓
2
, . . . , 𝜓

𝑚
}

is a nodal basis corresponding to the nodes {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
}.

Conversely, each 𝐴 ∈ R𝑚 corresponds to 𝑎 ∈ 𝐵
ℎ
defined by

𝑎 = ∑
𝑚

𝑖=1
𝐴
𝑖
𝜓
𝑖
. Similarly, 𝑢 ∈ 𝑉

𝑛
will correspond to 𝑈 ∈ R𝑛,

where 𝑈
𝑖
= 𝑢(𝑦

𝑖
), 𝑖 = 1, 2, . . . , 𝑛 and 𝑢 = ∑

𝑛

𝑖=1
𝑈
𝑖
𝜑
𝑖
. Here,

𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
are the nodes of the mesh defining 𝑉

𝑛
.

Then, the stiffness matrix𝐾(𝐴) and the load vector 𝐹 are
given by

𝐾 (𝐴)
𝑖𝑗
= ∫
Ω

𝑎Δ𝜑
𝑖
Δ𝜑
𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛,

𝐹
𝑖
= ∫
Ω

𝑓𝜑
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(44)

We also define the matrix 𝐿(𝑉) by the following condi-
tion:

𝐿 (𝑉)𝐴 = 𝐾 (𝐴)𝑉 ∀𝐴 ∈ R
𝑚
, 𝑉 ∈ R

𝑛
. (45)
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Using the above notation, the following formulas can be
verified:

𝐽 (𝐴) =
1

2
(𝑈 − 𝑍)𝐾 (𝐴) (𝑈 − 𝑍) ;

𝐷𝐽 (𝐴) = −
1

2
𝐿 (𝑈 + 𝑍)

𝑇
(𝑈 − 𝑍) ;

𝐷
2
𝐽 (𝐴) = 𝐿 (𝑈)

𝑇
𝐾 (𝐴)

−1
𝐿 (𝑈) .

(46)

4. Continuous Newton Method

After the discretization, the finite-dimensional minimization
problem can be solved by any known optimization solver. In
this paper, we will employ the continuous Newton method
recently proposed by Zhang et al. [22]. Continuous methods
for optimization problems solve an optimization problem
by following the solution trajectory of a system of ordi-
nary differential equations. Although numerous authors have

focused on continuous optimization methods for solving
unconstrained and constrained optimization problems, most
of these works have been of a theoretical nature. However,
recently, many researchers have advocated the usefulness
of continuous methods for solving large scale optimization
problems and have given significant numerical evidence
to show the competitiveness of these methods with the
conventional optimization methods (see [23–26]).

In this work, we will use the continuous Newton method
[22] to solve the finite-dimensional optimization problems
given by the regularized MOLS and OLS. For simplicity, the
side constraints will be ignored. Zhang et al. [22] propose
following the trajectory given by the following initial value
problem:

𝑑𝐴

𝑑𝑡
= 𝐺 (𝐴) , 𝐴 (𝑡

0
) = 𝐴

0
, (47)

where 𝐺(𝐴) is defined by

𝐺 (𝐴) =

{{{{

{{{{

{

−(∇
2J (𝐴 (𝑡)))

−1

∇J (𝐴 (𝑡)) if 𝜆min (𝐴) > 𝛿
2

−𝛼 (𝑡) (∇
2J (𝐴 (𝑡)))

−1

∇J (𝐴 (𝑡)) − 𝛽 (𝑡) ∇J (𝐴 (𝑡)) if 𝛿
1
≤ 𝜆min (𝐴) ≤ 𝛿

2

−∇J (𝐴 (𝑡)) if 𝜆min (𝐴) < 𝛿
1
.

(48)

Here, J corresponds to either the regularized MOLS or
the regularized OLS, the minimum eigenvalue of the Hessian
of J(𝐴) is given by 𝜆min(𝐴), and 𝛿2 > 𝛿

1
> 0. Moreover,

𝛼 (𝑎) =
𝜆min (𝐴) − 𝛿1

𝛿
2
− 𝛿
1

,

𝛽 (𝑎) = 1 − 𝛼 (𝐴) =
𝛿
2
− 𝜆min (𝐴)

𝛿
2
− 𝛿
1

.

(49)

The idea of the proposed scheme is to combine the
steepest descent and Newton’s direction through a convex
combination. It involves a simple yet efficient strategy to
get around the potential singularities of the Hessian. To be
specific, when 𝜆min(𝑎) is between 𝛿

1
and 𝛿

2
, if its value is

closer to 𝛿
2
, then 𝛼(𝑎) will be larger, in turn putting more

emphasis on the Newton direction. On the other hand, if
𝜆min(𝑎) is closer to 𝛿1, then 𝛽(𝑎) will be larger, putting more
weight on the gradient direction.The approach is particularly
appealing as one of the main challenges in the nonlinear
inverse problems is the ill-posedness of the Hessian. More-
over, since the continuousNewtonmethod takes into account
the behaviour of the Hessian by examining its minimum
eigenvalue, we also gain insight into the relative convexity
(or nonconvexity) of the OLS or MOLS functionals. Finally,
this approach places less emphasis on computing an optimal
regularization parameter, a difficult task in inverse problems.

5. Numerical Experiments

In this section, we present the results of numerical experi-
ments designed to gauge the preliminary effectiveness of the

MOLS approach when coupled with the continuous Newton
method and applied to the flexural rigidity inverse problem.

5.1. Experiment Setup. We consider first an example bound-
ary value problem (Example 1) derived from (1a), (1b), and
(1c):

Δ [𝑎 (𝑥, 𝑦) Δ𝑢 (𝑥, 𝑦)] = 𝑓 (𝑥, 𝑦) in Ω,

𝑢 (𝑥, 𝑦) =
𝜕𝑢

𝜕𝑛
= 0 on Γ,

(50)

where the solution 𝑢 and the exact parameter 𝑎 are given by

𝑢 (𝑥, 𝑦) = 100𝑥
2
(1 − 𝑥)

2
𝑦
2
(1 − 𝑦)

2

,

𝑎 (𝑥, 𝑦) =
3

2
+ sin (𝜋𝑥) sin (𝜋𝑦)

(51)

and where 𝑓(𝑥, 𝑦) is subsequently defined by (50). The
domainΩ is taken as the unit square,Ω = (0, 1) × (0, 1), with
the boundary Γ as the square’s outside edges.

Additionally, we considered a similar example (Example
2) with the recovery of the same parameter as Example 1,
but on a simply supported circular plate (with appropriate
changes to the forward problem applied).

Finally, we considered an example (Example 3) again on
the unit square, but with the recovery of a different parameter
and with more complicated mixed boundary conditions (i.e.,
clamped along the top and bottom edges, simply supported
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Figure 1: Example 1: MOLS, continuous Newton.

along the left edge, and with the right edge free). The para-
meter recovered in this case was given by

𝑎 (𝑥, 𝑦) =
3

2
𝑥
2
+ 𝑦
2
+ 𝑥𝑦. (52)

Discretization of the solution was performed using cubic
Hermite elements for all examples. For Examples 1 and 3, the
mesh used was a regular 25 × 25 triangular grid consisting of
1,352 triangles resulting in 3,529 total degrees of freedom for

the solution. For the circular domain in Example 2, a mesh
was generated using a Delaunay triangulation yielding 848
triangles with corresponding 2,219 degrees of freedom.

5.2. Algorithm Details. The optimization was performed
using the continuous Newton method outlined in the pre-
vious section applied to both the discretized MOLS and
OLS functionals. Additionally, for means of comparison, the
optimization was also performed using a conjugate gradient
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Figure 2: Example 2: MOLS, continuous Newton.

trust-region-reflective method (MATLAB’s fminunc) using
similar stopping criteria. In all examples, 𝐻1 seminorm
regularization was used for computational simplicity with a
fixed regularization parameter used per example (see Table 1
for values).

In the continuous Newton algorithm, the Lanczos itera-
tion was used to compute/estimate the minimum eigenvalue
of ∇2𝐽 and in those cases where the Lanczos method failed
to converge in the given (limited) number of iterations,
the method defaulted to the steepest descent trajectory. The

resulting ordinary differential equation was solved using
MATLAB’s ode113 solver with default parameters. The
ODE was solved over the time domain [0, 𝑇] with 𝑇 = 100

for MOLS and 𝑇 = 1000 for OLS. The additional continuous
Newton algorithmic parameters were fixed for each example
(again, see Table 1 for values).

5.3. Numerical Results. Figures 1–3, respectively, show the
computed parameter at several algorithm steps for the OLS
and MOLS approaches using both the continuous Newton
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Figure 3: Example 3: MOLS, continuous Newton.

and fminunc algorithms. These figures also show the final
output of the algorithm and the error between the computed
and exact parameters.

In Figure 4, we compare the minimum eigenvalues of
the Hessian of both the MOLS and OLS functional over a
number of continuous Newton algorithm iterations applied

to Example 1. Here, we see that, for the OLS method, the
algorithm transitions to both the “mixed” step direction
and, when the minimum eigenvalue becomes exceedingly
small or negative, the steepest descent direction. We also
note that, for the same regularization parameter, the MOLS
method uses the full Newton direction. The minimum and
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Table 1: Performance results for the MOLS and OLS methods.

Method Algorithm Iterations 𝐿
2-error Min. 𝜆min Max. 𝜆min

Example 1: 𝜀 = 10
−6, 𝛿
1
= 10
−8, and 𝛿

2
= 3 × 10

−7

MOLS Continuous Newton 95 5.53e − 05 1.2981e − 06 1.6089e − 06
fminunc 71 2.71e − 04 — —

OLS Continuous Newton 184 3.32e − 02 −5.6394e − 06 4.9100e − 07
fminunc 77 5.39e − 02 — —

Example 2: 𝜀 = 10
−5, 𝛿
1
= 10
−8, and 𝛿

2
= 10
−6

MOLS Continuous Newton 26 1.67e − 04 3.9702e − 03 7.2222e − 02
fminunc 63 2.68e − 06 — —

OLS Continuous Newton 662 2.44e − 02 2.9112e − 06 4.3008e − 03
fminunc 97 2.44e − 02 — —

Example 3: 𝜀 = 10
−8, 𝛿
1
= 10
−9, and 𝛿

2
= 3 × 10

−8

MOLS Continuous Newton 112 2.98e − 03 1.2992e − 08 1.3792e − 08
fminunc 79 2.65e − 03 — —

OLS Continuous Newton 442 5.13e − 01 5.5219e − 09 1.1703e − 08
fminunc 69 1.22e − 01 — —
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Figure 4: Comparison of 𝜆min for Example 1 using MOLS and OLS
methods.

maximum of 𝜆min along with the 𝐿
2 error and the total

number of algorithm iterations for all examples are provided
in Table 1.

6. Discussion

The results of the numerical experiments suggest the follow-
ing:

(i) The MOLS functional converges faster than the OLS
functional (Table 1) for the flexural rigidity inverse
problem under similar conditions (i.e., similar regu-
larization parameters, optimization algorithm).

(ii) In at least one instance for the MOLS approach
(see Example 2 in Table 1), the continuous New-
ton method shows accelerated convergence over
the fminunc algorithm.

(iii) The eigenvalues of the Hessian of the MOLS func-
tional remain strictly positive compared with the
Hessian of the OLS functional, whose minimum
eigenvalues can become negative after a number of
algorithm iterations (see both Table 1 and Figure 4).

(iv) The more complicated domains and boundary con-
ditions in Examples 2 and 3 have a negative impact
in terms of algorithm performance and accuracy in
recovery of the flexural rigidity parameter. As can be
seen in Table 1, this is particularly true in the case of
the OLS approach.

(v) Overall, for either the MOLS or OLS approach,
the error in the recovery of the coefficient is most
prominent along the boundaries with significantly
better reconstruction in the domain’s interior. Again,
in particular, the OLS approach seems to have the
most difficulty in reconstructing the flexural rigidity
along the boundaries.

7. Concluding Remarks

Further directions for research are as follows:
(i) Thorough comparison of the performance and sta-

bility differences between the OLS and MOLS
approaches.

(ii) Thorough comparison of differing approaches to
solve the ODE system arising from the contin-
uous Newton method including a comparison of
the relative performance and stability of calculat-
ing/estimating the eigenvalues of the Hessian of 𝐽.

(iii) Comparison/exploration of differing regularization
approaches.

(iv) The use of mixed methods for solving the variational
problem.
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