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Abstract

Multi-armed bandit problem is an important optimization game that requires an exploration-
exploitation tradeoff to achieve optimal total reward. Motivated from industrial applica-
tions such as online advertising and clinical research, we consider a setting where the re-
wards of bandit machines are associated with covariates, and the accurate estimation of the
corresponding mean reward functions plays an important role in the performance of alloca-
tion rules. Under a flexible problem setup, we establish asymptotic strong consistency and
perform a finite-time regret analysis for a sequential randomized allocation strategy based
on kernel estimation. In addition, since many nonparametric and parametric methods in
supervised learning may be applied to estimating the mean reward functions but guidance
on how to choose among them is generally unavailable, we propose a model combining
allocation strategy for adaptive performance. Simulations and a real data evaluation are
conducted to illustrate the performance of the proposed allocation strategy.

Keywords: contextual bandit problem, exploration-exploitation tradeoff, nonparametric
regression, regret bound, upper confidence bound

1. Introduction

Following the seminal work by Robbins (1954), multi-armed bandit problems have been
studied in multiple fields. The general bandit problem involves the following optimization
game: A gambler is given l gambling machines, and each machine has an “arm” that the
gambler can pull to receive the reward. The distribution of reward for each arm is unknown
and the goal is to maximize the total reward over a given time horizon. If we define the regret
to be the reward difference between the optimal arm and the pulled arm, the equivalent
goal of the bandit problem is to minimize the total regret. Under a standard setting, it
is assumed that the reward of each arm has fixed mean and variance throughout the time
horizon of the game. Some of the representative work for standard bandit problem includes
Lai and Robbins (1985), Berry and Fristedt (1985), Gittins (1989) and Auer et al. (2002).
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See Cesa-Bianchi and Lugosi (2006) and Bubeck and Cesa-Bianchi (2012) for bibliographic
remarks and recent overviews on bandit problems.

Different variants of the bandit problem motivated by real applications have been stud-
ied extensively in the past decade. One promising setting is to assume that the reward
distribution of each bandit arm is associated with some common external covariate. More
specifically, for an l-armed bandit problem, the game player is given a d-dimensional exter-
nal covariate x ∈ Rd at each round of the game, and the expected reward of each bandit
arm given x has a functional form fi(x), i = 1 · · · , l. We call this variant multi-armed
bandit problem with covariates, or MABC for its abbreviation (MABC is also referred to
as CMAB for contextual multi-armed bandit problem in the literature). The consideration
of external covariates is potentially important in applications such as personalized medicine.
For example, before deciding which treatment arm to be assigned to a patient, we can ob-
serve the patient prognostic factors such as age, blood pressure or genetic information, and
then use such information for adaptive treatment assignment for best outcome. It is worth
noting that the consideration of external covariate is recently further generalized to partial
monitoring by Bartók and Szepesvári (2012).

The MABC problems have been studied under both parametric and nonparametric
frameworks with various types of algorithms. The first work in a parametric framework ap-
pears in Woodroofe (1979) under a somewhat restrictive setting. A linear response bandit
problem in more flexible settings is recently studied under a minimax framework (Goldensh-
luger and Zeevi, 2009; Goldenshluger and Zeevi, 2013). Empirical studies are also reported
for parametric UCB-type algorithms (e.g., Li et al., 2010). The regret analysis of a special
linear setting is given in e.g., Auer (2002), Chu et al. (2011) and Agrawal and Goyal (2013),
in which the linear parameters are assumed to be the same for all arms while the observed
covariates can be different across different arms.

MABC problems with the nonparametric framework are first studied by Yang and Zhu
(2002). They show that with histogram or K-nearest neighbor estimation, the function
estimation is uniformly strongly consistent, and consequently, the cumulative reward of their
randomized allocation rule is asymptotically equivalent to the optimal cumulative reward.
Their notion of reward strong consistency has been recently established for a Bayesian
sampling method (May et al., 2012). Notably, under the Hölder smoothness condition and
a margin condition, the recent work of Perchet and Rigollet (2013) establishes a regret
upper bound by arm elimination algorithms with the same order as the minimax lower
bound of a two-armed MABC problem (Rigollet and Zeevi, 2010). A different stream of
work represented by, e.g., Langford and Zhang (2007) and Dudik et al. (2011) imposes
neither linear nor any smoothness assumption on the mean reward function; instead, they
consider a class of (finitely many) policies, and the cumulative reward of the proposed
algorithms is compared to the best of the policies. Interested readers are also referred to
Bubeck and Cesa-Bianchi (2012, Section 4) and its bibliography remarks for studies from
numerous different perspectives.

Another important line of development in the bandit problem literature (closely related
to, but different from the setting of MABC) is to consider the arm space as opposed to the
covariate space in MABC. It is assumed that there are infinitely many arms, and at each
round of the game, the player has the freedom to play one arm chosen from the arm space.
Like MABC, the setting with the arm space can be studied from both parametric linear and
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nonparametric frameworks. Examples of the linear parametric framework include Dani et al.
(2008), Rusmevichientong and Tsitsiklis (2010) and Abbasi-Yadkori et al. (2011). Notable
examples of the nonparametric framework (also known as the continuum-armed bandit
problem) under the local or global Hölder and Lipchitz smoothness conditions are Kleinberg
(2004), Auer et al. (2007), Kleinberg et al. (2007) and Bubeck et al. (2011). Abbasi-Yadkori
(2009) studies a forced exploration algorithm over the arm space, which is applied to both
parametric and nonparametric frameworks. Interestingly, Lu et al. (2010) and Slivkins
(2011) consider both the arm space and the covariate space, and study the problem by
imposing Lipschitz conditions on the joint space of arms and covariates.

Our work in this paper follows the nonparametric framework of MABC in Yang and
Zhu (2002) and Rigollet and Zeevi (2010) with finitely many arms. One contribution in this
work is to show that kernel methods enjoy estimation uniform strong consistency as well,
which leads to strongly consistent allocation rules. Note that due to the dependence of the
observations for each arm by the nature of the proposed randomized allocation strategy, it
is difficult to apply the well-established kernel regression analysis results of i.i.d. or weak
dependence settings (e.g., Devroye, 1978; Härdle and Luckhaus, 1984; Hansen, 2008). New
technical tools and arguments such as “chaining” are developed in this paper.

In addition, with the help of the Hölder smoothness condition, we provide a deeper un-
derstanding of the proposed randomized allocation strategy via a finite-time regret analysis.
Compared with the result in Rigollet and Zeevi (2010) and Perchet and Rigollet (2013), our
finite-time result remains sub-optimal in the minimax sense. Indeed, given Hölder smooth-
ness parameter κ and total time horizon N , our expected cumulative regret upper bound

is Õ(N
1− 1

3+d/κ ) as compared to O(N
1− 1

2+d/κ ) of Perchet and Rigollet (2013) (without the
extra margin condition). The slightly sub-optimal rate can also be shown to apply to the
histogram based randomized allocation strategy proposed in Yang and Zhu (2002). We tend
to think that this rate is the best possible for these methods, reflecting to some extent the
theoretical limitation of the randomized allocation strategy. In spite of this sub-optimality,
our result explicitly shows both the bias-variance tradeoff and the exploration-exploitation
tradeoff, which reflects the underlying nature of the proposed algorithm for the MABC
problem. With a model combining strategy and dimension reduction technique to be in-
troduced later, the kernel estimation based randomized allocation strategy can be quite
flexible with wide potential practical use. Moreover, in Appendix A, we incorporate the
kernel estimation into a UCB-type algorithm with randomization and show that its regret
rate becomes minimax optimal up to a logarithmic factor.

One natural and interesting issue in the randomized allocation strategy in MABC is how
to choose the modeling methods among numerous nonparametric and parametric estimators.
The motivation of such a question shares the flavor of model aggregation/combining in
statistical learning (see, e.g., Audibert, 2009; Rigollet and Tsybakov, 2012; Wang et al.,
2014 and references therein). In the bandit problem literature, model combining is also
quite relevant to the adversary bandit problem (e.g., Cesa-Bianchi and Lugosi, 2006; Auer
et al., 2003). As a recent example, Maillard and Munos (2011) study the history-dependent
adversarial bandit to target the best among a pool of history class mapping strategies.

As an empirical solution to the difficulty in choosing the best estimation method for
each arm in the randomized allocation strategy for MABC, we introduce a fully data-driven
model combining technique motivated by the AFTER algorithm, which has shown success
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both theoretically (Yang, 2004) and empirically (e.g., Zou and Yang, 2004; Wei and Yang,
2012). We integrate a model combining step by AFTER for reward function estimation into
the randomized allocation strategy for MABC. Preliminary simulation results of combining
various dimension reduction methods are reported in Qian and Yang (2012). However, no
theoretical justification is given there. As another contribution of this paper, we present here
new theoretical and numerical results on the proposed combining algorithm. In particular,
the strong consistency of the model combining allocation strategy is established.

The rest of this paper is organized as follows. We present a general and flexible problem
setup for MABC in Section 2. We describe the algorithm in Section 3 and study the strong
consistency and the finite-time regret analysis of kernel estimation methods in Section 4.
We also introduce a dimension reduction sub-procedure to handle the situation that the
covariate dimension is high. The asymptotic results of the model combining allocation
strategy is established in Section 5. We show in Section 6 and Section 7 the numerical per-
formance of the proposed allocation strategy using simulations and a web-based news article
recommendation data set, respectively. A brief conclusion is given in Section 8. The kernel
estimation based UCB-type algorithm with randomization is described in Appendix A, all
technical lemmas and proofs are given in Appendix B, and additional numerical results of
the implemented algorithms are left in Appendix C.

2. Problem Setup

Suppose a bandit problem has l (l ≥ 2) candidate arms to play. At each time point of the
game, a d-dimensional covariate x is observed before we decide which arm to pull. Assume
that the covariate x takes values in the hypercube [0, 1]d. Also assume the (conditional)
mean reward for arm i given x, denoted by fi(x), is uniformly upper bounded and unknown
to game players. The observed reward is modeled as fi(x) + ε, where ε is a random error
with mean 0.

Let {Xn, n ≥ 1} be a sequence of independent covariates generated from an underlying
probability distribution PX supported in [0, 1]d. At each time n ≥ 1, we need to apply
a sequential allocation rule η to decide which arm to pull based on Xn and the previous
observations. We denote the chosen arm by In and the observed reward of pulling the arm
In = i at time n by Yi,n, 1 ≤ i ≤ l. As a result, YIn,n = fIn(Xn) + εn, where εn is the
random error with E(εn|Xn) = 0. Different from Yang and Zhu (2002), the error εn may
be dependent on the covariate Xn. Consider the simple scenario of online advertising where
the response is binary (click: Y = 1; no click: Y = 0). Given an arm i and covariate
x ∈ [0, 1], suppose the mean reward function satisfies e.g., fi(x) = x. Then it is easy to see
that the distribution of the random error ε depends on x. In case of a continuous response,
it is also well-known that heteroscedastic errors commonly occur.

By the previous definitions, we know that at time n, an allocation strategy chooses the
arm In based on Xn and (Xj , Ij , YIj ,j), 1 ≤ j ≤ n− 1. To evaluate the performance of the
allocation strategy, let i∗(x) = argmax1≤i≤l fi(x) and f∗(x) = fi∗(x)(x) (any tie-breaking
rule can be applied if there are ties). Without the knowledge of random error εj , the optimal
performance occurs when Ij = i∗(Xj), and the corresponding optimal cumulative reward
given X1, · · · , Xn can be represented as

∑n
j=1 f

∗(Xj). The cumulative mean reward of
the applied allocation rule can be represented as

∑n
j=1 fIn(Xj). Thus we can measure the

4



Bandit Problem with Covariates

performance of an allocation rule η by the cumulative regret

Rn(η) =
n∑
j=1

(
f∗(Xj)− fIj (Xj)

)
.

We say the allocation rule η is strongly consistent if Rn(η) = o(n) with probability one.
Also, Rn(η) is commonly used for finite-time regret analysis. In addition, define the per-
round regret rn(η) by

rn(η) =
1

n

n∑
j=1

(
f∗(Xj)− fIj (Xj)

)
.

To maintain the readability for the rest of this paper, we use i only for bandit arms, j
and n only for time points, r and s only for reward function estimation methods, and t and
T only for the total number of times a specific arm is pulled.

3. Algorithm

In this section, we present the model-combining-based randomized allocation strategy.
At each time n ≥ 1, denote the set of past observations {(Xj , Ij , YIj ,j) : 1 ≤ j ≤ n− 1} by
Zn, and denote the arm i associated subset {(Xj , Ij , YIj ,j) : Ij = i, 1 ≤ j ≤ n− 1} by Zi,n.
For estimating the fi’s, suppose we have m candidate regression estimation procedures (e.g.,
histogram, kernel estimation, etc.), and we denote the class of these candidate procedures
by ∆ = {δ1, · · · , δm}. Let f̂i,n,r denote the regression estimate of procedure δr based

on Zi,n, and let f̂i,n denote the weighted average of f̂i,n,r’s, 1 ≤ r ≤ m, by the model
combining algorithm to be given. Let {πn, n ≥ 1} be a decreasing sequence of positive
numbers approaching 0, and assume that (l− 1)πn < 1 for all n ≥ 1. The model combining
allocation strategy includes the following steps.

STEP 1. Initialize with forced arm selections. Give each arm a small number of applica-
tions. For example, we may pull each arm n0 times at the beginning by taking I1 = 1,
I2 = 2, · · · Il = l, Il+1 = 1, · · · , I2l = l, · · · , I(n0−1)l+1 = 1, · · · , In0l = l.

STEP 2. Initialize the weights and the error variance estimates. For n = n0l+ 1, initialize
the weights by

Wi,n,r =
1

m
, 1 ≤ i ≤ l, 1 ≤ r ≤ m,

and initialize the error variance estimates by e.g.,

v̂i,n,r = 1, v̂i,n = 1, 1 ≤ i ≤ l, 1 ≤ r ≤ m.

STEP 3. Estimate the individual functions fi for 1 ≤ i ≤ l. For n = n0l+ 1, based on the
current data Zi,n, obtain f̂i,n,r using regression procedure δr, 1 ≤ r ≤ m.

STEP 4. Combine the regression estimates and obtain the weighted average estimates

f̂i,n =
m∑
r=1

Wi,n,rf̂i,n,r, 1 ≤ i ≤ l.
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STEP 5. Estimate the best arm, select and pull. For the covariate Xn, define în =
argmax1≤i≤lf̂i,n(Xn) (If there is a tie, any tie-breaking rule may apply). Choose an

arm, with probability 1− (l − 1)πn for arm în (the currently most promising choice)
and with probability πn for each of the remaining arms. That is,

In =

{
în, with probability 1− (l − 1)πn,

i, with probability πn, i 6= în, 1 ≤ i ≤ l.

Then pull the arm In to receive the reward YIn,n.

STEP 6. Update the weights and the error variance estimates. For 1 ≤ i ≤ l, if i 6= In, let
Wi,n+1,r = Wi,n,r, 1 ≤ r ≤ m, v̂i,n+1,r = v̂i,n,r, 1 ≤ r ≤ m, and v̂i,n+1 = v̂i,n. If i = In,
update the weights and the error variance estimates by

Wi,n+1,r =

Wi,n,r

v̂
1/2
i,n,r

exp

(
−(f̂i,n,r(Xn)− Yi,n)2

2v̂i,n

)
m∑
k=1

Wi,n,k

v̂
1/2
i,n,k

exp

(
−

(f̂i,n,k(Xn)− Yi,n)2

2v̂i,n

) , 1 ≤ r ≤ m,

v̂i,n+1,r =

n∑
k=n0l+1

(YIk,k − f̂Ik,k,r(Xk))
2I(Ik = i)

n∑
k=n0l+1

I(Ik = i)

∨ v , 1 ≤ r ≤ m,

and

v̂i,n+1 =

n∑
r=1

Wi,n+1,rv̂i,n+1,r,

where I(·) is the indicator function and v is a small positive constant (to ensure that
v̂i,n+1,r is nonzero). In practice, we set v = 10−16.

STEP 7. Repeat steps 3 - 6 for n = n0l + 2, n0l + 3, · · · , and so on.

In the allocation strategy above, step 1 and step 2 initialize the game and pull each
arm the same number of times. Step 3 and step 4 estimate the reward function for each
arm using several regression methods, and combine the estimates by a weighted average
scheme. Clearly, the importance of these regression methods are differentiated by their
corresponding weights. Step 5 performs an enforced randomization algorithm, which gives
preference to the arm with the highest reward estimate. This type of arm randomization is
also known as the ε-greedy algorithm. Step 6 is the key to the model combining algorithm,
which updates the weights for the recently played arm. Its weight updating formula implies
that if the estimated reward from a regression method turns out to be far away from the
observed reward, we penalize this method by decreasing its weight, while if the estimated
reward turns out to be accurate, we reward this method by increasing its weight. Note that
our combining approach has few tuning parameters except for what is already included in
the individual regression procedures.
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4. Kernel Regression Procedures

In this section, we consider the special case that kernel estimation is used as the only
modeling method. The primary goals include: 1) establishing the uniform strong consistency
of kernel estimation under the proposed allocation strategy; 2) performing the finite-time
regret analysis. To extend the applicability of kernel methods, a dimension reduction sub-
procedure is described in Section 4.3.

4.1 Strong Consistency

We focus on the Nadaraya-Watson regression and study its strong consistency under
the proposed allocation strategy. Given a regression method δr ∈ ∆ and an arm i, we say
it is strongly consistent in L∞ norm for arm i if ‖f̂i,n,r − fi‖∞ → 0 a.s. as n→∞.

Assumption 0. The errors satisfy a (conditional) moment condition that there exist posi-
tive constants v and c such that for all integers k ≥ 2 and n ≥ 1,

E(|εn|k|Xn) ≤ k!

2
v2ck−2

almost surely.

Assumption 0 means that the error distributions, which could depend on the covariates,
satisfy a moment condition known as refined Bernstein condition (e.g., Birgé and Massart,
1998, Lemma 8). Normal distribution, for instance, satisfies the condition. Bounded errors
trivially meet the requirement. Therefore, Assumption 0 is met in a wide range of real
applications, and will also be used in the next section for understanding strong consistency
of model combining procedures. Note that heavy-tailed distributions are also possible for
bandit problems (Bubeck et al., 2013).

Given a bandit arm 1 ≤ i ≤ l, at each time point n, define Ji,n = {j : Ij = i, 1 ≤ j ≤
n − 1}, the set of past time points at which arm i is pulled. Let Mi,n denote the size of
the set Ji,n. For each u = (u1, u2, · · · , ud) ∈ Rd, define ‖u‖∞ = max{|u1|, |u2|, · · · , |ud|}.
Consider two natural conditions on the mean reward functions and the covariate density as
follows.

Assumption 1. The functions fi are continuous on [0, 1]d with A =: sup1≤i≤l supx∈[0,1]d

(f∗(x)− fi(x)) <∞.

Assumption 2. The design distribution PX is dominated by the Lebesgue measure with a
continuous density p(x) uniformly bounded above and away from 0 on [0, 1]d; that is, p(x)
satisfies c ≤ p(x) ≤ c for some positive constants c ≤ c.

In addition, consider a multivariate nonnegative kernel function K(u) : Rd → R that
satisfies Lipschitz, boundedness and bounded support conditions.

Assumption 3. For some constants 0 < λ <∞,

|K(u)−K(u′)| ≤ λ‖u− u′‖∞

for all u, u′ ∈ Rd.
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Assumption 4. There exist constants L1 ≤ L, c3 > 0 and c4 ≥ 1 such that K(u) = 0 for
‖u‖∞ > L, K(u) ≥ c3 for ‖u‖∞ ≤ L1, and K(u) ≤ c4 for all u ∈ Rd.

Let hn denote the bandwidth, where hn → 0 as n→∞. The Nadaraya-Watson estima-
tor of fi(x) is

f̂i,n+1(x) =

∑
j∈Ji,n+1

Yi,jK
(
x−Xj
hn

)
∑

j∈Ji,n+1
K
(
x−Xj
hn

) . (1)

Theorem 1. Suppose Assumptions 0-4 are satisfied. If the bandwidth sequence {hn} and
the decreasing sequence {πn} are chosen to satisfy hn → 0, πn → 0 and

nh2d
n π

4
n

log n
→∞,

then the Nadaraya-Watson estimators defined in (1) are strongly consistent in L∞ norm
for the functions fi.

Note that since checking L∞ norm strong consistency of kernel methods is more chal-
lenging than that of histogram methods, new technical tools are necessarily developed to
establish the strong consistency (as seen in the proof of Lemma 3 and Theorem 1 in Ap-
pendix B).

4.2 Finite-Time Regret Analysis

Next, we provide a finite-time regret analysis for the Nadaraya-Watson regression based
randomized allocation strategy. To understand the regret cumulative rate, define a modulus
of continuity ω(h; fi) by

ω(h; fi) = sup{|fi(x1)− fi(x2)| : ‖x1 − x2‖∞ ≤ h}.

For technical convenience of guarding against the situation that the denominator of
(1) is extremely small (which might occur with a non-negligible probability due to arm
selection), in this subsection, we replace K(·) in (1) with the uniform kernel I(‖u‖∞ ≤ L)
when ∑

j∈Ji,n+1

K(
x−Xj

hn
) < c5

∑
j∈Ji,n+1

I(‖x−Xj‖∞ ≤ Lhn) (2)

for some small positive constant 0 < c5 < 1. Given 0 < δ < 1 and the total time horizon
N , we define a special time point ñδ by

nδ = min
{
n > n0l :

√
16v2 log(8lN2/δ)

cn(2Lhn)dπn
≤ c5v

2

c
and exp

(
−3cn(2Lhn)dπn

56

)
≤ δ

4lN

}
. (3)

Under the condition that limn→∞ nh
d
nπn/ log n = ∞, we can see from (3) that nδ/N → 0

as N →∞. As a result, if the total time horizon is long enough, we have N > nδ.
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Theorem 2. Suppose Assumptions 0-2 and 4 are satisfied and {πn} is a decreasing se-
quence. Assume N > nδ and the kernel function is chosen as described in (2). Then with
probability larger than 1− 2δ, the cumulative regret satisfies

RN (η) < Anδ +
N∑

n=nδ

(
2 max

1≤i≤l
ω(Lhn; fi) +

CN,δ√
nhdnπn

+ (l − 1)πn

)
+A

√
N

2
log
(1

δ

)
, (4)

where CN,δ =
√

16c2
4v

2 log(8lN2/δ)/c2
5c(2L)d.

It is interesting to see from the right hand side of (4) that the regret upper bound con-
sists of several terms that make intuitive sense. The first term Anδ comes from the initial
rough exploration. The second term has three essential components: max1≤i≤l ω(Lhn; fi)

is associated with the estimation bias, CN,δ/
√
nhdnπn conforms with the notion of esti-

mation standard error, and (l − 1)πn is the randomization error. The third term reflects
the fluctuation of the randomization scheme. Such an upper bound explicitly illustrates
both the bias-variance tradeoff and the exploration-exploitation tradeoff, which reflects the
underlying nature of the proposed algorithm for the MABC problem.

Now we consider a smoothness assumption of the mean reward functions as follows.

Assumption 5. There exist positive constants ρ and κ ≤ 1 such that for each reward
function fi, the modulus of continuity satisfies

ω(h; fi) ≤ ρhκ.

Clearly, when κ = 1, Assumption 5 becomes Lipschitz continuity. As an immediate
consequence of Theorem 2 and Assumption 5, we obtain the following result if we choose

hn = 1
Ln
− 1

3κ+d and πn = 1
l−1n

− 1
3+d/κ .

Corollary 1. Suppose the same conditions as in Theorem 2 are satisfied. Further assume

Assumption 5 holds. Let hn = 1
Ln
− 1

3κ+d , πn = 1
l−1n

− 1
3+d/κ and N > nδ. Then with

probability larger than 1− 2δ, the cumulative regret satisfies

RN (η) < Anδ + 2(2ρ+ C∗N,δ + 1)N
1− 1

3+d/κ +A

√
N

2
log
(1

δ

)
,

where C∗N,δ =
√

16c2
4v

2(l − 1) log(8lN2/δ)/2dc2
5c.

In Corollary 1, the first term of the regret upper bound is dominated by the second term.
Therefore, with high probability, the cumulative regret RN (η) increases at rate no faster

than the order of N
1− 1

3+d/κ log1/2N . This result can be seen more explicitly in Corollary 2,
which gives an upper bound for the mean of RN (η). Note that by the definition of nδ, the
condition N > nδ∗ in Corollary 2 is satisfied if N is large enough.

Corollary 2. Suppose the same conditions as in Theorem 2 are satisfied. Further assume

Assumption 5 holds. Let hn = 1
Ln
− 1

3κ+d , πn = 1
l−1n

− 1
3+d/κ and N > nδ∗, where δ∗ =

N
− 1

3+d/κ . Then there exists a constant C∗ > 0 (not dependent on N) such that the mean of
cumulative regret satisfies

ERN (η) < C∗N
1− 1

3+d/κ log1/2N.
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As mentioned in Section 1, the derived regret cumulative rate in Corollary 2 is slightly

slower than the minimax rate N
1− 1

2+d/κ obtained by Perchet and Rigollet (2013) (without
assuming any extra margin condition). We tend to think this shows a limitation of the
ε-greedy type approach. Nevertheless, with the help of the aforementioned model combin-
ing strategy along with the dimension reduction technique to be introduced in the next
subsection, the kernel method based allocation can be quite flexible with potential practical
use.

4.3 Dimension Reduction

When the covariate dimension is high, the Nadaraya-Watson estimation cannot be ap-
plied due to the curse of dimensionality. Next, we describe a dimension reduction sub-
procedure to handle this situation, which is also discussed in Qian and Yang (2012). Dif-
ferent from the method there, a sparse dimension reduction technique will be included to
handle cases with higher-dimensional covariates.

Recall that Zn is the set of observations {(Xj , Ij , YIj ,j), 1 ≤ j ≤ n − 1}, and Zi,n is
the subset of Zn where Ij = i. Then Mi,n is the number of observations in Zi,n. Let Xi,n

be the Mi,n × d design matrix consisting of all covariates in Zi,n, and let Y i,n ∈ RMi,n be
the observed reward vector corresponding to Xi,n. It is known that kernel methods do not
perform well when the dimension of covariates is high. We want to apply some dimension
reduction methods (see, e.g., Li, 1991; Chen et al., 2010) to (Xi,n, Y i,n) first to obtain lower
dimensional covariates before using kernel estimation.

Specifically, suppose for each arm i, there exits a reduction function si : Rd → Rri

(ri < d), such that fi(x) = gi(si(x)) for some function gi : Rri → R. Clearly, if the reduction
function si is known, si(x) can be treated like the new lower-dimensional covariate, with
which the kernel methods can be applied to find the estimate of gi, and hence fi. However,
si is generally unknown in practice, and it is necessary to first obtain the estimate of si. In
addition, we assume that si is a linear reduction function in the sense that si(x) = BT

i x,
where Bi ∈ Rd×ri is a dimension reduction matrix. It is worth mentioning that si is not
unique, i.e., si(x) = ÃBT

i x is a valid reduction function for any full rank matrix Ã ∈ Rri×ri .
Therefore, it suffices to estimate the dimension reduction subspace span(Bi) spanned by
the columns of Bi, and obtain ŝi,n(x) = B̂T

i,nx, where B̂i,n ∈ Rd×ri is one basis matrix of
the estimated subspace at time n, and ŝi,n is the estimate of si.

Dimension reduction methods such as sliced inverse regression (also known as SIR, see
Li, 1991) can be applied to (Xi,n, Y i,n) to obtain B̂i,n. In practice, it is convenient to
have Xi,n work on the standardized scale (i.e., the sample mean is zero and the sample
covariance matrix is the identity matrix; Li, 1991; Cook, 2007). Suppose the Nadaraya-
Watson estimation is used with Ki(u) : Rri → R being a multivariate symmetric kernel
function for arm i. Recall Ji,n = {j : Ij = i, 1 ≤ j ≤ n − 1} is the set of past time points

at which arm i is pulled. Then, we can obtain f̂i,n with the following steps.

Step 1. Transform Xi,n to the standardized-scale matrix Xn,i
∗ : transform the original co-

variates Xj ’s by X∗j = Σ̂
−1/2
i,n (Xj − X̄i,n) for every j ∈ Ji,n, where X̄i,n and Σ̂i,n are

the sample mean vector and the sample covariance matrix of Xi,n, respectively.

10
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Step 2. Apply a dimension reduction method to (Xi,n
∗ , Y i,n) to obtain the estimated d×ri

dimension reduction matrix B̂∗i,n, where B̂∗Ti,nB̂
∗
i,n = Iri . For example, we can apply

SIR (Li, 1991) to obtain B̂∗i,n by using the MATLAB package LDR (Cook et al., 2011,
available at https://sites.google.com/site/lilianaforzani/ldr-package)

Step 3. Given x ∈ Rd, let x∗ = Σ̂
−1/2
i,n (x− X̄i,n) be the transformed x at the standardized

scale. The Nadaraya-Watson estimator of fi(x) is

f̂i,n(x) =

∑
j∈Ji,n

Yi,jKi

(
B̂∗Ti,nx

∗ − B̂∗Ti,nX∗j
hn−1

)
∑
j∈Ji,n

Ki

(
B̂∗Ti,nx

∗ − B̂∗Ti,nX∗j
hn−1

) . (5)

In addition to estimating the reward function for each arm, it is sometimes of interest
to know which variables contribute to the reward for each arm, and some sparse dimen-
sion reduction techniques can be applied. In particular, Chen et al. (2010) propose the
coordinate-independent sparse estimation (CISE) to give sparse dimension reduction ma-
trix such that the estimated coefficients of some predictors are zero for all reduction direc-
tions (i.e., some row vectors in B̂∗i,n become 0). When the SIR objective function is used,

the corresponding CISE method is denoted by CIS-SIR. To obtain B̂∗i,n in Step 2 above
using CIS-SIR, we can apply the MATLAB package CISE (Chen et al., 2010, available at
http://www.stat.nus.edu.sg/~stacx/).

The simulation example in Section 6 and the real data example in Section 7 both use the
algorithms described here. The simulation example is implemented in MATLAB and the
real data example is implemented in C++. The major source code illustrating the proposed
algorithms is available upon request.

5. Strong Consistency in Model Combining Based Allocation

Next, we consider the general case that multiple function estimation methods are used
for model combining. In general, it is technically difficult to verify strong consistency in
L∞ norm for a regression method. Also, practically, it is likely that some methods may
give good estimation for only a subset of the arms, but performs poorly for the rest. Not
knowing which methods work well for which arms, we proposed the combining algorithm in
Section 3 to address this issue. We will show that even in the presence of bad-performing
regression methods, the strong consistency of our allocation strategy still holds if for any
given arm, there is at least one good regression method included for combining.

Given an arm i, let N
(i)
t = inf

{
n :
∑n

j=n0l+1 I(Ij = i) ≥ t
}

, t ≥ 1, be the earliest time
point where arm i is pulled exactly t times after the forced sampling period. For notation

brevity, we use Nt instead of N
(i)
t in the rest of this section. Consider the assumptions as

follows.

Assumption A. Given any arm 1 ≤ i ≤ l, the candidate regression procedures in ∆ can be
categorized into one of the two subsets denoted by ∆i1 (non-empty) and ∆i2. All procedures

11
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in ∆i1 are strongly consistent in L∞ norm for arm i, while procedures in ∆i2 are less well-
performing in the sense that for each procedure δs in ∆i2, there exist a procedure δr in ∆i1

and some constants b > 0.5, c1 > 0 such that

lim inf
T→∞

T∑
t=1

(
f̂i,Nt,s(XNt)− fi(XNt)

)2 − T∑
t=1

(
f̂i,Nt,r(XNt)− fi(XNt)

)2
√
T (log T )b

> c1

with probability one.

Assumption B. The mean functions satisfy A = sup1≤i≤l supx∈[0,1]d(f
∗(x)− fi(x)) <∞.

Assumption C. ‖f̂i,n,r−fi‖∞ is upper bounded by a constant c2 for all 1 ≤ i ≤ l, n ≥ n0l+1
and 1 ≤ r ≤ m.

Assumption D. The variance estimates v̂i,n are upper bounded by a positive constant q
with probability one for all 1 ≤ i ≤ l and n ≥ n0l + 1.

Assumption E. The sequence {πn, n ≥ 1} satisfies that
∑∞

n=1 πn diverges.

Note that Assumption A is automatically satisfied if all the regression methods hap-
pen to be strongly consistent (i.e., ∆i2 is empty). When a bad-performing method does
exist, Assumption A requires that the difference of the mean square errors between a
good-performing method and a bad-performing method decreases slower than the order of
(log T )b/

√
T . If a parametric method δs in ∆ is based on a wrong model,

∑T
t=1

(
f̂i,Nt,s(XNt)−

fi(XNt)
)2

is of order T , and then the requirement in Assumption A is met. For an inefficient
nonparametric method, the enlargement of the mean square error by the order larger than
(log T )b/

√
T is natural to expect. Assumption B is a natural condition in the context of our

bandit problem. Assumptions C and D are immediately satisfied if the response is bounded
and the estimator is, e.g., a weighted average of some previous observations. Assumption
E ensures that Nt is finite as shown in Lemma 5 in the Appendix. As implied in Lemma 5,
if we are allowed to play the game infinitely many times, each arm will be pulled beyond
any given integer. This guarantees that each “inferior” arm can be pulled reasonably often
to ensure enough exploration.

Theorem 3. Under Assumption 0 and Assumptions A-E, the model combining allocation
strategy is strongly consistent.

With Theorem 3, one is safe to explore different models or methods in estimating the
mean reward functions that may or may not work well for some or all arms. The resulting
per-round regret can be much improved if good methods (possibly different for different
arms) are added in.

6. Simulations

In this section, we intend to illustrate the dimension reduction function estimation
procedures described in Section 4.3 for bandit problem with multivariate covariates. Two
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Figure 1: Averaged per-round regret from combining SIR and CIS-SIR.

readily available MATLAB packages for dimension reduction are used: LDR package (Cook
et al., 2011) for SIR, and CISE package (Chen et al., 2010) for CIS-SIR. The kernel used is
the Gaussian kernel

K(t) = exp(−‖t‖
2
2

2
).

We consider a three-arm bandit model with d = 10. Assume that at each time n, the
covariate is Xn = (Xn1, Xn2, · · · , Xnd)

T , and Xni’s (i = 1, · · · , d) are i.i.d random variables
from uniform(0,1). Assume the error εn ∼ 0.5N(0, 1). Consider the mean reward functions

f1(Xn) =0.5(Xn1 +Xn2 +Xn3),

f2(Xn) =0.4(Xn3 +Xn4)2 + 1.5 sin(Xn1 + 0.25Xn4),

f3(Xn) =
2Xn3

0.5 + (1.5 +Xn3 +Xn4)
.

We set the reduction dimensions for the three arms by r1 = 1, r2 = 2 and r3 = 2. Given
the time horizon N = 1200, the first 90 rounds of the game are the forced sampling period.
Let the “inferior” arm sampling probability be πn = 1

(log2 n)2
, and the kernel bandwidth for

arm i be h = n−1/(2+ri), i = 1, 2, 3. Dimension reduction methods SIR, CIS-SIR as well as
their combining strategy are run separately, and their per-round regret rn is summarized in
Figure 1 (right panel), which shows that the combining strategy performs the best. Since
the second arm (i = 2) is played the most (for SIR, 1022 times; for CIS-SIR, 1026 times),
we show the estimated dimension reduction matrix for the second arm at the last time point
n = N in Table 1. As expected, CIS-SIR results in a sparse dimension reduction matrix
with rows 1, 3 and 4 being non-zero.

It is worth mentioning that in the simulation above, we assume the reduction dimensions
for all arms are already known. In cases where the reduction dimensions are unknown, we
may apply model selection procedures to choose them, which will be investigated in the
future.
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SIR CIS-SIR

1 -0.658 -0.599 -0.611 0.681
2 0.011 -0.091 0 0
3 -0.469 0.601 -0.491 0.071
4 -0.582 0.219 -0.620 -0.728
5 -0.001 0.075 0 0
6 0.071 0.232 0 0
7 0.013 -0.340 0 0
8 -0.019 0.087 0 0
9 -0.029 -0.194 0 0
10 0.016 0.030 0 0

Table 1: Comparing the estimated dimension reduction matrix B̂∗2,N for the second arm
between SIR and CIS-SIR.

7. Web-Based Personalized News Article Recommendation

In this section, we use the Yahoo! Front Page Today Module User Click Log data
set (Yahoo! Academic Relations, 2011) to evaluate the proposed allocation strategy. The
complete data set contains about 46 million web page visit interaction events collected
during the first ten days in May 2009. Each of these events has four components: (1)
five variables constructed from the Yahoo! front page visitor’s information; (2) a pool of
about 10-14 editor-picked news articles; (3) one article actually displayed to the visitor (it is
selected uniformly at random from the article pool); (4) the visitor’s response to the selected
article (no click: 0, click: 1). Since different visitors may have different preferences for the
same article, it is reasonable to believe that the displayed article should be selected based
on the visitor associated variables. If we treat the articles in the pool as the bandit arms,
and the visitor associated variables as the covariates, this data set provides the necessary
platform to test a MABC algorithm.

One remaining issue before algorithm evaluation is that the complete data set is long-
term in nature and the pool of articles is dynamic, i.e., some outdated articles are dropped
out as people’s interest in these articles fades away, and some breaking-news articles can
appear and be added to the pool. Our current problem setup, however, assumes stationary
mean reward functions with a fixed set of arms. To avoid introducing biased evaluation
results, we focus on short-term performance where people’s interest on a particular article
does not change too much and the pool of articles remains stable. Therefore, we consider
only one day’s data (May 1, 2009). Also, we choose four articles (l = 4) as the candidate
bandit arms (article id 109511 - 109514), and keep only the events where the four articles are
included in the article pool and one of the four articles is actually displayed to the visitor.
A similar screening treatment of the data set is used in May et al. (2012) for MABC
algorithm evaluation purposes. With the above, we obtain a reduced data set containing
452,189 interaction events for subsequent use.
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Another challenge in evaluating a MABC algorithm comes from the intrinsic nature of
bandit problem: for every visitor interaction event, only one article is displayed, and we only
have this visitor’s response to the displayed article, while his/her response to other articles
is not available, causing a difficulty if the actually displayed article does not match the
article selected by a MABC algorithm. To overcome this issue caused by limited feedback,
we apply the unbiased offline evaluation method proposed by Li et al. (2010). Briefly, for
each encountered event, the MABC algorithm uses the previous “valid” data set (history)
to estimate the mean reward functions and propose an arm to pull. If the proposed arm
matches the actually displayed arm, this event is kept as a “valid” event, and the “valid”
data set (history) is updated by adding this event. On the other hand, if the proposed arm
does not match the displayed arm, this event is ignored, and the “valid” data set (history)
is unchanged. This process is run sequentially over all the interaction events to generate
the final “valid” data set, upon which a MABC algorithm can be evaluated by calculating
the click-through rate (CTR, the proportion of times a click is made). Under the fact that
in each interaction event, the displayed arm was selected uniformly at random from the
pool, it can be argued that the final “valid” data set is like being obtained from running
the MABC algorithm over a random sample of the underlying population.

With the reduced data set and the unbiased offline evaluation method, we evaluate the
performance of the following algorithms.

random: an arm is selected uniformly at random.

ε-greedy: The randomized allocation strategy is run naively without consideration of co-
variates. A simple average is used to estimate the mean reward for each arm.

SIR-kernel: The randomized allocation strategy is run using SIR-kernel method to esti-
mate the mean reward functions. Three sequences of bandwidth choices are consid-
ered: hn1 = n−1/6, hn2 = n−1/8 and hn3 = n−1/10.

model combining: Model combining based randomized allocation strategy described in
Section 3 is run with SIR-kernel method (hn3 = n−1/10) and the naive simple average
method (ε-greedy) as two candidate modeling methods.

The ε-greedy, SIR-kernel and model combining algorithms described above all take the first
1000 time points to be the forced sampling stage and use πn = n−1/4/6. Also, for any
given arm, the SIR-kernel method limits the history time window for reward estimation to
have maximum sample size of 10,000 (larger history sample size does not give us noticeable
difference in performance). In addition, we consider the following parametric algorithm:

LinUCB: LinUCB employs Bayesian logistic regression to estimate the mean reward func-
tions. The detailed implementation procedures are described in Algorithm 3 of Chapelle
and Li (2011).

Each of the algorithms listed above is run 100 times over the reduced data set with the
unbiased offline evaluation method. For each of the 100 runs, the algorithm starts at a
position randomly chosen from the first 10,000 events of the reduced data set. The resulting
CTRs are divided by the mean CTR of the random algorithm to give the normalized CTRs,
and their boxplots are shown in Fig. 2.
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Figure 2: Boxplots of normalized CTRs of various algorithms on the news article recom-
mendation data set. Algorithms include (from left to right): LinUCB, ε-greedy,
SIR-kernel (hn1), SIR-kernel (hn2), SIR-kernel (hn3), model combining with SIR-
kernel (hn3) and ε-greedy. CTRs are normalized with respect to the random
algorithm.

It appears that the SIR-kernel methods with different candidate bandwidth sequences
have very similar performance. The naive ε-greedy algorithm, however, clearly under-
performs due to its failure to take advantage of the response-covariate association. When
the naive simple average estimation (ε-greedy) is used together with SIR-kernel method
(hn3) in the model combining algorithm, the overall performance does not seem to deterio-
rate with the existence of this naive estimation method, showing once again that the model
combining algorithm allows us to safely explore new modeling methods by automatically
selecting the appropriate modeling candidate. Given that the covariates in the news article
recommendation data set are constructed with logistic regression related methods (Li et al.,
2010), it is satisfactory to observe that SIR-kernel algorithm can have similar performance
with relatively small variation when compared with the LinUCB algorithm.

8. Conclusions

In this work, we study the kernel estimation based randomized allocation strategy in a
flexible setting for MABC that works for both continuous and discrete response, and estab-
lish both the strong consistency and a finite-time regret upper bound. Allowing dependence
of the covariate and the error, we rely on new technical tools to add kernel methods to the
family of strongly consistent methods, which can potentially improve estimation efficiency
for smooth reward functions. Although the finite-time regret upper bound is slightly sub-
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optimal for the investigated randomized allocation strategy in the minimax sense (Perchet
and Rigollet, 2013), the flexibility in estimation of the mean reward functions can be very
useful in applications. In that regard, we integrate a model combination technique into
the allocation strategy to share the strengths of different statistical learning methods for
reward function estimation. It is shown that with the proposed data-driven combination of
estimation methods, our allocation strategy can remain strongly consistent.

In Appendix A, we also show that by resorting to an alternative UCB-type criterion
for arm comparison, the regret rate of the modified randomized allocation algorithm is
improved to be minimax optimal up to a logarithmic factor. It remains to be seen if the
UCB modification can be incorporated to construct a model combination algorithm with
adaptive minimax rate. Moreover, as an important open question raised by a reviewer, it
would be interesting to see whether the cumulative regret of the model combination strategy
is comparable to that of the candidate model with the smallest regret in the sense of an
oracle-type inequality similar to that of, e.g., Audibert (2009).
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Appendix A. A Kernel Estimation Based UCB Algorithm

In this section, we modify the randomized allocation strategy to give a UCB-type algo-
rithm that results in an improved rate of the cumulative regret. Similar to Section 4, we
consider the Nadaraya-Watson estimation as the only modeling method, that is,

f̂i,n(x) =

∑
j∈Ji,n Yi,jK

(
x−Xj
hn−1

)
∑

j∈Ji,n K
(
x−Xj
hn−1

) .

We slightly revise step 5 of the proposed randomized allocation strategy:

STEP 5′. Estimate the best arm, select and pull. For the covariate Xn, define

ĩn = argmax1≤i≤l f̂i,n(Xn) + Ui,n(Xn), (6)

where Ui,n(x) =
c̃

√
(logN)

∑
j∈Ji,n

K2

(
x−Xj
hn−1

)
∑
j∈Ji,n

K

(
x−Xj
hn−1

) and c̃ is some positive constant (if there is a

tie, any tie-breaking rule may be applied). Choose an arm, with probability 1 − (l − 1)πn
for arm ĩn (the currently most promising choice) and with probability πn for each of the
remaining arms. That is,

In =

{
ĩn, with probability 1− (l − 1)πn,

i, with probability πn, i 6= ĩn, 1 ≤ i ≤ l.
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Clearly, (6) shows a UCB-type algorithm that naturally extends from the UCB1 of
Auer et al. (2002) and the UCBogram of Rigollet and Zeevi (2010). Indeed, given the

uniform kernel K(u) = I(‖u‖∞ ≤ 1), we have Ui,n(x) = c̃
√

logN
Ni,n(x) , where Ni,n(x) is the

number of times arm i gets pulled inside the cube that centers at x with bin width 2hn−1.
For presentation clarity, we assume K(·) is the uniform kernel, but the results can be
generalized to kernel functions that satisfy Assumption 4. As shown in Theorem 4 below,
the finite-time regret upper bound of the UCB-type algorithm achieves the minimax rate
up to a logarithmic factor.

Theorem 4. Suppose Assumptions 0-1 hold and the uniform kernel function is used. Then

for the modified algorithm, if n0 = lNhκ, c̃ > max{2
√

3v, 12c}, h = hn = 1/d( N
logN )

1
2κ+d e

and πn ≤ 1
l ∧

1
c (

logN
n )

1
2+d/κ , the mean of cumulative regret satisfies

ERN (η) < C̃∗N
1− 1

2+d/κ (logN)
1

2+d/κ . (7)

It is worth noting that despite the seemingly minor algorithmic modification, the proof
techniques used by Theorem 2 and Theorem 4 are quite different. The key difference is that:
the UCB-type criterion enables us to provide upper bounds (with high probability) for the
number of times the “inferior” arms are selected, and these bounds are dependent on the
reward difference between the “optimal” and the “inferior” arms; for the algorithm before
modification, we have to rely on studying the estimation errors of the reward functions and
the UCB-type arguments do not apply. It is not settled yet as to whether the suboptimal
rate of the ε-greedy type algorithm is intrinsic to the method or is the limitation of the
proof techniques. But we tend to think that the rate given for the ε-greedy type algorithm
is intrinsic to the method. Also, although the UCB-type algorithm leads to an improved
regret rate, it is not yet clear how it could be used to construct a model combination
algorithm.

Appendix B. Lemmas and Proofs

B.1 Proof of Theorem 1

Lemma 1. Suppose {Fj , j = 1, 2, · · · } is an increasing filtration of σ-fields. For each j ≥ 1,
let εj be an Fj+1-measurable random variable that satisfies E(εj |Fj) = 0, and let Tj be an
Fj-measurable random variable that is upper bounded by a constant C > 0 in absolute value
almost surely. If there exist positive constants v and c such that for all k ≥ 2 and j ≥ 1,
E(|εj |k|Fj) ≤ k!v2ck−2/2, then for every ε > 0 and every integer n ≥ 1,

P
( n∑
j=1

Tjεj ≥ nε
)
≤ exp

(
− nε2

2C2(v2 + cε/C)

)
.
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Proof of Lemma 1. Note that

P
( n∑
j=1

Tjεj ≥ nε
)
≤ e−tnεE

[
exp
(
t

n∑
j=1

Tjεj

)]
= e−tnεE

[
E
(

exp
(
t
n∑
j=1

Tjεj
)
|Fn
)]

= e−tnεE
[
exp
(
t
n−1∑
j=1

Tjεj

)
E(etTnεn |Fn)

]
.

By the moment condition on εn and Taylor expansion, we have

logE(etTnεn |Fn) ≤ E(etTnεn |Fn)− 1

≤ tTnE(εn|Fn) +

∞∑
k=2

tk|Tn|k

k!
E(|εn|k|Fn)

≤ v2C2t2

2
(1 + cCt+ (cCt)2 + · · · )

=
v2C2t2

2(1− cCt)

for t < 1/cC. Thus, it follows by induction that

P
( n∑
j=1

Tjεj ≥ nε
)
≤ exp

(
−tnε+

nv2C2t2

2(1− cCt)

)
≤ exp

(
− nε2

2C2(v2 + cε/C)

)
,

where the last inequality is obtained by minimization over t. This completes the proof of
Lemma 1.

Lemma 2. Suppose {Fj , j = 1, 2, · · · } is an increasing filtration of σ-fields. For each j ≥ 1,
let Wj be an Fj-measurable Bernoulli random variable whose conditional success probability
satisfies

P (Wj = 1|Fj−1) ≥ βj

for some 0 ≤ βj ≤ 1. Then given n ≥ 1,

P
( n∑
j=1

Wj ≤
( n∑
j=1

βj
)
/2
)
≤ exp

(
−

3
∑n

j=1 βj

28

)
.

Lemma 2 is known as an extended Bernstein inequality (see, e.g., Yang and Zhu (2002),
Section A.4.). For completeness, we give a brief proof here.
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Proof of Lemma 2. Suppose W̃j , 1 ≤ j ≤ n are independent Bernoulli random variables
with success probability βj , and are assumed to be independent of Fn. By Bernstein’s
inequality (e.g., Cesa-Bianchi and Lugosi, 2006, Corollary A.3),

P
( n∑
j=1

W̃j ≤
( n∑
j=1

βj
)
/2
)
≤ exp

(
−

3
∑n

j=1 βj

28

)
.

Also,
∑n

j=1Wj is stochastically no smaller than
∑n

j=1 W̃j , that is, for every t, P (
∑n

j=1Wj >

t) ≥ P (
∑n

j=1 W̃j > t). Indeed, noting that P (Wn > t|Fn−1) ≥ P (W̃n > t) for every t, we
have

P (W1 + · · ·+Wn > t|Fn−1) ≥ P (W1 + · · ·+Wn−1 + W̃n > t|Fn−1).

Similarly, by P (Wn−1 > t|Fn−2) ≥ P (W̃n−1 > t) for every t and the independence of W̃j ’s,

P (W1 + · · ·+Wn−1 +W̃n > t|Fn−2, W̃n) ≥ P (W1 + · · ·+Wn−2 +W̃n−1 +W̃n > t|Fn−2, W̃n).

Continuing the process above, we can see that P (
∑n

j=1Wj > t) ≥ P (
∑n

j=1 W̃j > t) holds.

Lemma 3. Under the settings of the kernel estimation in Section 4.1, given arm i and a
cube A ⊂ [0, 1]d with side width h, if Assumptions 0, 3 and 4 are satisfied, then for any
ε > 0,

P
(

sup
x∈A

∑
j∈Ji,n+1

εjK
(x−Xj

hn

)
>

nε

1− 1/
√

2

)

≤ exp
(
− nε2

4c2
4v

2

)
+ exp

(
− nε

4c4c

)
+

∞∑
k=1

2kd exp
(
−2knε2

λ2v2

)
+

∞∑
k=1

2kd exp
(
−2k/2nε

2λc

)
.

Proof of Lemma 3. At each time point j, let Wj = 1 if arm i is pulled (i.e., Ij = i), and

Wj = 0 otherwise. Denote G(x) =
∑n

j=1 εjWjK(
x−Xj
hn

). Then, to find an upper bound

for P (supx∈AG(x) > nε/(1 − 1/
√

2)), we use a “chaining” argument. For each k ≥ 0, let
γk = hn/2

k, and we can partition the cube A into 2kd bins with bin width γk. Let Fk
denote the set consisting of the center points of these 2kd bins. Clearly, card(Fk) = 2kd,
and Fk is a γk/2-net of A in the sense that for every x ∈ A, we can find a x′ ∈ Fk such that
‖x − x′‖∞ ≤ γk/2. Let τk(x) = argminx′∈Fk‖x − x

′‖∞ be the closest point to x in the net
Fk. With the sequence F0, F1, F2, · · · of γ0/2, γ1/2, γ2/2, · · · nets in A, it is easy to see that
for every x ∈ A, ‖τk(x)−τk−1(x)‖∞ ≤ γk/2 and limk→∞ τk(x) = x. Thus, by the continuity
of the kernel function, we have limk→∞G(τk(x)) = G(x). It follows that

G(x) = G(τ0(x)) +
∞∑
k=1

[
G(τk(x))−G(τk−1(x))

]
.
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Thus,

P
(

sup
x∈A

G(x) >
nε

1− 1/
√

2

)
=P

(
sup
x∈A

{
G(τ0(x)) +

∞∑
k=1

[
G(τk(x))−G(τk−1(x))

]}
>
∞∑
k=0

nε

2k/2

)
≤P

(
sup
x∈A

G(τ0(x)) > nε
)

+
∞∑
k=1

P
(

sup
x∈A

[
G(τk(x))−G(τk−1(x))

]
>

nε

2k/2

)
≤P

(
sup
x∈F0

G(x) > nε
)

+
∞∑
k=1

P
(

sup
x2∈Fk, x1∈Fk−1

‖x2−x1‖∞≤γk/2

[
G(x2)−G(x1)

]
>

nε

2k/2

)
≤ card(F0) max

x∈F0

P
(
G(x) > nε

)
+
∞∑
k=1

2dcard(Fk−1) max
x2∈Fk, x1∈Fk−1

‖x2−x1‖∞≤γk/2

P
(
G(x2)−G(x1) >

nε

2k/2

)
, (8)

where the last inequality holds because for each x1 ∈ Fk−1, there are only 2d such points

x2 ∈ Fk that can satisfy ‖x2−x1‖∞ ≤ γk/2. Given x ∈ F0, since |WjK(
x−Xj
h )| ≤ c4 almost

surely for all j ≥ 1, it follows by Lemma 1 that

P
(
G(x) > nε

)
≤ exp

(
− nε2

2c2
4(v2 + cε/c4)

)
. (9)

Similarly, given x2 ∈ Fk, x1 ∈ Fk−1 and ‖x2 − x1‖∞ ≤ γk, since∣∣∣K(x2 −Xj

hn

)
−K

(x1 −Xj

hn

)∣∣∣ ≤ λ‖x2 − x1‖∞
hn

≤ λγk
2hn

=
λ

2k+1

almost surely, it follows by Lemma 1 that

P
(
G(x2)−G(x1) >

nε

2k/2

)
= P

( n∑
j=1

εjWj

[
K
(x2 −Xj

h

)
−K

(x1 −Xj

h

)]
>

nε

2k/2

)
≤ exp

(
− 2k+2nε2

2λ2(v2 + 2k/2+1cε/λ)

)
. (10)

Thus, by (8), (9) and (10),

P
(

sup
x∈A

G(x) >
nε

1− 1/
√

2

)
≤ exp

(
− nε2

2c2
4(v2 + cε/c4)

)
+
∞∑
k=1

2kd exp
(
− 2k+2nε2

2λ2(v2 + 2k/2+1cε/λ)

)
≤ exp

(
− nε2

4c2
4v

2

)
+ exp

(
− nε

4c4c

)
+
∞∑
k=1

2kd exp
(
−2knε2

λ2v2

)
+
∞∑
k=1

2kd exp
(
−2k/2nε

2λc

)
.

This completes the proof of Lemma 3.
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Proof of Theorem 1. Recall that Mi,n = |Ji,n|, c is the covariate density lower bound, and
L,L1, c3 are constants defined in Assumption 4 for the kernel function K(·), and. Note that
for each x ∈ Rd,

|f̂i,n+1(x)− fi(x)| =

∣∣∣∣∣
∑

j∈Ji,n+1

Yi,jK

(
x−Xj

hn

)
∑

j∈Ji,n+1

K

(
x−Xj

hn

) − fi(x)

∣∣∣∣∣

=

∣∣∣∣∣
∑

j∈Ji,n+1

(fi(Xj) + εj)K

(
x−Xj

hn

)
∑

j∈Ji,n+1

K

(
x−Xj

hn

) − fi(x)

∣∣∣∣∣

=

∣∣∣∣∣
∑

j∈Ji,n+1

(fi(Xj)− fi(x))K

(
x−Xj

hn

)
∑

j∈Ji,n+1

K

(
x−Xj

hn

) +

∑
j∈Ji,n+1

εjK

(
x−Xj

hn

)
∑

j∈Ji,n+1

K

(
x−Xj

hn

) ∣∣∣∣∣

≤ sup
{x,y:‖x−y‖∞≤Lhn}

|fi(x)− fi(y)|+

∣∣∣∣∣
1

Mi,n+1hdn

∑
j∈Ji,n+1

εjK

(
x−Xj

hn

)
1

Mi,n+1hdn

∑
j∈Ji,n+1

K

(
x−Xj

hn

) ∣∣∣∣∣, (11)

where the last inequality follows from the bounded support assumption of kernel function
K(·). By uniform continuity of the function fi,

lim
n→∞

sup
{x,y:‖x−y‖∞≤Lhn}

|fi(x)− fi(y)| = 0.

To show that ‖f̂i,n − fi‖∞ → 0 as n→∞, we only need

sup
x∈[0,1]d

∣∣∣∣∣
1

Mi,n+1hdn

∑
j∈Ji,n+1

εjK

(
x−Xj

hn

)
1

Mi,n+1hdn

∑
j∈Ji,n+1

K

(
x−Xj

hn

) ∣∣∣∣∣→ 0 as n→∞. (12)

First, we want to show

inf
x∈[0,1]d

1

Mi,n+1hdn

∑
j∈Ji,n+1

K
(x−Xj

hn

)
>
c3cL

d
1πn

2
, (13)

almost surely for large enough n. Indeed, for each n ≥ n0l + 1, we can partition the unit
cube [0, 1]d into B̃ bins with bin width L1hn such that B̃ ≤ 1/(L1hn)d. We denote these

22



Bandit Problem with Covariates

bins by Ã1, Ã2, · · · , ÃB̃. Given an arm i and 1 ≤ k ≤ B̃, for every x ∈ Ãk, we have

∑
j∈Ji,n+1

K
(x−Xj

hn

)
=

n∑
j=1

I(Ij = i)K
(x−Xj

hn

)

≥
n∑
j=1

I(Ij = i,Xj ∈ Ãk)K
(x−Xj

hn

)
≥ c3

n∑
j=1

I(Ij = i,Xj ∈ Ãk),

where the last inequality follows by Assumption 4. Consequently,

P
(

inf
x∈Ãk

1

Mi,n+1hdn

∑
j∈Ji,n+1

K
(x−Xj

hn

)
≤ c3cL

d
1πn

2

)
≤P
(

inf
x∈Ãk

1

nhdn

∑
j∈Ji,n+1

K
(x−Xj

hn

)
≤ c3cL

d
1πn

2

)

≤P
( c3

nhdn

n∑
j=1

I(Ij = i,Xj ∈ Ãk) ≤
c3cL

d
1πn

2

)
=P
( n∑
j=1

I(Ij = i,Xj ∈ Ãk) ≤
cn(L1hn)dπn

2

)
. (14)

Noting that P (Ij = i,Xj ∈ Ãk|Zj) ≥ c(L1hn)dπj for 1 ≤ j ≤ n, we have by Lemma 2 that

P
( n∑
j=1

I(Ij = i,Xj ∈ Ãk) ≤
cn(L1hn)dπn

2

)
≤ exp

(
−3cn(L1hn)dπn

28

)
. (15)

Therefore,

P
(

inf
x∈[0,1]d

1

Mi,n+1hdn

∑
j∈Ji,n+1

K
(x−Xj

hn

)
≤ c3cL

d
1πn

2

)

≤
B̃∑
k=1

P
(

inf
x∈Ãk

1

Mi,n+1hdn

∑
j∈Ji,n+1

K
(x−Xj

hn

)
≤ c3cL

d
1πn

2

)
≤B̃ exp

(
−3cn(L1hn)dπn

28

)
,

where the last inequality follows by (14) and (15). With the condition nh2dπ4
n/ log n→∞,

we immediately obtain (13) by Borel-Cantelli lemma.
By (13), it follows that (12) holds if

sup
x∈[0,1]d

∣∣∣ 1

Mi,n+1hdn

∑
j∈Ji,n+1

εjK
(x−Xj

hn

)∣∣∣ = o(πn). (16)
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In the rest of the proof, we want to show that (16) holds. For each n ≥ n0l + 1, we can
partition the unit cube [0, 1]d into B bins with bin length hn such that B ≤ 1/hdn. At each
time point j, let Wj = 1 if arm i is pulled (i.e., Ij = i), and Wj = 0 otherwise. Then given
ε > 0,

P
(

sup
x∈[0,1]d

∣∣∣ 1

Mi,n+1hdn

∑
j∈Ji,n+1

εjK
(x−Xj

hn

)∣∣∣ > πnε
)

≤B max
1≤k≤B

P
(

sup
x∈Ak

∣∣∣ 1

Mi,n+1hdn

∑
j∈Ji,n+1

εjK
(x−Xj

hn

)∣∣∣ > πnε
)

≤BP
(Mi,n+1

n
≤ πn

2

)
+B max

1≤k≤B
P
(

sup
x∈Ak

∣∣∣ 1

Mi,n+1hdn

∑
j∈Ji,n+1

εjK
(x−Xj

hn

)∣∣∣ > πnε,
Mi,n+1

n
>
πn
2

)
≤BP

(Mi,n+1

n
≤ πn

2

)
+B max

1≤k≤B
P
(

sup
x∈Ak

∣∣∣ ∑
j∈Ji,n+1

εjK
(x−Xj

hn

)∣∣∣ > nπ2
nh

d
nε

2

)
≤B exp

(
−3nπn

28

)
+B max

1≤k≤B
P
(

sup
x∈Ak

∣∣∣ ∑
j∈Ji,n+1

εjK
(x−Xj

hn

)∣∣∣ > nπ2
nh

d
nε

2

)
, (17)

where the last inequality follows by Lemma 2. Note that by Lemma 3,

P
(

sup
x∈Ak

∣∣∣ ∑
j∈Ji,n+1

εjK
(x−Xj

hn

)∣∣∣ > nπ2
nh

d
nε

2

)
≤P
(

sup
x∈Ak

∑
j∈Ji,n+1

εjK
(x−Xj

hn

)
>
nπ2

nh
d
nε

2

)
+ P

(
sup
x∈Ak

∑
j∈Ji,n+1

(−εj)K
(x−Xj

hn

)
>
nπ2

nh
d
nε

2

)
.

≤ 2 exp
(
−(
√

2− 1)2nπ4
nh

2d
n ε

2

32c2
4v

2

)
+ 2 exp

(
−(
√

2− 1)nπ2
nh

d
nε

8
√

2c4c

)
+ 2

∞∑
k=1

2kd exp
(
−(
√

2− 1)22knπ4
nh

2d
n ε

2

8λ2v2

)
+ 2

∞∑
k=1

2kd exp
(
−(
√

2− 1)2k/2nπ2
nh

d
nε

4
√

2λc

)
. (18)

Thus, by (17), (18) and the condition that nh2d
n π

4
n/ log n → ∞, (16) is an immediate

consequence of Borel-Cantelli lemma. This completes the proof of Theorem 1.

B.2 Proofs of Theorem 2 and Corollary 2

Given x ∈ [0, 1]d, 1 ≤ i ≤ l and n ≥ n0l + 1, define Gn+1(x) = {j : 1 ≤ j ≤ n, ‖x −
Xj‖∞ ≤ Lhn} and Gi,n+1(x) = {j : 1 ≤ j ≤ n, Ij = i, ‖x −Xj‖∞ ≤ Lhn}. Let Mn+1(x)
and Mi,n+1(x) be the size of the sets Gn+1(x) and Gi,n+1(x), respectively. Then, the kernel

method estimator f̂i,n+1(x) satisfies the following lemma.
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Lemma 4. Suppose Assumptions 0, 1 and 4 are satisfied, and {πn} is a decreasing sequence.
Given x ∈ [0, 1]d, 1 ≤ i ≤ l and n ≥ n0l + 1, for every ε > ω(Lhn; fi),

PXn

(
|f̂i,n+1(x)− fi(x)| ≥ ε

)
≤ exp

(
−3Mn+1(x)πn

28

)
+ 4N exp

(
−
c2

5Mn+1(x)πn
(
ε− ω(Lhn; fi)

)2
4c2

4v
2 + 4c4c

(
ε− ω(Lhn; fi)

) ), (19)

where PXn(·) denotes the conditional probability given design points Xn = (X1, X2, · · · , Xn).

Proof of Lemma 4. It is clear that if Mn+1(x) = 0, (19) trivially holds. Without loss of

generality, assume Mn+1(x) > 0. Define the event Bi,n = { 1
Mi,n+1(x)

∑
j∈Ji,n+1

K(
x−Xj
hn

) ≥
c5}. Note that

PXn

(
|f̂i,n+1(x)− fi(x)| ≥ ε

)
≤PXn

(Mi,n+1(x)

Mn+1(x)
≤ πn

2

)
+ PXn

(
|f̂i,n+1(x)− fi(x)| ≥ ε, Mi,n+1(x)

Mn+1(x)
>
πn
2

)
≤ exp

(
−3Mn+1(x)πn

28

)
+ PXn

(
|f̂i,n+1(x)− fi(x)| ≥ ε, Mi,n+1(x)

Mn+1(x)
>
πn
2
, Bi,n

)
+ PXn

(
|f̂i,n+1(x)− fi(x)| ≥ ε, Mi,n+1(x)

Mn+1(x)
>
πn
2
, Bc

i,n

)
,

=: exp
(
−3Mn+1(x)πn

28

)
+A1 +A2, (20)

where the last inequality follows by Lemma 2. Under Bi,n, by Assumption 4, the definition
of the modulus continuity and the same argument as (11), we have

|f̂i,n+1(x)− fi(x)| =

∣∣∣∣∣∣
∑

j∈Ji,n+1
Yi,jK

(
x−Xj
hn

)
∑

j∈Ji,n+1
K
(
x−Xj
hn

)
∣∣∣∣∣∣

≤ ω(Lhn; fi) +
1

c5Mi,n+1(x)

∣∣∣ ∑
j∈Gi,n+1(x)

εjK
(x−Xj

hn

)∣∣∣.
25



Qian and Yang

Define σ̃t = inf{ñ :
∑ñ

j=1 I(Ij = i and ‖x − Xj‖∞ ≤ Lhn) ≥ t}, t ≥ 1. Then, by the
previous display, for every ε > ω(Lhn; fi),

A1 ≤ PXn

(∣∣∣ ∑
j∈Gi,n+1(x)

εjK
(x−Xj

hn

)∣∣∣ ≥ c5Mi,n+1(x)
(
ε− ω(Lhn; fi)

)
,
Mi,n+1(x)

Mn+1(x)
>
πn
2

)

≤
n∑
n̄=0

PXn

(∣∣∣ n̄∑
t=1

εσ̃tK
(x−Xσ̃t

hn

)∣∣∣ ≥ c5n̄
(
ε− ω(Lhn; fi)

)
,
Mi,n+1(x)

Mn+1(x)
>
πn
2
,Mi,n+1(x) = n̄

)
≤

n∑
n̄=dMn+1(x)πn/2e

PXn

(∣∣∣ n̄∑
t=1

εσ̃tK
(x−Xσ̃t

hn

)∣∣∣ ≥ c5n̄
(
ε− ω(Lhn; fi)

))

≤
n∑

n̄=dMn+1(x)πn/2e

2 exp
(
−

n̄c2
5

(
ε− ω(Lhn; fi)

)2
2c2

4v
2 + 2c4c

(
ε− ω(Lhn; fi)

))

≤ 2N exp
(
−
c2

5Mn+1(x)πn
(
ε− ω(Lhn; fi)

)2
4c2

4v
2 + 4c4c

(
ε− ω(Lhn; fi)

) ), (21)

where the last to second inequality follows by Lemma 1 and the upper boundedness of the
kernel function. By an argument similar to the previous two displays (using the uniform
kernel), it is not hard to obtain that

A2 ≤ 2N exp
(
−
Mn+1(x)πn

(
ε− ω(Lhn; fi)

)2
4v2 + 4c

(
ε− ω(Lhn; fi)

) )
. (22)

Combining (20), (21), (22) and the fact that 0 < c5 ≤ 1 ≤ c4, we complete the proof of
Lemma 4.

Proof of Theorem 2. Since f̂i∗(Xn),n(Xn) ≤ f̂în,n(Xn), the regret accumulated after the ini-
tial forced sampling period satisfies that

N∑
n=n0l+1

(
f∗(Xn)− fIn(Xn)

)
=

N∑
n=n0l+1

(
fi∗(Xn)(Xn)− f̂i∗(Xn),n(Xn) + f̂i∗(Xn),n(Xn)− fîn(Xn) + fîn(Xn)− fIn(Xn)

)

≤
N∑

n=n0l+1

(
fi∗(Xn)(Xn)− f̂i∗(Xn),n(Xn) + f̂în,n(Xn)− fîn(Xn) + fîn(Xn)− fIn(Xn)

)

≤
N∑

n=n0l+1

(
2 sup

1≤i≤l
|f̂i,n(Xn)− fi(Xn)|+AI(In 6= în)

)
. (23)

It can be seen from (23) that the error upper bound consists of the estimation error regret
and randomization error regret.
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First, we find the upper bound of the estimation error regret. Given arm i, n ≥ n0l and
ε > ω(Lhn; fi),

P
(
|f̂i,n+1(Xn+1)− fi(Xn+1)| ≥ ε

)
≤EPXn+1

(
Mn+1(Xn+1) ≤ cn(2Lhn)d

2

)
+ EPXn+1

(
|f̂i,n+1(Xn+1)− fi(Xn+1)| ≥ ε,Mn+1(Xn+1) >

cn(2Lhn)d

2

)
. (24)

Since for every x ∈ [0, 1]d, P (‖x − Xj‖∞ ≤ Lhn) ≥ c(2Lhn)d, 1 ≤ j ≤ n, we have by the
extended Bernstein’s inequality that

PXn+1

(
Mn+1(Xn+1) ≤ cn(2Lhn)d

2

)
≤ exp

(
−3cn(2Lhn)d

28

)
. (25)

By Lemma 4,

PXn+1

(
|f̂i,n+1(Xn+1)− fi(Xn+1)| ≥ ε,Mn+1(Xn+1) >

cn(2Lhn)d

2

)
≤ exp

(
−3cn(2Lhn)dπn

56

)
+ 4N exp

(
−
c2

5cn(2Lhn)dπn
(
ε− ω(Lhn; fi)

)2
8c2

4v
2 + 8c4c

(
ε− ω(Lhn; fi)

) )
. (26)

Let

ε̃i,n = ω(Lhn; fi) +

√
16c2

4v
2 log(8lN2/δ)

c2
5c(2L)dnhdnπn

.

Then, by (24), (25), (26) and the definition of nδ in (3), it follows that for every n ≥ nδ,

P
(
|f̂i,n+1(Xn+1)− fi(Xn+1)| ≥ ε̃i,n

)
≤ δ

4lN
+

δ

4lN
+

δ

2lN
=

δ

lN
,

which implies that

P
( N∑
n=nδ+1

2 sup
1≤i≤l

|f̂i,n(Xn)− fi(Xn)| ≥
N∑

n=nδ+1

2 max
1≤i≤l

ε̃i,n−1

)
≤ δ. (27)

Next, we want to bound the randomization error regret. Given ε > 0, since P (In 6=
în) = (l − 1)πn, we have by Hoeffding’s inequality that

P
(
A
( N∑
n=nδ+1

I(In 6= în)−
N∑

n=nδ+1

(l − 1)πn
)
≥ ε
)
≤ exp

(
− 2ε2

NA2

)
.

Taking ε = A
√
N/2 log(1/δ), we immediately get

P
(
A

N∑
n=nδ+1

I(In 6= în) ≥ A
N∑

n=nδ+1

(l − 1)πn +A

√
N

2
log
(1

δ

))
≤ δ. (28)

Then, (23), (27) and (28) together complete the proof of Theorem 2.
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B.3 Proof of Theorem 3

Lemma 5. Under Assumption E and the proposed allocation strategy, for each arm i

Nt <∞ a.s. for all t ≥ 1.

Proof of Lemma 5. It suffices to check that

∞∑
j=n0l+1

I(Ij = i) =∞ a.s.. (29)

Indeed, let Fn, n ≥ 1 be the σ-field generated by (Zn, Xn, In). By the proposed allocation
strategy, for all j ≥ n0l + 1,

P (Ij = i|Fj−1) ≥ πj .

By Assumption E,
∑∞

j=n0l+1 P (Ij = i|Fj−1) = ∞. Therefore, (29) is an immediate result
of the Lévy’s extension of the Borel-Cantelli lemmas (Williams, 1991, pp.124).

Proof of Theorem 3. The key to the proof is to show ‖f̂i,n − fi‖∞ → 0 almost surely for
1 ≤ i ≤ l (Yang and Zhu, 2002, Theorem 1). Without loss of generality, assume ∆ includes
only two candidate procedures (m = 2). Given 1 ≤ i ≤ l, assume that procedure δ1 ∈ ∆i1

and procedure δ2 ∈ ∆i2 (the case of δ1, δ2 ∈ ∆i1 is trivial). Since

‖f̂i,n − fi‖∞ = ‖Wi,n,1(f̂i,n,1 − fi) +Wi,n,2(f̂i,n,2 − fi)‖∞
≤Wi,n,1‖f̂i,n,1 − fi‖∞ +Wi,n,2‖f̂i,n,2 − fi‖∞,

it suffices to prove that
Wi,n,1

Wi,n,2
→∞ almost surely as n→∞.

As defined before, Nt = inf{n :
∑n

j=n0l+1 I(Ij = i) ≥ t}, and let Fn be the σ-field
generated by (Zn, Xn, In). Then for any t ≥ 1, Nt is a stopping time relative to {Fn, n ≥
1}. By Lemma 5, Nt < ∞ a.s. for all t ≥ 1. Therefore, the weights Wi,Nt,1, Wi,Nt,2

and the variance estimates v̂i,Nt,1, v̂i,Nt,2 and v̂i,Nt for t ≥ 1 are well-defined. By the
allocation strategy, the weight associated with arm i is updated only after this arm is

pulled. Consequently, we only need to show
Wi,Nt,1

Wi,Nt,2
→∞ almost surely as t→∞.
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Note that for any t ≥ 1,

Wi,Nt+1,1

Wi,Nt+1,2
=
Wi,Nt,1

Wi,Nt,2
×
v̂

1/2
i,Nt,2

v̂
1/2
i,Nt,1

exp

(
−

(f̂i,Nt,1(XNt)− Yi,Nt)2 − (f̂i,Nt,2(XNt)− Yi,Nt)2

2v̂i,Nt

)

=
Wi,Nt,1

Wi,Nt,2
×
v̂

1/2
i,Nt,2

v̂
1/2
i,Nt,1

× exp

(
−

(f̂i,Nt,1(XNt)− fi(XNt)− εNt)2 − (f̂i,Nt,2(XNt)− fi(XNt)− εNt)2

2v̂i,Nt

)

=
Wi,Nt,1

Wi,Nt,2
×
v̂

1/2
i,Nt,2

v̂
1/2
i,Nt,1

exp

(
(f̂i,Nt,2(XNt)− fi(XNt))

2 − (f̂i,Nt,1(XNt)− fi(XNt))
2

2v̂i,Nt

)

× exp

(
εNt(f̂i,Nt,1(XNt)− f̂i,Nt,2(XNt))

v̂i,Nt

)

=
Wi,Nt,1

Wi,Nt,2
×
v̂

1/2
i,Nt,2

v̂
1/2
i,Nt,1

exp(T1t + T2t),

where

T1t =
(f̂i,Nt,2(XNt)− fi(XNt))

2 − (f̂i,Nt,1(XNt)− fi(XNt))
2

2v̂i,Nt
,

and

T2t =
εNt(f̂i,Nt,1(XNt)− f̂i,Nt,2(XNt))

v̂i,Nt
.

Thus, for each T ≥ 1,

Wi,NT+1,1

Wi,NT+1,2
=

 T∏
t=1

v̂
1/2
i,Nt,2

v̂
1/2
i,Nt,1

 exp

(
T∑
t=1

T1t +
T∑
t=1

T2t

)
. (30)

Then define ξt = εNt(f̂i,Nt,1(XNt) − fi(XNt)) and ξ′t = εNt(f̂i,Nt,2(XNt) − fi(XNt)). Since
E(εNt |FNt) = 0, it follows by Assumption C, Assumption 0 and Lemma 1 that for every
τ > 0 and every T ≥ 1,

P (

T∑
t=1

ξt > Tτ) < exp
(
− Tτ2

2c2
2(v2 + cτ/c2)

)
.

Replacing τ by (log T )b√
T

τ ′, we obtain

T∑
t=1

ξt = o(
√
T (log T )b)
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almost surely by Borel-Cantelli lemma. By the same argument,
∑T

t=1 ξ
′
t = o(

√
T (log T )b)

almost surely. Note that for each T ≥ 1,

v̂i,NT+1,1 =

∑T
t=1(f̂i,Nt,1(XNt)− Yi,Nt)2

T

=

∑T
t=1(f̂i,Nt,1(XNt)− fi(XNt)− εNt)2

T

=

∑T
t=1(f̂i,Nt,1(XNt)− fi(XNt))

2

T
+

∑T
t=1 ε

2
Nt

T
−

2
∑T

t=1 ξt
T

.

Similarly, for each T ≥ 1

v̂i,NT+1,2 =

∑T
t=1(f̂i,Nt,2(XNt)− fi(XNt))

2

T
+

∑T
t=1 ε

2
Nt

T
−

2
∑T

t=1 ξ
′
t

T
.

By Assumption A and the previous two equations, we obtain that

v̂i,Nt,1 < v̂i,Nt,2 (31)

almost surely for large enough t.
The boundedness of {v̂i,Nt , t ≥ 1} as implied in Assumption D enables us to apply

Lemma 1 again to obtain that

T∑
t=1

T2t = o(
√
T (log T )b), (32)

almost surely. By (31), (32) and Assumption A, we conclude from (30) that

Wi,NT+1,1

Wi,NT+1,2
→∞ a.s. as T →∞.

This completes the proof of Theorem 3.

B.4 Proof of Theorem 4

Proof of Theorem 4. First, note that

RN (η) =

N∑
n=1

(
f∗(Xn)− fIn(Xn)

)
I(In = ĩn) +

N∑
n=1

(
f∗(Xn)− fIn(Xn)

)
I(In 6= ĩn)

≤
N∑
n=1

(
f∗(Xn)− fIn(Xn)

)
I(In = ĩn, ĩn 6= i∗(Xn)) +

N∑
n=1

AI(In 6= ĩn)

=

l∑
i=1

N∑
n=1

(
f∗(Xn)− fIn(Xn)

)
I
(
In = i, ĩn 6= i∗(Xn), ĩn = i

)
+

N∑
n=1

AI(In 6= ĩn)

=:

l∑
i=1

N∑
n=1

Ri,n +RN,2. (33)
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Then we partition the domain into 1/hd bins with bin width h and denote the set of
these bins by B.

Given bin B ∈ B, define Ri,N,B =
∑N

n=1Ri,nI(Xn ∈ B). Let xB be the center point in
B. Define the (nearly) optimal arm ī = īB = argmax1≤i≤l fi(xB) and ∆i,B = fī(xB) −
fi(xB). Let Si,B = {n : ln0 + 1 ≤ n ≤ N, In = i, ĩn 6= i∗(Xn), ĩn = i, Xn ∈ B}.
Define Ni,B = maxSi,B if Si,B 6= ∅ and Ni,B = 0 if Si,B = ∅. Given Ni,B = ñ, let

σt = σi,t,ñ = min{n :
∑n

j=1 I(Ij = i,K(
Xj−Xñ

h ) 6= 0) ≥ t} be the earliest time point where

{Ij = i,K(
Xj−Xñ

h ) 6= 0} happens t times. Define τi = τi,ñ = max{t : σi,t,ñ < ñ}, which is

the number of times {Ij = i,K(
Xj−Xñ

h ) 6= 0} happens before the time point ñ. Similarly,

for the (nearly) optimal arm ī, define ηt = min{n :
∑n

j=1 I(Ij = ī, K(
Xj−Xñ

h ) 6= 0) ≥ t} and
τ̄ = max{t : ηt < ñ}. Then, if Ni,B = ñ 6= 0 and τi ≥ 1, by the kernel-UCB algorithm, we

have f̂i,ñ(Xñ) + Ui,ñ(Xñ) ≥ f̂ī,ñ(Xñ) + Uī,ñ(Xñ), that is,∑τi
t=1 Yi,σt
τi

+ c̃

√
logN

τi
≥
∑τ̄

t=1 Yī,ηt
τ̄

+ c̃

√
logN

τ̄
, (34)

Note that (34) implies at least one of the following three events occurs:

GB =:
{∑τi

t=1 Yi,σt
τi

−
∑τi

t=1 fi(Xσt)

τi
> c̃

√
logN

τi

}
,

FB =:
{∑τ̄

t=1 Yī,ηt
τ̄

−
∑τ̄

t=1 fī(Xηt)

τ̄
< −c̃

√
logN

τ̄

}
, or

HB =:
{∑τi

t=1 fi(Xσt)

τi
+ 2c̃

√
logN

τi
>

∑τ̄
t=1 fī(Xηt)

τ̄

}
.

Since ‖fi(Xσt)− fi(xB)‖∞ ≤ ρhκ and ‖fī(Xηt)− fī(xB)‖∞ ≤ ρhκ,

HB ⇒ fi(xB) + ρhκ + 2c̃

√
logN

τi
> fī(xB)− ρhκ

⇒ 2c̃

√
logN

τi
> ∆i,B − 2ρhκ

⇒ {∆i,B ≤ 4ρhκ} or {∆i,B > 4ρhκ, τi <
16c̃2

∆2
i,B

logN}. (35)

By Lemma 1,

P (GB, Ni,B 6= 0, τi > logN) ≤ N2 exp
(
− c̃2 logN

2(v2 + cc̃)

)
≤ 1

N
, (36)

where the last inequality holds since c̃ > max{2
√

3v, 12c}.
Similarly, we can show that

P (FB, Ni,B 6= 0, τi > logN) ≤ 1

N
. (37)
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Note that

Ri,N,B ≤ Ri,N,BI(Ni,B = 0) +Ri,N,BI(τi ≤ logN, Ni,B 6= 0)+

Ri,N,BI(τi > logN,Ni,B 6= 0, GB) +Ri,N,BI(τi > logN,Ni,B 6= 0, FB)+

Ri,N,BI(τi > logN,Ni,B 6= 0, HB)

≤ Ri,N,BI(Ni,B = 0) +A logN +ANI(τi > logN,Ni,B 6= 0, GB)+

ANI(τi > logN,Ni,B 6= 0, FB) + 6ρhκτi,B + (
3

2
∆i,B)(

16c̃2

∆2
i,B

logN)I(∆i,B > 4ρhκ),

where the last inequality follows by (35), and τi,B =
∑N

n=1 I(In = i,Xn ∈ B). Then by
(36), (37) and the definition of Ni,B,

E
( l∑
i=1

N∑
n=1

Ri,n

)
=

l∑
i=1

∑
B∈B

E(Ri,n,B)

≤ Aln0 +Alh−d logN + 2A+ 6ρNhκ +
6c̃2l

ρhκ+d
logN. (38)

Also, taking δ = 1/N , we have by (28) that

E(RN,2) ≤ ANδ +Al
N∑
n=1

πn +A

√
N

2
log(

1

δ
)

≤ A+Al
N∑
n=1

πn +A

√
N

2
logN. (39)

By (33), (38), (39) and our choice of n0, h and πn, we obtain (7).

Appendix C. Additional Numerical Results

Under the same settings of Section 7 with the Yahoo! data set, we implement additional
algorithms as follows.

Simple-SIR-kernel : This algorithm is the same as the SIR-kernel algorithm described
in Section 7 except that the dimension reduction matrix is estimated using only the
data collected during the forced sampling stage. That is, for every n > ln0, the
Nadaraya-Waston estimator of fi(x) shown in (5) is modified to be

f̂i,n(x) =

∑
j∈Ji,n

Yi,jKi

(
B̂∗Ti,ln0

x∗ − B̂∗Ti,ln0
X∗j

hn−1

)
∑
j∈Ji,n

Ki

(
B̂∗Ti,ln0

x∗ − B̂∗Ti,ln0
X∗j

hn−1

) , (40)

where the forced sampling size for each arm is n0 = 1000 and the bandwidth is
hn = n−1/10.
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Figure 3: Boxplots of normalized CTRs of various algorithms on the news article recom-
mendation data set. Algorithms include (from left to right): SIR-kernel (hn3),
Simple-SIR-kernel, SIR-UCB (c̃0 = 0.5), SIR-UCB (c̃0 = 1.0) and SIR-UCB
(c̃0 = 3.0). CTRs are normalized with respect to the random algorithm.

SIR-UCB : This algorithm modifies the kernel estimation based UCB algorithm described
in Appendix A to handle covariates with high dimensions. Rather than using the
original covariates, we apply the SIR method to estimate the dimension reduction
matrices and use them to transform covariates to lower dimensions. These transformed
covariates are subsequently applied to compute the kernel estimation based UCB
index. That is, at each time point n after the forced sampling stage, we pull the arm
with the highest UCB index f̂i,n(Xn) +U∗i,n(Xn), where f̂i,n(Xn) is defined in (5) and

U∗i,n(x) =
c̃0

√∑
j∈Ji,n K

2
(
B̂∗Ti,nx

∗−B̂∗Ti,nX∗j
hn−1

)
∑

j∈Ji,n K
(
B̂∗Ti,nx

∗−B̂∗Ti,nX∗j
hn−1

) ,

with B̂∗i,n, x∗ and X∗j defined in Section 4.3. We set c̃0 = 0.5, 1 or 3 and hn = n−1/10.

The algorithms above are evaluated in the same manner as is described in Section 7,
and the resulting normalized CTRs are summarized in the boxplots in Fig. 3. Although the
averaged CTRs of the simple-SIR-kernel appears to be similar to SIR-kernel, the variation of
the CTRs clearly enlarges as we use only the forced sampling stage to estimate the dimension
reduction matrices. The SIR-UCB algorithm does not show significant improvement over
the SIR-kernel algorithm either.
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Remark 1. Because of the curse of dimensionality, the kernel estimation in Section 4.1
cannot be directly applied to the Yahoo! data set. As described in Section 4.3, one way to
address this issue is to assume that for each arm i (i = 1, 2, · · · , l), there exists a dimension
reduction matrix Bi and a function g(·) such that x̃i = BT

i x becomes lower dimensional
covariate and fi(x) = gi(x̃i). If Bi (or more precisely, span(Bi)) is known, we can simply
work with the lower dimensional covariates (which can be different for different arms), and
the kernel estimation algorithm in Section 4.1 still applies. Indeed, we note that if Bi is
known, the consistency and finite-time regret analysis (with rate in accordance with the lower
dimension) can still be established in a way similar to that of Theorem 1 and Corollary 2.

In practice, since the Bi is unknown, it is natural to estimate it by introducing a di-
mension reduction method like SIR. The theoretical implications of the dimension reduction
procedure is not yet clear to us. To provide some numerical guidance on how to apply SIR,
we explored two different ways of estimating Bi using the Yahoo! data. One is the SIR-
kernel algorithm, where the estimator for Bi gets updated as more and more data is collected
throughout the total time horizon. Alternatively, we considered here the Simple-SIR-kernel
algorithm, where only data from the initial forced sampling stage is used to generate a
consistent estimator for Bi (Zhu et al., 1996); Subsequently, with the lower-dimensional
covariates from a fixed dimension reduction matrix, the kernel estimation can be applied to
the remaining time period. Our numerical result favors the former way of applying SIR.
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L. Birgé and Massart. Minimum contrast estimators on sieves: exponential bounds and
rates of convergence. Bernoulli, 4:329–375, 1998.

S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and Trends in Machine Learning, 5:1–122, 2012.

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. X-armed bandits. Journal of Machine
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