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Tweedie’s Compound Poisson Model With Grouped Elastic Net

Wei Qian, Yi Yang and Hui Zou

Abstract. Tweedie’s Compound Poisson model is a popular method to model data with
probability mass at zero and non-negative, highly right-skewed distribution. Motivated by
wide applications of the Tweedie model in various fields such as actuarial science, we inves-
tigate the grouped elastic net method for the Tweedie model in the context of the general-
ized linear model. To efficiently compute the estimation coefficients, we devise a two-layer
algorithm that embeds the blockwise majorization descent method into an iteratively re-
weighted least square strategy. In together with the strong rule, the proposed algorithm is
implemented in an easy-to-use R package HDtweedie, and is shown to compute the whole
solution path very efficiently. Simulations are conducted to study the variable selection and
model fitting performance of various lasso methods for the Tweedie model. The modeling
applications in risk segmentation of insurance business are illustrated by analysis of an auto
insurance claim dataset. Supplementary materials for this article are available online.

Key Words: coordinate descent, insurance score, IRLS-BMD, lasso, variable selection

1. INTRODUCTION

Tweedie’s Compound Poisson model is known to model data with highly right-skewed dis-

tribution, which has probability mass at zero and non-negative support. As an example,

the histogram of an auto insurance claim data in Figure 1 has a spike at zero and a heavy

right tail at the positive range (see section 5 for a description of the data illustrated here).

Specifically, the response Y of the Tweedie’s Compound Poisson model can be represented

as

Y =
N∑
i=1

Xi, (1)

where N is a Poisson random variable with mean ξ, and conditional on N , Xi’s (1 ≤ i ≤ N)

are i.i.d. Gamma(α, γ) distribution with mean αγ and variance αγ2. When N = 0, Y = 0.

From now on, we call the distribution of Y the Tweedie distribution or the Tweedie model

for simplicity. It is clear that the Tweedie distribution has positive probability mass at zero,

since P (Y = 0) = P (N = 0) = exp(−ξ).
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Figure 1: Histogram of an auto insurance claim data.

The Tweedie distribution has attracted applications from diverse fields. For example, in

actuarial science, Y refers to the total claim loss of an insurance policy, N is the number of

claims, and Xi (1 ≤ i ≤ N) is the individual loss of the ith claim (e.g., Smyth and Jφrgensen,

2002; Zhang, 2013b). In meteorological studies, Y can be the total weekly precipitation, N is

the number of rainfall events and Xi is the precipitation of the ith event (e.g., Dunn, 2004).

Also, data with patterns of the Tweedie distribution often arises in ecological studies and

political science analysis. A typical example of ecological studies is fishery survey, in which

Y is the total biomass of a particular fish species, N is the fish count, and Xi is the weight

of the ith fish (e.g., Shono, 2008; Foster and Bravington, 2013). In political science, the

dollar outcomes (Y ) are often a result of an aggregation of a number of projects or grants

(e.g., Lauderdale, 2012). For a broader account of Tweedie model applications and their

references, see also Dunn and Smyth (2005).

The Tweedie model is known to be closely connected to the dispersion exponential model

(Jφrgensen, 1987), which has the form

f(y|θ, φ) = a(y, φ) exp(
yθ − κ(θ)

φ
), (2)
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where a(·) and κ(·) are given functions, θ is a parameter in R and φ is the dispersion

parameter in (0,+∞). By the well-known property of exponential family distributions,

µ := E(Y ) = κ̇(θ) and V ar(Y ) = φκ̈(θ), where κ̇(θ) and κ̈(θ) are the first and second

derivatives of κ(θ), respectively. If the mean-variance relation is specified to be V ar(Y ) =

φµρ, where ρ is the power parameter (1 < ρ < 2), we have κ̈(θ) = µρ, θ = µ1−ρ/(1− ρ) and

κ(θ) = µ2−ρ/(2− ρ). Then (2) can be written as

f(y|µ, ρ, φ) = a(y, φ) exp
(1

φ
(
yµ1−ρ

1− ρ
− µ2−ρ

2− ρ
)
)
. (3)

By comparing the moment generating functions (Smyth, 1996), it is easy to see that models

(1) and (3) are equivalent when ξ = µ2−ρ/φ(2−ρ), α = (2−ρ)/(ρ−1) and γ = φ(ρ−1)µρ−1.

Note that ρ = 1 corresponds to the Poisson distribution and ρ = 2 corresponds to the Gamma

distribution. We only consider the case that 1 < ρ < 2, which is the primary interest of this

article, although the derived algorithm in section 2 and section 3 can be applied to the cases

of ρ = 1 and ρ = 2 with some minor modifications (see also section 5 for an application of

the Gamma distribution modeling with the grouped elastic net).

One of the most important questions in Tweedie model applications is how to explain

the response by predictor variables. For example, in actuarial studies, it is important to

understand how the policy holder’s characteristics are related to the expected claim loss. In

precipitation modeling, the precipitation amount can be associated with the history weather

record and other relevant climate measurements. The biomass in fishery studies can be

determined by temporospatial factors and other fishery and environmental variables. The

dollar outcomes in political science studies can be related to political and demographic

variables. In the context of the generalized linear model, we assume that µ is associated with

a p-dimensional predictor vector x ∈ Rp. Here we use the log link, that is, log(µ) = β0 +βTx,

where β0 is the intercept and β ∈ Rp is the coefficient vector. Such log-linear relation

generates a multiplicative structure that is convenient for explanatory analysis and is widely

adopted in the aforementioned applications. More arguments for the use of a multiplicative

model and the log link in GLM for insurance applications can be found in, e.g., Ohlsson and

Johansson (2010, section 1.3) and Murphy et al. (2000). Let {(yi,xi), i = 1, 2, · · · , n} be the

i.i.d. observations with sample size n. Further assume that φ is the same for all observations.
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Then, the negative log-likelihood can be written as

l(β0,β) =
n∑
i=1

vi
(yie−(ρ−1)(β0+βT xi)

ρ− 1
+
e(2−ρ)(β0+βT xi)

2− ρ
)
, (4)

where vi’s (1 ≤ i ≤ n) are the observation weights (by default, they are all equal to 1/n).

When the dimension of x is high, which is common in practice, a model selection technique

has to be applied. For example, in insurance industry, it is common practice that hundreds

and even thousands of variables are created for insurance policy pricing purposes. However,

only a very small proportion of these variables are adopted in the final model.

Among various model selection techniques, the lasso (Tibshirani, 1996) is a very popular

method that selects variables by shrinking some coefficient estimates to zero. Specifically, in

the classical lasso setting, an L1 penalty of coefficients is imposed to a negative log-likelihood

function or other relevant loss functions. The minimizer of such penalized likelihood func-

tion is known to achieve both variable selection and coefficient estimation. The existence

of efficient algorithms such as LARS (Efron et al., 2004; see also Osborne et al., 2000) and

coordinate descent (Tseng, 2001; Friedman et al., 2010) makes the lasso an attractive com-

petitor to other well-known model selection methods such as the stepwise or subset selection.

Since the seminal work of Tibshirani (1996), a variety of lasso-type penalized methods are

studied in order to achieve better results in different situations. For example, the adaptive

lasso proposed by Zou (2006) imposes different weights on L1 penalties of different vari-

ables, and achieves both variable selection consistency and estimation asymptotic normality.

The elastic net proposed by Zou and Hastie (2005) applies L2 penalties in addition to L1

penalties, and better handles the situation that some variables are highly correlated with a

“group”-like selection phenomenon. Another particularly interesting extension to the lasso is

the grouped lasso (Yuan and Lin, 2006). By partitioning the variable coefficients into blocks

and imposing a so-called grouped lasso penalty (which may be viewed as an intermediate

between L1 and L2 penalties), for a given block, the grouped lasso solution either selects all

the variables in the block or shrinks all coefficients of the block to zero. Such property of the

grouped lasso is particularly important when categorical variables with multiple levels are

present (e.g., in ANOVA model, we group dummy variables corresponding to one categorical

factor into one block) or when some variables are treated as nonparametric components (e.g.,

4



in additive model, the nonparametric components is approximated by a linear combination

of some basis functions, and we group the basis function terms that correspond to one non-

parametric component into one block). The estimation and/or variable selection consistency

properties of the grouped lasso estimators for linear models are studied in, e.g., Wang and

Leng (2008), Bach (2008), Nardi et al. (2008), Huang and Zhang (2010), and Wei and Huang

(2010).

In spite of the important progress in lasso methods and the broad applications of the

Tweedie model, as far as we know, no publication is made regarding applications of the

Tweedie model variable selection with lasso methods in any of the aforementioned scientific

context. This somewhat surprising vacancy may be partially attributable to the lack of

awareness in the relevant scientific community and the lack of publicly available software

that is efficiently implemented to give the lasso-type solutions for the Tweedie model. The

main purpose of this article is to introduce a unified algorithm that can efficiently solve

various lasso-type problems for the Tweedie model and use data examples to illustrate its

variable selection and model fitting performance. In particular, we choose the grouped lasso

and the grouped elastic net as the main theme for the algorithm derivation since their special

cases also give regular lasso and elastic net solutions. We also allow different weights for

grouped lasso penalties so that the corresponding adaptive versions of the solutions can be

generated.

Various algorithms has been studied for the grouped lasso usually under the linear re-

gression and logistic regression settings. Yuan and Lin (2006) show that the solution path

of the grouped lasso solution is generally not piecewise linear, which implies that the LARS-

type algorithms do not apply for the grouped lasso. Motivated by the shooting algorithm

of Fu (1998), they propose a blockwise coordinate descent algorithm for linear regression.

However, their algorithm assumes a blockwise orthonormal condition, which is not always

desirable in statistical applications. The study of the grouped lasso is extended to the logis-

tic regression by Kim et al. (2006), who propose a gradient descent algorithm to solve the

constrained-form problem. Meier et al. (2008) also propose a blockwise coordinate gradient

descent (BCGD) algorithm for the grouped lasso of the logistic regression to directly solve

the penalized-form problem.

For efficient computation of the grouped elastic net for the Tweedie model, we propose
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a new blockwise coordinate descent algorithm that extends from the iteratively reweighted

least square (IRLS) strategy (Friedman et al., 2010). A blockwise majorization descent

(BMD) method is embedded into the IRLS strategy to solve the penalized weighted least

square (WLS) problem. In addition, the strong rule (Tibshirani et al., 2012) is integrated

to the algorithm to further speed up the computation of the whole solution path. The

algorithm is implemented in an easy-to-use R package named HDtweedie, which is available

in the supplementary materials.

As we mentioned before, one of the primary motivations resides in the promising ap-

plications in actuarial science. In particular, the regression functions obtained by Tweedie

models with the grouped elastic net can serve as a candidate insurance score to achieve

risk segmentation. Frees et al. (2011) propose an ordered version of the Lorenze curve to

identify the discrepancy between the loss distribution and the baseline insurance premium

distribution. The associated Gini index is used to gauge the performance of an insurance

score for risk segmentation. Typically, a larger Gini index implies better risk segmentation,

hence the better insurance score and underlying statistical model. In our numerical studies,

we use the Gini index of the ordered Lorenze curve as a specific model comparison tool. A

brief description of the ordered Lorenze curve and the Gini index in the context of insurance

risk segmentation is deferred to the real data example in section 5, although the scope of

their use may not be restricted to such context.

The rest of the article is organized as follows. Section 2 describes the algorithm for solving

the Tweedie model with the grouped elastic net penalty. The computation of the solution

path and the application of the strong rule are explained in section 3. The simulations and

an insurance data example are presented in section 4 and section 5, respectively. A brief

conclusion is given in section 6.

2. ALGORITHM

Assume the p-dimensional coefficient vector β is partitioned into g blocks, that is, β =

(βT1 ,β
T
2 , · · · ,βTg )T , where βj (1 ≤ j ≤ g) is pj-dimensional vector and

∑g
j=1 pj = p. In the
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following, we focus on the minimization problem with grouped elastic net penalties

(β̂0, β̂) = argmin(β0,β) l(β0,β) + λ

g∑
j=1

(
τwj‖βj‖2 +

1

2
(1− τ)‖βj‖2

2

)
, (5)

where λ > 0 and 0 < τ ≤ 1 are tuning parameters, and wj’s (1 ≤ j ≤ g) are the positive

weights for the grouped lasso penalties. Conforming to common practice, we do not penalize

the intercept term β0. Note that the grouped elastic net penalty used above is very general

for solving lasso-type problems. Indeed, if pj = 1 for all 1 ≤ j ≤ g, the problem is reduced

to the (adaptive) lasso when τ = 1, and the (adaptive) elastic net when 0 < τ < 1. If τ = 1

and pj > 1 for some j, we have the (adaptive) grouped lasso problem. In the R package

HDtweedie, the default choice of the observation weights vi’s (1 ≤ i ≤ n) and the grouped

lasso penalty weights wj’s (1 ≤ j ≤ g) are 1/n and
√
p
j
, respectively. The users can choose

different values for vi’s and wj’s to meet their specific application needs.

The proposed algorithm essentially consists of two layers of loops. The outer layer is

the IRLS strategy, which, at each iteration, approximates the objective function in (5) by

a penalized WLS objective function. After obtaining the minimizer of the penalized WLS

objective function, the next iteration begins by updating the working response and weight.

Such outer-layer cycle continues until convergence. The inner layer is dedicated to obtaining

the minimizer of the penalized WLS objective function by a BMD method. For simplicity,

we call this two-layer strategy IRLS-BMD algorithm.

Specifically, for the outer-layer IRLS strategy, suppose (β̃0, β̃) is the solution of (β0,β)

from the most recent iteration. We approximate the negative log-likelihood l(β0,β) by the

second-order Taylor expansion of l(β0,β) about (β̃0, β̃):

lQ(β0,β) = l(β̃0, β̃) +
n∑
i=1

vi
(
−yie−(ρ−1)(β̃0+β̃

T
xi) + e(2−ρ)(β̃0+β̃

T
xi)
)(

1
xi

)T ( β0−β̃0
β−β̃

)
+

1

2

n∑
i=1

vi
(
(ρ− 1)yie

−(ρ−1)(β̃0+β̃
T

xi) + (2− ρ)e(2−ρ)(β̃0+β̃
T

xi)
)(

β0−β̃0
β−β̃

)T ( 1
xi

)(
1
xi

)T ( β0−β̃0
β−β̃

)
= −

n∑
i=1

ṽiỹi
(

1
xi

)T ( β0
β

)
+

1

2

n∑
i=1

ṽi
(
β0
β

)T ( 1
xi

)(
1
xi

)T ( β0
β

)
+ C1(β̃0, β̃), (6)
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where

ṽi = vi
(
(ρ− 1)yie

−(ρ−1)(β̃0+β̃
T

xi) + (2− ρ)e(2−ρ)(β̃0+β̃
T

xi)
)
,

ỹi = β̃0 + β̃
T
xi +

vi
ṽi

(
yie
−(ρ−1)(β̃0+β̃

T
xi) − e(2−ρ)(β̃0+β̃

T
xi)
)
, (7)

and C1(β̃0, β̃) is a constant given (β̃0, β̃). Therefore, we can rewrite (6) in the form of a WLS

function lQ(β0,β) = 1
2

∑n
i=1 ṽi(ỹi−β0−βTxi)

2 +C(β̃0, β̃), where C(β̃0, β̃) is a constant given

(β̃0, β̃). Here, we call ṽi and ỹi the working weight and the working response, respectively.

Then, the penalized WLS objective function we intend to minimize is

PQ(β0,β) := lQ(β0,β) + λ

g∑
j=1

(
τwj‖βj‖2 +

1

2
(1− τ)‖βj‖2

2

)
. (8)

The minimizer of (8) is used as the new (β̃0, β̃) to update the working response and weight

of lQ(β0,β) to start a new IRLS iteration.

In order to find the minimizer of (8), we resort to the inner-layer loops, which employs

a BMD method that sequentially updates the coefficients of each block by taking advantage

of a majorization-minimization (MM) principle (see Wu et al. (2010) for a recent overview

of the MM principle). In the following, we present the inner-layer BMD algorithm and its

properties.

Given observation i (1 ≤ i ≤ n), partitioning xi the same way as β, we have xi =

(xTi1,x
T
i2, · · · ,xTig)T , where xij (1 ≤ j ≤ g) is the pj-dimensional predictor vector correspond-

ing to βj. For 1 ≤ j ≤ g, denote the gradient vector and the Hessian matrix of lQ(β0,β)

with respect to βj by

Ũj(β0,β) =
∂lQ(β0,β)

∂βj
= −

n∑
i=1

ṽi(ỹi − β0 − βTxi)xij, (9)

H̃j(β0,β) =
∂2lQ(β0,β)

∂βj∂β
T
j

=
n∑
i=1

ṽixijx
T
ij =: H̃j, (10)

respectively. Let γ̃j (1 ≤ j ≤ g) be the largest eigenvalue of H̃j.

To update the block j coefficients (1 ≤ j ≤ g), suppose (β̆0, β̆) is the most recently
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updated estimate and define Ŭj = Ũj(β̆0, β̆). We update β̆j by solving

argminβj
lQ(β̆0, β̆) + ŬT

j (βj − β̆j) +
γ̃j
2

(βj − β̆j)
T (βj − β̆j) +λ

(
τwj‖βj‖2 +

1

2
(1− τ)‖βj‖2

2

)
,

(11)

which has a closed form solution. Indeed, if we denote the solution of (11) by β̆j(new), it is

not hard to see by the Karush-Kuhn-Tucker (KKT) conditions that

β̆j(new) =
(γ̃jβ̆j − Ŭj)

(
1− λτwj

‖γ̃j β̆j−Ŭj‖2

)
+

γ̃j + λ(1− τ)
, (12)

where z+ denotes the positive part of z. Similarly, to update the intercept term, define

Ŭ0 = −
∑n

i=1 ṽi(ỹi − β̆0 − β̆
T
xi) and γ̃0 = H̃0 =

∑n
i=1 ṽi. The intercept coefficient β̆0 is then

updated by β̆0(new) = β̆0− γ̃−1
0 Ŭ0. Such BMD updates cycle through all the blocks and the

intercept sequentially until convergence, resulting in the minimizer of (8).

The update in (11) is justified by the fact that the updated value of the given penalized

WLS objective function (8) always decreases. Indeed, given a block j (1 ≤ j ≤ g), suppose

(β̆0, β̆(new)) is the updated vector from (β̆0, β̆) by (11). Then,

lQ(β̆0, β̆(new)) =
1

2

n∑
i=1

ṽi

(
ỹi − β̆0 − β̆

T
xi −

(
β̆j(new)− β̆j

)
xij

)2

+ C(β̃0, β̃)

= lQ(β̆0, β̆) + ŬT
j

(
β̆j(new)− β̆j

)
+

1

2

(
β̆j(new)− β̆j

)T
H̃j(β̆j(new)− β̆j)

≤ lQ(β̆0, β̆) + ŬT
j

(
β̆j(new)− β̆j

)
+
γ̃j
2

(
β̆j(new)− β̆j

)T
(β̆j(new)− β̆j),

(13)

where the last inequality follows by the fact that H̃j is a positive definite matrix, and γ̃j is
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its largest eigenvalue. Therefore,

PQ(β̆0, β̆(new))− PQ(β̆0, β̆)

= lQ(β̆0, β̆(new)) + λ
(
τwj‖β̆j(new)‖2 +

1

2
(1− τ)‖β̆j(new)‖2

2

)
− lQ(β̆0, β̆)− λ

(
τwj‖β̆j‖2 +

1

2
(1− τ)‖β̆j‖2

2

)
≤ lQ(β̆0, β̆) + ŬT

j

(
β̆j(new)− β̆j

)
+
γ̃j
2

(
β̆j(new)− β̆j

)T(
β̆j(new)− β̆j

)
+ λ
(
τwj‖β̆j(new)‖2 +

1

2
(1− τ)‖β̆j(new)‖2

2

)
− lQ(β̆0, β̆)− λ

(
τwj‖β̆j‖2 +

1

2
(1− τ)‖β̆j‖2

2

)
≤ 0,

where the first inequality follows by (13) and the second inequality follows by the update

scheme (11). Similarly, the downhill-going property that PQ(β̆0(new), β̆) ≤ PQ(β̆0, β̆) also

holds for the intercept update.

The IRLS-BMD algorithm described above is summarized in Algorithm 1.

3. SOLUTION PATH AND STRONG RULE

As a common practice for lasso-type methods, we want to solve the solution path of the

grouped elastic net rather than only giving the solution for one λ value. Specifically, given

τ , we consider a decreasing sequence of λ values {λk, k = 1, · · · ,m}. The grouped elastic

net solution (5) of λk is denoted by (β̂
(k)
0 , β̂

(k)
). The sequence {λk, k = 1, · · · ,m} is created

by choosing a grid of m points uniformly in log scale on [λm, λ1], where λm is a fixed small

proportion of λ1, and λ1 is chosen to be the smallest value such that β̂ = 0. The default in

the R package HDtweedie is m = 100, λm = 0.001λ1 if p ≤ n and λm = 0.05λ1 if p > n.

To compute the whole solution path, we start with the computation of λ1 and (β̂
(1)
0 , β̂

(1)
).

By definition of λ1, β̂
(1)

= 0. The intercept estimate β̂
(1)
0 can be easily obtained by the β0

updating scheme in Algorithm 1. That is, we first initialize β̃0 = 0 and β̃ = 0, and then

repeatedly update β̃0 until convergence with the following steps: (a) compute the working

response and weight by (7); (b) compute Ũ0 = −
∑n

i=1 ṽi(ỹi − β̃0 − β̃
T
xi) and γ̃0 =

∑n
i=1 ṽi;

(c) compute β̃0(new) = β̃0 − γ̃−1
0 Ũ0; (d) set β̃0 = β̃0(new). Subsequently, λ1 is obtained

by the KKT conditions that λ1 = max1≤j≤g‖Uj(β̂(1)
0 , β̂

(1)
)‖2/τwj, where Uj(β0,βj) is the

10



Algorithm 1 The IRLS-BMD algorithm for solving the Tweedie model grouped elastic net.

1. Initialize β̃0 and β̃.

2. (Outer layer) Update the penalized WLS objective function (8).

• For i = 1, 2, · · · , n, compute the working response ỹi and the working weight ṽi
by (7).

• For j = 1, · · · , g, compute H̃j and its maximum eigenvalue γ̃j by (10);
compute γ̃0 = H̃0 =

∑n
i=1 ṽi.

3. (Inner layer) Apply the BMD algorithm to obtain the minimizer of the penalized WLS
objective function (8).

• Initialize β̆0 = β̃0 and β̆ = β̃.

• Repeat the following updating scheme until (β̆0, β̆) converges.

– Update β̆. For j = 1, 2, · · · , g, do

∗ Compute Ŭj = Ũj(β̆0, β̆) by (9).

∗ Compute β̆j(new) by (12).

∗ Set β̆j = β̆j(new).

– Update β0. Do

∗ Compute Ŭ0 = −
∑n

i=1 ṽi(ỹi − β̆0 − β̆
T
xi).

∗ Compute β̆0(new) = β̆0 − γ̃−1
0 Ŭ0.

∗ Set β̆0 = β̆0(new).

• Set β̃0 = β̆0 and β̃ = β̆.

4. Repeat steps 2-3 until (β̃0, β̃) converges.

11



gradient vector of l(β0,β) with respect to βj that

Uj(β0,β) =
∂l(β0,β)

∂βj
=

n∑
i=1

(−yie−(ρ−1)(β0+βT xi) + e(2−ρ)(β0+βT xi))vixij.

With λ1 and (β̂
(1)
0 , β̂

(1)
) at hand, we can determine the decreasing sequence of λk’s and

compute the grouped elastic net solutions sequentially by Algorithm 1. At each λk (2 ≤

k ≤ m), the algorithm is “warm-started” by setting the initial coefficient estimate to be

(β̂
(k−1)
0 , β̂

(k−1)
), the solution of the preceding λ. In addition, we apply on top of Algorithm 1

the strong rule (Tibshirani et al., 2012), which is known to be a very effective technique to

save computing time by guessing the likely zero-coefficient estimates at the beginning of the

algorithm and discarding them from the updating scheme. Tibshirani et al. (2012) show

that such practice is amazingly safe, and very rarely gives violations of the guess in linear

regression and logistic regression. In the context of the grouped elastic net, the strong rule

states that given 2 ≤ k ≤ m and 1 ≤ j ≤ g, if

‖Uj(β̂(k−1)
0 , β̂

(k−1)
)‖2 < τwk(2λk − λk−1), (14)

then β̂
(k)

j (the block j coefficient estimate at λk) is very likely to be zero.

At λk, let S be the set of j’s (1 ≤ j ≤ g) such that (14) is not satisfied. Let xiS

(1 ≤ i ≤ n) be the subvector of xi that contains only variables of blocks in S. Then

the strong rule statement implies that Algorithm 1 can be applied to the reduced dataset

{(yi,xiS), i = 1, · · · , n} to estimate β0 and the coefficients of xiS, while estimated coefficients

for blocks in Sc are set to be zero. We denote such obtained strong rule estimate of (β0,β)

by (β̃
(∗)
0 , β̃

(∗)
). In order to check if the strong rule correctly identifies the zero estimates, we

have to apply a KKT condition check, that is, if (β̃
(∗)
0 , β̃

(∗)
) is the correct solution, then for

every j ∈ Sc, ‖Uj(β̃(∗)
0 , β̃

(∗)
)‖2 ≤ λkτwj. Define V = {j ∈ Sc : ‖Uj(β̃(∗)

0 , β̃
(∗)

)‖2 > λkτwj},

the set of blocks in Sc that does not pass the KKT condition check. If V = ∅, the correct

solution is obtained. Otherwise, add all the elements in V to S, and repeat Algorithm 1

on the new reduced dataset followed by the KKT condition check until we find the correct

solution. It turns out that the strong rule works very well for the Tweedie model, and the

computing time can often be significantly reduced (see numerical results in section 4).
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Algorithm 2 The algorithm with the strong rule for solving the Tweedie model grouped
elastic net at λk (2 ≤ k ≤ m).

1. Identify the set of groups for the updating scheme by the strong rule:

S = {1 ≤ j ≤ g : ‖Uj(β̂(k−1)
0 , β̂

(k−1)
)‖2 ≥ τwk(2λk − λk−1)}.

2. Initialize β̃0 = β̂
(k−1)
0 and β̃ = β̂

(k−1)
.

3. Apply Algorithm 1 on the reduced dataset {(yi,xiS), 1 ≤ i ≤ n} to obtain the strong

rule estimate (β̃
(∗)
0 , β̃

(∗)
).

4. Perform the KKT condition check and identify the set of blocks that fails the check:

V = {j ∈ Sc : ‖Uj(β̃(∗)
0 , β̃

(∗)
)‖2 > λkτwj}.

5. If V = ∅, return (β̂
(k)
0 , β̂

(k)
) = (β̃

(∗)
0 , β̃

(∗)
). Otherwise, set S = S ∪ V , initialize

(β̃0, β̃) = (β̃
(∗)
0 , β̃

(∗)
), and repeat steps 3-5.

The algorithm with the strong rule for the grouped elastic net solution at λk (2 ≤ k ≤ m)

is summarized in Algorithm 2.

4. SIMULATION

In the simulation study, we intend to investigate the performance of the Tweedie model with

lasso, grouped lasso and grouped elastic net methods using the following two examples.

4.1. Example 1

In each run of the simulation, we sample 500 observations for both the training and testing

datasets. The design matrix is created as follows. First, sample 8-dimensional covariates

T = (T1, · · · , T8) from a certain distribution scenario. Then, similar to simulation settings of

Kim et al. (2006), each covariate Tj (j = 1, · · · , 8) generates three polynomial terms p1(Tj),

p2(Tj) and p3(Tj), where p1(x) = x, p2(x) = (3x2 − 1)/6 and p3(x) = (5x3 − 3x)/10. The

design matrix is formed by the resulting 24 terms. Naturally, we assign p1(Tj), p2(Tj) and

p3(Tj) to the same block (j = 1, · · · , 8). The response is generated by the Tweedie model

with ρ = 1.5 and φ = 1 (with different scenarios considered). Then, the Tweedie models with

13



lasso, grouped lasso and grouped elastic net methods are fitted using the training dataset.

The tuning parameter λ is selected by the five-fold cross validations with deviance. For the

grouped elastic net, the additional tuning parameter τ is selected from {0.1, 0.2, · · · , 1.0}.

To compare the variable selection performance, we consider the blocks of the covariates

and say that the block of a covariate is identified as active if at least one of the estimated

coefficients in this block is nonzero. Similarly, we consider the individual predictor terms

and say that a predictor term is identified as active if its estimated coefficient is nonzero.

With the fitted models, we count the number of correctly identified active blocks (block-C)

and the number of incorrectly identified active blocks (block-IC). In addition, we consider

the coefficients of the individual terms, and count the number of correctly identified ac-

tive coefficients (coefficient-C) and the number of incorrectly identified active coefficients

(coefficient-IC). Also, we use the testing dataset to calculate the negative log-likelihood

score and the Gini index (see section 5 for a brief description of the Gini index). The ex-

periment is repeated 100 times to obtain the averaged values for the aforementioned model

fitting measurements. In the following, we consider three different cases for the distribution

of covariates T and the link function.

4.1.1 CASE 1

We assume that T is multivariate normal with the mean being 0 and the variance matrix

being a compound symmetry correlation matrix Σ1. Let (Σ1)ij = ω (i 6= j, and i, j =

1, · · · , 8), where ω = 0 or 0.5. The link function is

log µ = 0.3 +
3∑
j=1

(−1)(j+1)
(
0.5p1(Tj) + 0.2p2(Tj) + 0.5p3(Tj)

)
.

Clearly, the true model has 3 relevant blocks and 9 relevant predictor terms. The simulation

results are summarized in Table 1 (values in the parenthesis are standard errors).

Since the link function is specified to have an explicit blockwise structure, there is no

surprise that the grouped lasso and the grouped elastic net have better variable selection

results than the lasso by identifying more relevant blocks and less irrelevant blocks. The

grouped lasso and the grouped elastic net also show some advantages over the lasso when

comparing the negative log-likelihood and the Gini index. As expected, coefficient-C and
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coefficient-IC show that for the grouped lasso and the grouped elastic net, all estimated

coefficients of an active block are nonzero, while for the lasso, some estimated coefficients of

an active block may be zero. In addition, the grouped elastic net appears to choose more

blocks than the grouped lasso. Such feature of the grouped elastic net can be appealing in

some situations, as shown in the next case.

4.1.2 CASE 2

This case is inspired by the simulation results of the elastic net in Zou and Hastie (2005).

Let Z = (Z1, · · · , Z6) be a multivariate normal random variable with the mean being 0 and

the variance being a compound symmetry correlation matrix Σ2. Let (Σ2)ij = ω (i 6= j, and

i, j = 1, · · · , 6), where ω = 0 or 0.5. Then T is generated by T1 = Z1 + ε1, T2 = Z1 + ε2,

T3 = Z1 + ε3, and Tj = Zj−2 (j = 4, · · · , 8), where ε1, ε2, ε3 are Normal(0, 0.01). The link

function remains the same as that of Case 1. Under this setting, T1, T2 and T3 are highly

correlated, and their blocks are all active in the true model.

Based on the results summarized in Table 1, it is interesting to see that the grouped elastic

net correctly identifies almost all three relevant blocks (averaged block-C: 2.77 and 2.89),

while the grouped lasso on average misses more than one relevant blocks (averaged block-C:

1.88 and 1.83). Such phenomenon shows the ability of the grouped elastic net to better

handle the correlated covariates (and the blocks generated from them), which is reminiscent

of the unique property of the elastic net (Zou and Hastie, 2005). From a practical viewpoint,

the grouped elastic net reveals more relevant (and possibly highly correlated) covariates to

an analyst so that a larger pool of variables is available for further investigation. Also, similar

to Case 1, the grouped lasso and the grouped elastic net perform better than the lasso in

terms of the negative log-likelihood and the Gini index, as is expected from the structure of

the link function.

4.1.3 CASE 3

In this case, we intentionally use the link function that favors the lasso:

log µ = 0.3 +
6∑
j=1

(−1)j+1p1(Tj).
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Table 1: (Example 1) Averaged simulation results based on 100 runs.

block- coefficient- negative Gini index

C IC C IC log-likelihood

Case 1

oracle 3 0 9 0 - -

ω = 0

lasso 2.95 0.80 5.65 0.87 45 (22) 0.961 (0.011)

grouped lasso 3.00 0.26 9.00 0.78 33 (14) 0.972 (0.003)

grouped elastic net 3.00 0.69 9.00 2.07 35 (15) 0.975 (0.002)

ω = 0.5

lasso 2.86 1.21 5.25 1.25 46 (22) 0.961 (0.012)

grouped lasso 2.87 0.60 8.61 1.80 37 (17) 0.961 (0.012)

grouped elastic net 2.94 1.08 8.82 3.24 35 (15) 0.963 (0.012)

Case 2

oracle 3 0 9 0 - -

ω = 0

lasso 1.94 0.18 2.78 0.18 11.5 (2.0) 0.896 (0.011)

grouped lasso 1.88 0.04 5.64 0.12 9.1 (0.7) 0.898 (0.010)

grouped elastic net 2.77 0.11 8.31 0.33 8.8 (0.6) 0.899 (0.010)

ω = 0.5

lasso 2.01 0.49 2.84 0.49 23 (12) 0.914 (0.009)

grouped lasso 1.83 0.07 5.49 0.21 14 (4) 0.916 (0.009)

grouped elastic net 2.89 0.39 8.67 1.17 13 (3) 0.916 (0.009)

Case 3

oracle 6 0 6 0 - -

ω = 0

lasso 6.00 0.51 6.00 4.42 5.63 (0.02) 0.604 (0.003)

grouped lasso 6.00 0.85 6.00 14.55 5.64 (0.02) 0.599 (0.003)

grouped elastic net 6.00 1.23 6.00 15.69 5.64 (0.02) 0.599 (0.003)

ω = 0.5

lasso 6.00 0.63 6.00 4.26 5.137 (0.017) 0.447 (0.002)

grouped lasso 6.00 0.94 6.00 14.82 5.151 (0.017) 0.441 (0.002)

grouped elastic net 6.00 1.22 6.00 15.66 5.146 (0.017) 0.442 (0.002)
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The distribution of T is the same as Case 1. Under this senario, the true model has 6 relevant

blocks and 6 relevant predictor terms. As summarized in Table 1, while all three methods

correctly recover all 6 relevant blocks, the Gini index show that the lasso is favored over the

grouped lasso.

Recall that the strong rule is integrated into the proposed algorithm. Next, we use settings

of Case 3 to evaluate the computing time reduction due to the strong rule. For evaluation

of higher-dimensional situations, we add q more irrelevant variables into the original design

matrix (q = 0, 10, 100, 500, 1000). The distribution of these irrelevant variables are i.i.d.

Normal(0,1). Using the covariate T with ω = 0.5, the enlarged designed matrix and the

same link function, we fit Tweedie models with the lasso, and record the total computing

time based on 5 runs of the experiment. For comparison, we remove the strong rule from

the algorithm and repeat the experiment under exactly the same setting. From the results

summarized in Table 2, we can see that the algorithm with the strong rule consistently has

shorter computing time than its counterpart without the strong rule. The effects of the strong

rule in terms of time saving become even more apparent as the predictor dimension grows

larger. The corresponding variable selection results are given in Table 3, which satisfactorily

show that the number of incorrectly identified active variables grows only moderately as q

increases.

Table 2: Comparing the computing time (in seconds) with and without the strong rule.

strong rule q = 0 q = 10 q = 100 q = 500 q = 1000

no 2.5 3.6 12.6 26.7 56.7

yes 2.1 3.1 11.1 11.7 26.7

Table 3: Variable selection results obtained in the computing time study.

q = 0 q = 10 q = 100 q = 500 q = 1000

block-C 6.0 6.0 6.0 6.0 6.0

block-IC 1.0 1.4 3.2 5.6 9.4
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4.2. Example 2

In this example, we provide numerical comparisons between our method and some existing

model selection methods. We consider a 20-dimensional covariate example. Assume the

covariate X = (X1, X2, · · · , X20) is multivariate normal with the mean being 0 and the

variance matrix being an exponential decay correlation matrix Σ. Let (Σ)i,j = ω|i−j| (i, j =

1, · · · , 20), where ω = 0 or 0.5. Different from the idealized settings of Example 1 where the

(nonparametric) component of each covariate in the link function can be expanded by up

to third-degree polynomials, we consider in Example 2 the following link functions for data

generation: (Case 1) log µ =
∑12

j=1 g1(Xj); (Case 2) log µ =
∑8

j=1 g2(Xj) +
∑12

j=9 g1(Xj),

where g1(x) = 104x3(1− x)6[40
3
x8 + 2

3
(1− x)4]I(0 ≤ x ≤ 1) and g2(x) = {2 sin(4πx)− 6[|x−

0.4|0.3−1.1]−0.5sgn(0.7−x)}I(0 ≤ x ≤ 1). The plots for g1(·) and g2(·) are given in Figure 2.

With the link functions above, the response is generated by the Tweedie model with ρ = 1.5

and φ = 1. We sample 100 observations for the training dataset and 300 observations for

the testing dataset.

To fit the training dataset with the proposed methods, we create the design matrix by

expanding each covariate to cubic B-splines with eight degrees of freedom. The resulting

design matrix has 160 terms, and we can naturally assign the eight terms of each covariate

into one block. Then, we fit the data using the Tweedie models with lasso, grouped lasso and

grouped elastic net (the tuning parameters are selected the same way as described in Example

1). For comparison, we also implement the backward-forward stepwise selection method

for the Tweedie model, which is commonly used in actuarial studies for variable selection

purposes (R code for the stepwise selection is available in the supplementary materials;

the default p-values for entering and removal of a covariate are set to be 0.05 and 0.10,

respectively).

The procedures described above is repeated 100 times, and the results are summarized

in Tables 4. We can see in this example that under almost all considered scenarios, the

estimation performance of the grouped elastic net is significantly better than that of the

lasso, the grouped lasso and the stepwise method in terms of both negative log-likelihood

and Gini index. As expected, the stepwise method performs poorly in both variable selection

and estimation due to its inability to allow flexible nonlinear structure.
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Table 4: (Example 2) Averaged simulation results based on 100 runs.

block- negative Gini index

C IC log-likelihood

Case 1

oracle 12 0 - -

ω = 0

lasso 2.00 0.28 2135 (9) 0.092 (0.011)

grouped lasso 1.88 0.28 2135 (9) 0.087 (0.011)

grouped elastic net 5.78 1.78 2114 (9) 0.209 (0.011)

stepwise 1.03 0.41 2231 (16) 0.019 (0.006)

ω = 0.5

lasso 1.73 0.22 2160 (10) 0.104 (0.013)

grouped lasso 1.92 0.19 2154 (10) 0.124 (0.013)

grouped elastic net 6.95 1.83 2108 (11) 0.290 (0.010)

stepwise 1.27 0.25 2236 (14) 0.071 (0.007)

Case 2

oracle 12 0 - -

ω = 0

lasso 2.94 0.29 2305 (10) 0.125 (0.011)

grouped lasso 3.36 0.41 2301 (10) 0.144 (0.013)

grouped elastic net 7.76 2.21 2270 (10) 0.267 (0.009)

stepwise 1.00 0.33 2380 (13) 0.029 (0.005)

ω = 0.5

lasso 4.24 0.42 2302 (10) 0.210 (0.014)

grouped lasso 3.77 0.28 2306 (10) 0.199 (0.014)

grouped elastic net 9.23 2.43 2251 (10) 0.354 (0.006)

stepwise 1.81 0.31 2398 (11) 0.128 (0.005)

19



0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

x

g 1
(x
)

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

x

g 2
(x
)

Figure 2: Plots for functions g1 and g2.

5. REAL DATA EXAMPLE

In this section, we use an auto insurance claim dataset studied in Yip and Yau (2005) and

Zhang (2013a) to illustrate applications and performance of the Tweedie model with the

grouped elastic net. The response (y) we want to predict is the aggregate claim loss of

an auto insurance policy. Similar to the data treatment performed by Yip and Yau (2005)

and Zhang (2013a), we only consider the new customers in the dataset and transform the

response by y∗ = y/1000. Then, the reduced dataset has 2812 insurance policy records,

among which 60.7% of the policies has no claims (i.e., y∗ = 0). The histogram of y∗ is shown

in Figure 1. The data also contains 21 predictor variables associated with the vehicle and the

policy holder: number of children passengers (x1), time to travel from home to work (x2),

whether the car is for commercial use (x3), car value (x4), number of policies (x5), car type

(x6, 6 categories), whether the car color is red (x7), whether the driver’s license was revoked

in the past (x8), motor vehicle record (MVR) point (x9), age (x10), number of children at

home (x11), years on job (x12), income (x13), gender (x14), whether married (x15), whether

a single parent (x16), job class (x17, 8 categories), education level (x18, 5 categories), home

value (x19), years in current address (x20) and whether the driver lives in urban area (x21).

We transform x∗4 = log x4, x∗13 = log(x13 + 10), and scale all the numerical variables (ex-
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cept for x1, x5, x9 and x11) to have mean 0 and standard deviation 1. The polynomial terms

(up to the third order) of the 11 numerical variable are created the same way as we do in the

simulations. These polynomial terms of each variable are treated as one coefficient block for

the grouped lasso and the grouped elastic net. For the categorical variables with more than

two levels (x6, x17, x18), we treat the first level (by alphabetical order) as the base level, and

create dummy variables accordingly for the other levels. Naturally, the dummy variables be-

longing to the same categorial variable are treated as one block. In addition, binary variables

(0-1) are created for categorical variables with two levels (x3, x7, x8, x14, x15, x16, x21).

The entire dataset is then randomly partitioned into a training set and a testing set with

equal sample size. The training set is used to fit the Tweedie models with the grouped lasso

(GrpLasso) and the grouped elastic net (GrpNet). Besides Tweedie models, another popular

approach in analyzing insurance loss data is to model the frequency (whether a claim occurs)

and severity (the amount of claim loss if a claim occurs) separately. Specifically, we first

fit a logistic regression with the grouped lasso to model whether a claim occurs (frequency

submodel); then we consider only the records with positive claim loss and fit a Gamma model

with the grouped lasso for the claim loss (severity submodel). We refer to this two-component

model as LogGam for short. The R package gglasso (Yang and Zou, 2012) is used to fit the

logistic regression with the grouped lasso. For the Gamma model with the grouped lasso,

since it is a special case of the Tweedie model with ρ = 2, our implementation described in

the previous sections still applies. The aforementioned models select their tuning parameters

by cross-validations as we do for the simulations. For comparison, we fit a regular Tweedie

model with only the main effect variables considered in Yip and Yau (2005): x3, x13, x14, x15

and x21 (for short, we call it YY model). Similarly, another regular Tweedie model is fitted

with only the main effect variables considered in Zhang (2013a): x3, x9, x13, x15 and x21 (for

short, we call it WZ model). For simplicity, we set ρ = 1.7 for all the Tweedie models in this

section (the value of ρ appears to have little influence on the results, the details of which

are thus omitted). After fitting the models with the training set, we count the number of

active variables (NAV for short), and use the testing set to calculate the Gini index of the

ordered Lorenz curve (Frees et al., 2011). The procedures above are repeated 10 times, and

the averaged values of NAV and the Gini index are summarized in Table 5 (the numbers in

parenthesis are standard errors). As we have seen in the simulations, the grouped elastic net
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tends to select more variables than the grouped lasso. For the LogGam model, we have to

settle with two possibly different sets of variables, one for the frequency submodel and one

for the severity submodel. Although each of the submodels may involve less active variables

than the grouped lasso and the grouped elastic net, such two submodel structure may not

be desirable for a straightforward interpretation of the loss-variable association.

Table 5: The averaged number of active variables and the averaged Gini index in the auto
insurance claim data example.

GrpLasso GrpNet LogGam YY WZ

Frequency Severity

NAV 4.9 6.2 3.6 3.6 - -

Gini index 0.462 (0.007) 0.463 (0.008) 0.460 (0.008) 0.156 (0.009) 0.360 (0.007)
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Figure 3: The ordered Lorenz curves for the auto insurance claim data. Larger area between
the ordered Lorenz curve and the break-even line means better risk segmentation.

Next, we briefly explain the ordered Lorenz curve and the associated Gini index proposed
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Figure 4: The solution path of the GrpNet model for the auto insurance claim data (the
dotted line represents the λ selected by cross-validations; τ=0.7).

by Frees et al. (2011), which is especially useful for insurance risk segmentation purposes. In

insurance business, when an insurer writes a policy for a customer, the insurer is exchanging

a future loss (or risk) Y for an immediate premium income (or policy price) M(X), where X

is the covariate related to the policy holder’s characteristics, and M(·) is a known baseline

premium calculation function currently in use and possibly dependent on X. Since the

baseline premium M(X) is not given in the auto insurance dataset, for simplicity, in this

section, we choose the constant premium function M(·) ≡ 1 for Gini index calculation. The

constant M(·) is also used for the simulations of section 4. Given an alternative statistical

model and a new covariate X, we can choose the predicted value µ̂(X) of the response to be

an insurance score S(X). For example, under the settings of section 2, the Tweedie model

with the grouped elastic net chooses S(X) = exp(β̂0+β̂
T
X). It is certainly desirable that the

insurance score S(X) can properly estimate the expected risk E(Y |X) and differentiate the

profitable business from the unprofitable business. Such insurance score, if shown effective

in risk segmentation, can be used to improve the existing premium calculation mechanism.

To gauge whether an insurance score (and the underlying statistical model that generates

the score) is effective, define a relativity R(X) = S(X)/M(X). Given a random sample

(namely, the testing dataset in our example) {(x̃i, ỹi), i = 1, · · · , n} of (X, Y ), define two
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empirical distribution functions

F̂L(r) =

∑n
i=1[ỹiI(R(x̃i) ≤ r)]∑n

i=1 ỹi
and F̂M(r) =

∑n
i=1[M(x̃i)I(R(x̃i) ≤ r)]∑n

i=1[M(x̃i)]
.

The ordered Lorenz curve is the graph of (F̂M(r), F̂L(r)). The ordered Lorenz curves of

GrpNet, YY and WZ models in one run of our real data example are given in Figure 3,

where the diagonal line is the so-called break-even line. Since the diagonal line means that

the proportion of premium selected by the cut-off relativity value r is always equal to the

proportion of the selected loss, it observes no risk segmentation, which gives the break-even

situation. The Gini index is defined as twice the area between the ordered Lorenz curve and

the break-even line.

The Gini index summarized in Table 5 implies that the GrpNet and the GrpLasso models

perform slightly better than the LogGam model. The YY and the WZ models clearly

underperform the others due to the lack of some relevant variables. We fit the GrpNet

model with the entire dataset, and the variables x5, x8, x9, x21 are selected as the important

variables. The solution path of this model is shown in Figure 4. The partial fits of the

selected variables are left in the Appendix (Figure A2).

6. CONCLUSION

Inspired by the success of the IRLS strategy in the coordinate descent algorithms (Friedman

et al., 2010), we embed the BMD method into the IRLS loops to form the IRLS-BMD

algorithm. The IRLS-BMD algorithm requires no blockwise orthonormal condition for the

design matrix, and is shown to be computationally very efficient. In addition, by integrating

the strong rule to the algorithm, we achieve faster computation of the solution path. With

the wide applications of Tweedie models, our efficiently implemented R package HDtweedie

can be an appealing tool for relevant scientific communities to investigate their own problems

of interest when a large number of variables is involved.
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SUPPLEMENTARY MATERIALS

Appendix: This supplementary file contains additional numerical examples and results not

shown in the main article. (appendix.pdf)

R package HDtweedie: This supplementary file is the R package HDtweedie, which im-

plements the algorithms proposed in this article. (HDtweedie 1.1.tar.gz)

R function step.tweedie: This supplementary file contains the R code to perform the

stepwise selection for the Tweedie model. (Tweedie stepwise.R)

R code for data analysis: This supplementary file contains the auto insurance claim data

example illustrated in this article. (data analysis.R)
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