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Communication: Analytic continuation of the virial series through the critical
point using parametric approximants

Nathaniel S. Barlow,1,a) Andrew J. Schultz,2,b) Steven J. Weinstein,3,c)

and David A. Kofke2,d)
1School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
2Department of Chemical and Biological Engineering, University at Buffalo, State University of New York,
Buffalo, New York 14260, USA
3Department of Chemical Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA

(Received 24 July 2015; accepted 11 August 2015; published online 21 August 2015)

The mathematical structure imposed by the thermodynamic critical point motivates an approximant
that synthesizes two theoretically sound equations of state: the parametric and the virial. The
former is constructed to describe the critical region, incorporating all scaling laws; the latter is an
expansion about zero density, developed from molecular considerations. The approximant is shown
to yield an equation of state capable of accurately describing properties over a large portion of the
thermodynamic parameter space, far greater than that covered by each treatment alone. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4929392]

A longstanding aim of statistical physics is the formu-
lation of equations of state that accurately describe the
thermodynamic surface of a fluid both at, near, and away
from its critical point. The idea is to bridge the singular
behavior of the pressure-density-temperature relationship at
the critical point with the regular behavior exhibited away from
it. This transition in structure, which agrees with experimental
observation,1 can be modeled using a “crossover” function
that patches together two equations of state; a review of these
methods can be found in Ref. 2. In this communication, we
use an alternative approach to accomplish the same goal, by
analytically continuing the known zero-density expansion into
the critical region. In this manner, we fuse the two approaches
without invoking an explicit crossover function.

The virial equation of state describes the dependence of
pressure on density of a fluid in the single-phase regime via a
series expansion about the ideal-gas limit,3

P = kBT
J
j=1

Bj(T)ρ j, B1 = 1, (1)

where P is the pressure, ρ is the number density, kB is the
Boltzmann constant, and T is the temperature. From here on,
we refer to the J-term virial series as VJ. Note that the virial
coefficients Bj are functions only of T , and the jth coefficient is
given in terms of integrals over positions of j molecules.4 The
number of integrals appearing for each coefficient increases
rapidly and nonlinearly with the order of the coefficient. The
Mayer sampling Monte Carlo approach is an effective way to
compute these integrals, using importance sampling.5 Here, we
look at the square-well (SW) model fluid; however, the method

a)Electronic mail: nsbsma@rit.edu
b)Electronic mail: ajs42@buffalo.edu
c)Electronic mail: sjweme@rit.edu
d)Electronic mail: kofke@buffalo.edu

we present may be applied to any fluid if virial coefficients and
certain critical properties are known.

The spherically symmetric SW model describes hard core
particles of diameter σ, such that the pair energy u(r) = ∞ for
separations r < σ, surrounded by an attractive well such that
u(r) = −ϵ for r < λσ; otherwise, u(r) = 0. We use the model
with λ = 1.5, for which the first six virial coefficients have
been computed in such a way that the explicit T dependence
of each coefficient is known.6 In the following, all quantities
are given in units such that σ and ϵ/kB are unity.

Wherever a singularity (physically motivated or not)
exists in a function, a series representation such as Eq. (1) will
have its radius of convergence bounded by the singularity, and
an increasing number of terms will be required to preserve
accuracy as the singularity is approached. This behavior is
especially problematic if only a few terms in the series are
readily available, as is the case for the virial series. The prob-
lem can be overcome by using a so-called approximant — that
is, a well-defined function that shares (or at least mimics) the
same singularity, while formulated such that its Taylor expan-
sion matches the series up to a desired order. By incorporating
the location and/or type of singularity that causes the series
to diverge, approximants analytically continue a divergent
series.7 A common approximant of this type is the Padé (i.e., a
rational-function approximant),8 exemplified by the Carnahan-
Starling equation of state for hard-sphere fluids.9 Even if the
radius of convergence of a series is infinite, it may be possible
to accelerate its convergence via a well-formed approximant,
such as one that matches known asymptotic behavior.10,11

Approximants are a natural choice to analytically continue
the virial series of molecular model fluids with critical points,
inasmuch as the asymptotic behavior on approach of the
critical point is known. Widom’s hypothesis prescribes the
appropriate scaling laws for all thermodynamic quantities.12

For nonclassical fluids, there is a branch-point singularity at
the critical point, (ρ,P,T) = (ρc,Pc,Tc), with an order that

0021-9606/2015/143(7)/071103/5/$30.00 143, 071103-1 © 2015 AIP Publishing LLC
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depends on the thermodynamic quantity and the path of
approach in ρ-P-T space. When taking the perspective of “sim-
ple scaling,” these branch points are characterized as follows:(

P
Pc
− 1

)
∼ ±D

�����
ρ

ρc
− 1

�����

δ

, T = Tc, ρ → ρc, (2a)

∂P
∂ρ
∼ Pc

ρcΓ+

(
T
Tc
− 1

)γ
, ρ = ρc, T → T+c , (2b)

Cv

T
∼ PcA+

ρcT2
cα

(
T
Tc
− 1

)−α
, ρ = ρc, T → T+c , (2c)(

ρ

ρc
− 1

)
∼ ±B0

�����
T
Tc
− 1

�����

β

, at coexistence, T → T−c , (2d)

where Cv is the isochoric heat capacity; δ, γ, α, and β are (for
nonclassical fluids) non-integer universal critical exponents;
and D, Γ+, A+, and B0 are fluid-specific critical amplitudes.2

The critical exponents are related through the formulas γ
= β(δ − 1) and α = 2 − β(δ + 1).13 Thus, one may charac-
terize the order of the branch point along all paths in the
thermodynamic space with knowledge of only two exponent
values.

While more sophisticated models of criticality, e.g.,
mixed-field scaling,2 can be introduced to the framework,
the basic formulation indicated in Eq. (2) is suitable for the
purposes of forming an approximant that is both effective and
straightforward in its application.

Approximants have been used to examine a single path
of approach for lattice models (viz., along the critical iso-
chore)7,14–16 and for molecular model fluids (along the critical
isotherm).17 Here, we are interested in an analytic continuation
of the virial series that incorporates the first three scaling
paths given in Eq. (2), so that we may obtain an equation of
state valid at low density, the critical region, and intermediate
regions. Care is required to ensure that singularities enforced
at the critical point do not introduce anomalies away from the
critical region. To enforce all scaling laws given in Eq. (2)
at (and only at) the critical point, Schofield18 proposed a
parametric (r, θ) coordinate system, defined via

(T/Tc − 1) = r(1 − b2θ2); (ρ/ρc − 1) = rβkθ, (3)

where b > 1 is a universal parameter and θ has been normal-
ized such that the coexistence curve corresponds to θ = ±1.
More generally, (ρ/ρc − 1) = rβM(θ), where M(θ) can be any
odd analytic function of θ. For several fluids, M(θ) has been
observed to be nearly linear in θ, prompting the widespread
use of the so-called “linear model” M(θ) = kθ (see Ref. 19 and
references therein). It follows from Eq. (3) and the critical scal-
ing law along the coexistence curve (Eq. (2d)) that k = B0(b2

− 1)β. Thus, although the focus of this work is to improve the
region where the virial series is applicable (i.e., T ≥ Tc and
subcritical gas phase), the fluid-specific amplitude B0 (defined
for T → T−c along coexistence) is needed to transform between
(r, θ) space and (ρ,T) space in Eq. (3).

Our approximant is formed by taking Schofield’s model
and adding an asymptotically subdominant (for T → Tc,
ρ → ρc) auxiliary function that enables the matching of virial
coefficients, while not affecting the critical scaling (Eq. (2)) or
amplitude relations (Eq. (5)). Specifically, the approximant is

given, together with Eq. (3), as

PAJ = P1(T)
“background” term

+ rβδ

ãθ(1 − θ2) + ãk

�
p0 + p2θ

2 + p4θ
4�

rβ                                                                                      
Schofield’s scaling function

+ f (θ)
J
j=1

d j(T)r ( j+1)β

                                        
auxiliary function


, (4)

where ã ≡ Pca, with a a fluid-specific but temperature-
independent model parameter, and Pc ≡ P1(Tc), as determined
by the approximant. The coefficients p0, p2, p4, and b are func-
tions of the critical exponents,2 provided in the supplementary
material.20 The subscript AJ indicates that the J-term virial
series (VJ) is used to construct the “AJ” approximant. Since
k appears in coordinate transformation equation (3) and a
does not, we enforce the former and predict the latter in the
approximant. Once a is known, critical amplitudes of Eq. (2)
may be calculated from Schofield’s equation as follows:2

D = a(b2 − 1)bδ−3/kδ, Γ+ = k/a,

A+ = ak(2 − α)(1 − α)αp0.
(5)

The only singularity explicitly enforced by the approxi-
mant occurs at the critical point, r = 0, which is a branch point
of PAJ(r, θ). In general, f (θ) in the auxiliary function is free to
choose. Although several choices lead to a convergent descrip-
tion of the SW fluid, we use f (θ) = θ in what follows, as this
leads to a desirable scaling property (discussed below). The
choice of the r-dependence in the auxiliary function given in
Eq. (4) allows the approximant to reduce to a critical isotherm
approximant when T = Tc, similar to the one given in Ref. 17,
such that P = Pc − A(ρ)(1 − ρ/ρc)δ. The approximant given
by Eq. (4) at T = Tc differs from the one in Ref. 17 in that it
relies on knowledge of B0, and is not restricted to ρ < ρc.

For convenience, Table I summarizes the universally
known quantities, fluid-specific known quantities, and un-
knowns to be determined by matching virial coefficients. We
take the critical amplitude that determines k and the critical
properties ρc and Tc to be known, since these properties
specify the transformation between (ρ,T) coordinates and
parametric (r, θ) coordinates in Eq. (3).

The unknowns of approximant equation (4) (ã, P1(T), and
d j(T)’s) are obtained in the following way. First, the critical
amplitude parameter ã is obtained by evaluating Eq. (4) along

TABLE I. Quantities appearing in approximant equation (4). External inputs
are boldface; other inputs listed below are functions of these. Critical values
δ and β are taken from Ref. 21, Tc and ρc are taken from Ref. 22, and B0
is taken from Ref. 23. Virial coefficients are taken from Ref. 6 (duplicated in
Ref. 20). Values in parentheses are the 68% confidence limits of the last digit
of the tabulated quantity.

Inputs (universal) Inputs (SW, λ= 1.5) Unknowns

δ = 4.789(2) Tc = 1.2179(3) ã

β = 0.3265(3) ρc = 0.3067(4) P1(T )
b = 1.1665 B0= 1.926 d1(T ), d2(T ), . . .
p0= 0.5282 k = 1.3806
p2=−0.9974 B1,B2, . . .,BJ

p4= 0.5783
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TABLE II. Properties obtained from Eqs. (4) and (5) for the SW fluid
(λ= 1.5), for each approximant of order J . Values in parentheses are the 68%
confidence limits of the last digit of the tabulated quantity, propagated from
uncertainty in the virial coefficients.

J Pc ã D Γ+ A+

2 0.097 996 2.4535 0.024 380 0.5627 0.365 10
3 0.096 093 2.2252 0.021 682 0.6204 0.331 12
4 0.095 39(1) 2.056(3) 0.019 89(3) 0.671(1) 0.305 9(4)
5 0.095 21(4) 1.97(1) 0.019 1(2) 0.700(5) 0.294(2)
6 0.095 3(1) 2.03(6) 0.019 6(6) 0.68(2) 0.30(1)

the critical isotherm (θ = −1/b from Eq. (3) for ρ < ρc). For
this purpose, we set dJ(Tc) = 0 in Eq. (4) and determine the
unknowns ã, P1(Tc), and d1(Tc) . . . dJ−1(Tc) such that the Jth-
order expansion of Eq. (4) about ρ = 0 is equal to the Jth-
order virial series Eq. (1). Equating powers in ρ, this yields
a system of J + 1 equations and J + 1 unknowns that can be
solved analytically. Values of ã are recorded in Table II along
with Pc = P1(Tc) for the SW fluid, using up to the six virial
coefficients currently available.6 Critical amplitudes are also
given in Table II, using the relations in Eq. (5). Substituting
ã, P1(Tc), and d j(Tc)’s back into Eq. (4) leads to description
of P(r, θ) along the critical isotherm, which is converted to
P(ρ,T) through Eq. (3).

The critical isotherm is shown in Fig. 1(a). The approxi-
mant retains the low-density behavior of the virial series, but
whereas the virial series diverges upon approach to critical
point, the approximant follows δ-scaling imposed by Eq. (2a)
(indicated in Fig. 1(a) inset) and continues beyond ρc, follow-
ing simulation data.

For off-critical isotherms (i.e., T , Tc), the parameter ã
now becomes an input to approximant equation (4). The un-
known functions P1(T) and d1(T) . . . dJ(T) are chosen such
that the Jth-order expansion of Eq. (4) about ρ = 0 is equal to
the Jth-order virial series for every desired T value. One again
obtains a system of J + 1 equations and J + 1 unknowns for
each T . Steps for constructing this system are described in the
supplementary material,20 along with virial coefficients for the
SW fluid, and computer codes that implement the parametric

model (for any fluid) including calculation of derived prop-
erties, such as the free energy, etc.

Supercritical isotherms described by the virial series are
shown in Fig. 1(b). Although there are no physically motivated
singularities for T > Tc, the virial series converges poorly
for densities beyond ρc, and particularly so as T descends
toward Tc; this behavior is consistent with observations for the
Lennard-Jones model25 and model alkanes26 over the same
range of T/Tc. Figure 1(c) shows that careful treatment of the
critical singularity using approximant equation (4) remedies
this behavior and greatly accelerates the convergence. Each
sequence of approximants appears to converge uniformly
toward a limiting isotherm for all T ≥ Tc, and all densities
examined (which extend up to 2ρc). Subcritical isotherms in
the vapor region are not shown, since the virial series already
performs well there, leaving little room for the approximant
to provide improvement.

An application of Schofield’s original model (scal-
ing + background term in Eq. (4)) towards the SW fluid is
also shown in Figs. 1(a) and 1(b). Here, the approximant
determines the parameters P1 and a. This (traditional) para-
metric model aligns with simulation data upon approach to
the critical point. However, without the additional degrees of
freedom provided by the auxiliary function in (4), the model
is incapable of matching the correct low-density behavior as
described by the virial series; performance also degrades with
increasing T > Tc.

The temperature dependence of the approximant may be
observed along vertical lines through the isotherms of Fig. 1;
these isochores are shown in Fig. 2(a). For ρ < ρc, the virial
series and approximant are indistinguishable on the scale of the
figure and are both aligned with simulation data. For ρ ≥ ρc,
the virial series diverges (only V6 shown) as T → Tc, while
the approximant converges smoothly and remains aligned with
the data.

The piece labeled “Schofield’s scaling function” in Eq. (4)
imposes γ-scaling, as prescribed by Eq. (2b), along the critical
isochore for all T , not just T → Tc. Choosing f (θ) = θ in
the auxiliary function of Eq. (4) allows that the asymptotic
behavior due to γ-scaling is experienced only on approach

FIG. 1. Isotherms of the SW fluid (λ= 1.5) as described by the virial equation of state (Eq. (1)) and approximant equation (4) with f (θ)= θ. (a) T = 1.2179 (Tc).
Inset highlights that P follows |ρ/ρc−1|δ. (b) Virial series (dashed curve) and Schofield’s scaling function + P1(T ) (solid lines) for T > Tc: T = 2 (top) and
T = 1.6 (bottom). (c) Approximant for T ≥Tc (bands of curves, top to bottom) T = 2,1.6,1.4,1.3,Tc. Each band shows A2 through A6 (top to bottom). Curves
are compared with MD values (◦) for a system of 2000 atoms and MC data24 (•). Uncertainty on the data points is smaller than the symbol sizes. Errorbars on
the curves specify the 68% uncertainty propagated from uncertainty in the virial coefficients.
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FIG. 2. Isochores of the SW fluid (λ= 1.5) as described by the virial equation of state (Eq. (1)) and approximant equation (4) with f (θ)= θ. (a) Each band
of curves shows A2 through A6 (top to bottom) and V6 (dashed curve, indistinguishable from A6 for bottom two curves) compared with MC data27 (•, 2048
atoms) and MD values computed by the authors for a system of 2000 atoms (◦). (b) Approach to γ-scaling along critical isochore, given by Eq. (6). (c) Specific
heat along the critical isochore as described by approximant and by virial series, compared with MC data27 (△, N = 500; ◦, N = 2048) for ρ = 0.3056 (we take
ρc = 0.3067). Inset highlights that Cv/T follows (T /Tc−1)−α. Error bars specify the 68% uncertainty propagated from uncertainty in the virial coefficients.
Uncertainty on the data points is smaller than the symbol sizes.

to the critical point, which is the correct behavior for the
SW fluid.22 This can be observed by plotting the effective γ
exponent

γeff = [∂ ln(∂P/∂ρ)/∂ ln(T − Tc)]ρc (6)

versus Tc/T , as shown in Fig. 2(b) for various orders of the
approximant along the critical isochore.

As stated in Ref. 22, the combination of a weak Cv/T
singularity (∆T−0.1099) and a persistently strong background
term (here, P1(T)) makes the detection of α-scaling difficult.
If one looks sufficiently near the critical point (within 1% of
Tc), this singular behavior becomes dominant, as shown in
the inset of Fig. 2(c). In this figure, the specific heat from
the approximant is compared with that of the virial series and
simulation data. Here is an example where the approximant is
converging to the correct (divergent) singular behavior which,
due to finite-size effects, cannot be captured by simulation
without more sophisticated processing.22 As mentioned in
Ref. 19, the ability to describe both P and Cv correctly is
a stringent test on the validity of the equation of state.

To summarize, the virial equation of state and the
universal critical scaling laws are two cornerstones of the
statistical mechanics of fluids. They both have strong theo-
retical foundations, and in their respective domains they
represent fluid properties more accurately than any other
theoretical or computational method. In combining them, we
have formed an equation of state that simultaneously describes
scaling behavior as the critical point is approached along all
paths, possesses the correct low-density expansion as given
by the virial series, and is analytic in the thermodynamic
parameter space except at the critical point itself. The use
of series continuation to bridge these two distinct regions
accomplishes the transition from singular to regular behavior
without the need for an explicit crossover function. Moreover,
the treatment retains all the features that make the virial
equation appealing: (1) it connects to molecular behaviors,
such that most of its key parameters can be determined
rigorously for a given intermolecular potential and (2) it can
be improved systematically, such that its accuracy at a given
state can be gauged by examination of the convergence of a
sequence of approximants.

This study suggests that critical anomalies affect the
convergence of the virial series for temperatures extending
well into the supercritical. Consequently, the approximant’s
explicit treatment of the critical singularity accelerates the
convergence of the virial series not only in the vicinity of
the critical region but also over much of the entire space of
non-condensed fluid states.
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