
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Articles Faculty & Staff Scholarship

2013

A Taxonomy of Massive Data for Optimal Predictive Machine A Taxonomy of Massive Data for Optimal Predictive Machine

Learning and Data Mining Learning and Data Mining

Ernest Fokoue

Follow this and additional works at: https://repository.rit.edu/article

Recommended Citation Recommended Citation
Fokoue, Ernest, "A Taxonomy of Massive Data for Optimal Predictive Machine Learning and Data Mining"
(2013). Accessed from
https://repository.rit.edu/article/1750

This Article is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/article
https://repository.rit.edu/facstaff
https://repository.rit.edu/article?utm_source=repository.rit.edu%2Farticle%2F1750&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/article/1750?utm_source=repository.rit.edu%2Farticle%2F1750&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

A Taxonomy of Massive Data for Optimal
Predictive Machine Learning and Data Mining

Ernest Fokoué
Center for Quality and Applied Statistics

Rochester Institute of Technology

98 Lomb Memorial Drive, Rochester, NY 14623, USA

ernest.fokoue@rit.edu

Abstract

Massive data, also known as big data, come in various ways, types, shapes, forms and sizes. In this paper,

we propose a rough idea of a possible taxonomy of massive data, along with some of the most commonly

used tools for handling each particular category of massiveness. The dimensionality p of the input space

and the sample size n are usually the main ingredients in the characterization of data massiveness. The

specific statistical machine learning technique used to handle a particular massive data set will depend

on which category it falls in within the massiveness taxonomy. Large p small n data sets for instance

require a different set of tools from the large n small p variety. Among other tools, we discuss Prepro-

cessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction,

Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Se-

quentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem

applies here, in the sense that there is no universally superior method that outperforms all other methods

on all categories of massiveness. It is also important to stress the fact that simplicity in the sense of

Ockham’s razor non plurality principle of parsimony tends to reign supreme when it comes to massive

data. We conclude with a comparison of the predictive performance of some of the most commonly used

methods on a few data sets.

Keywords: Massive Data, Taxonomy, Parsimony, Sparsity, Regularization, Penalization, Compression,

Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Sequen-
tialization, Cross Validation, Subsampling, Bias-Variance Trade-off, Generalization, Prediction Error.

I. Introduction

We consider a dataset D = {(x1, y1), (x2, y2), · · · , (xn, yn)}, where x⊤i ≡ (xi1, xi2, · · · , xip) denotes

the p-dimensional vector of characteristics of the input space X , and yi represents the correspond-
ing categorical response value from the output space Y = {1, · · · , g}. Typically, one of the most

basic ingredients in statistical data mining is the data matrix X given by

X =











x11 x12 · · · x1p

x21 x22 · · · x2p
...

. . . · · ·
...

xn1 xn2 · · · xnp











. (1)

Five aspects of the matrix X that are crucial to a taxonomy of massive data include: (i) The
dimension p of the input space X , which simply represents the number of explanatory variables

measured; (ii) The sample size n, which represents the number of observations (sites) at which
the variables were measured/collected; (iii) The relationship between n and p, namely the ratio

n/p; (iv) The type of variables measured (categorical, ordinal, interval, count or real valued), and

1

mailto:ernest.fokoue@rit.edu

the indication of the scales/units of measurement; (v) The relationships among the columns of

X, namely whether or not the columns are correlated (nearly linearly dependent). Indeed, as we
will make clear later, massive data, also known as big data, come in various ways, types, shapes,

forms and sizes. Different scenarios of massive data call upon tools and methods that can be
drastically different at times. The rest of this paper is organized as follows: Section 2 presents

our suggested taxonomy for massive data based on a wide variety of scenarios. Section 3 presents

a summary of the fundamental statistical learning theory along with some of the most commonly
used statistical learning methods and their application in the context of massive data; Section 4

presents a comparison of predictive performances of some popular statistical learning methods
on a variety of massive data sets. Section 5 presents our discussion and conclusion, along with

some of the ideas we are planning to explore along the lines of the present paper.

II. On the Diversity of Massive Data Sets

Categorization of massiveness as a function of the input space dimensionality p

Our idea of a basic ingredient for a taxonomy for massive data comes from a simple reasoning.

Consider the traditional multiple linear regression (MLR) setting with p predictor variables un-
der the Gaussian noise. In a typical model space search needed in variable selection, the best

subsets approach fits 2p − 1 models and submodels. If p = 20, the space of linear models is

of size 1 million. Yes indeed, one theoretically has to search a space of 1 million models when
p = 20. Now, if we have p = 30, the size of that space goes up to 1 billion, and if p = 40, the

size of the model space goes up to 1 trillion, and so on. Our simple rule is that any problem with an
input of more than 50 variables is a massive data problem, because computationally searching a thousand

trillion is clearly a huge/massive task for modern day computers. Clearly, those who earn their keep

analyzing inordinately large input spaces like the ones inherent in microarray data (p for such
data is in the thousands) will find this taxonomy somewhat naive, but it makes sense to us based

on the computational insights underlying it. Besides, if the problem at hand requires the estima-
tion of covariance matrices and their inverses through many iterations, the O(p3) computational

complexity of matrix inversion would then require roughly 125000 complexity at every single

iteration which could be quickly untenable computationally. Now, it’s clear that no one in their
right mind decides to exhaustively search a space of a thousand trillion models. However, this

threshold gives us somewhat of a point to operate from. From now on, any problem with more

than 50 predictor variables will be a big data problem, and any problem with p exceeding 100
will be referred to as a massive data problem.

Categorization of massiveness as a function of the sample size n

When it comes to ideas about determining how many observations one needs, common sense
will have it that the more the merrier. After all, the more observations we have to close we are to

the law of large numbers, and indeed, as the sample size grows, so does the precision of our es-
timation. However, some important machine learning methods like Gaussian Process Classifiers,

Gaussian Process Regression Estimators, the Relevance Vector Machine (RVM), Support Vector

Machine (SVM) and just about all other kernel methods operate in dual space and are therefore
heavily dependent on the sample size n. The computational and statistical complexity of such

methods is driven by the same size n. Some of these methods like Gaussian Processes and the
Relevance Vector Machine require the inversion of n × n matrices. As a result, such methods

could easily be computationally bogged down by too large a sample size n. Now, how large is

2

too large? Well, it takes O(n3) operations to invert an n × n matrix. Anyone who works with

matrices quickly realizes that with modern-day computers, messing around with more that a
few hundreds in matrix inversion is not very smart. These methods can become excruciatingly

(impractically) slow or even unusable when n gets ever larger. For the purposes of our categoriza-
tion, we set the cut-off at 1000 and define as observation-massive any dataset that have n > 1000.

Again, we derive this categorization based on our observations on the computational complexity

of matrix inversion and its impact on some of the state-of-the-art data mining techniques.

Categorization of massiveness as a function of the ratio n/p

From the previous argumentation, we could say that when p > 50 or n > 1000, we are compu-
tationally in the presence of massive data. It turns out however that the ratio n/p is even more

important to massive and learnability than n and p taken separately. From experience, it’s our

view that for each explanatory variable under study, a minimum of 10 observations is needed to
have a decent analysis from both accuracy and precision perspectives. Put in simple terms, the

number of rows must be at least 10 times the number of columns, specifically n > 10p. Using this
simple idea and the fact that information is an increasing function of n, we suggest the following

taxonomy as a continuum of n/p.

n
p < 1 1 ≤ n

p < 10 n
p ≥ 10

Information Information Information

Poverty S
ar
ity Abundan
e

(n ≪ p) (n ≫ p)

n > 1000
Large p, Large n Smaller p, Large n Mu
h smaller p, Large n

A B C

n ≤ 1000
Large p, Smaller n Smaller p, Smaller n Mu
h smaller p, Small n

D E F

Table 1: In this taxonomy, A and D pose a lot of challenges.

III. Methods and Tools for Handling Massive Data

Batch data vs incremental data production

When it comes to the way in which the data is acquired or gathered, the traditionally assumed
way is the so-called bat
h, where all the data needed is available all at once. In state-of-the-

art data mining however, there are multiple scenarios where the data is produced/delivered in

a sequential/incremental manner. This has prompted the surge in the so-called online learning

methods. As a matter of fact, the per
eptron learning rule, arguably the first algorithm that

launched the whole field of machine learning, is an online learning algorithm. Online algorithms
have the distinct advantage that the data does not have to be stored in memory. All that is

required in the storage of the built model at time t. In the sense the stored model is assumed to

have accumulated the structure of the underlying model. Because of that distinct feature, one may
think of using online algorithms even when the whole data available. Indeed, when the sample

size n is so large that the data cannot fit in the computer memory, one can consider building a
learning method that receives the data sequentially/incrementally rather than trying to load the

whole data set into memory. We shall refer to this aspect of massive data as sequentialization or

3

incrementalization. Sequentialization is therefore useful for both streaming data and massive data

that is too large to be loaded into memory all at once.

Missing Values and Imputation Schemes

In most scenarios of massive data analytics, it is very common to be faced with missing values.

The literature on missing values is very large, and we will herein simply mention very general
guidelines. One of the first thing one needs to consider with missing values is whether they

are missing systematically or missing at random. The second important aspect is the rate of

missingness. Clearly, when we have abundance of data, the number of missing values is viewed
differently. Three approaches are often used to address missingness: (a) Deletion, which consists

of deleting all the rows that contain any missingness; (b) Central imputation, which consists of
filling the missing cells of the data matrix with central tendencies like mode, median or mean; (c)

model-based imputation using various adaptation of the ubiquitous Expectation-Maximization

(EM) algorithm.

Inherent lack of structure and importance of preprocessing

Sentiment analysis based on social media data from facebook and twitter, topic modelling based

on a wide variety of textual data, classification of tourist documents or even to be more general
the whole field of text mining and text categorization require the manipulation of inherently

unstructured data. All these machine learning problems are of great interest to end-users, statis-

tical machine learning practitioners and theorists, but cannot be solve without sometimes huge
amounts of extensive pre-processing. The analysis of a text corpus for instance never starts with

a data matrix like the X defined in Equation (1). With these inherently unstructured data like text
data, the pre-processing often leads to data matrices whose entries are frequencies of terms. It’s

important to mention that term frequency matrices tend to contain many zeroes, because a term

deemed important for a handful of documents will tend not to appear in many other documents.
This content-sparsity can be a source of a variety of modelling problems.

Homogeneous vs Heterogeneous input space

There are indeed many scenarios of massive data where the input space is homogeneous, i.e. where
all the variables are of the same type. Audio processing, image processing and video processing

all belong to a class of massive data where all the variables are of the same type. There are

however many other massive data scenarios where the input space is made up of variables of
various different types. Such heterogeneous input spaces arise in fields like business, marketing,

social sciences, psychology, etc ... where one can have categorical, ordinal, interval, count, and
real valued variables gathered on the same entity. Such scenarios call for hybridization, which

may take the form of combining two or more data-type-specific methods in order to handle the

heterogeneity of the input space. In kernel methods for instance, if one has both textual inputs
and real valued inputs, then one could simply use a kernel K = αK1 + (1 − α)K2 that is the

convex combination of two data-type-specific kernels, namely a string kernel K1 and a real valued
kernel K2. Hybridization can also be used directly in modelling through the use of combination

of models.

4

Difference in measurement scale and the importance of transformation

Even when the input space is homogeneous, it is almost always the case that the variables are

measured on different scales. This difference in scales can be the source of many modelling

difficulties. A simple way to address this scale heterogeneity is to perform straightforward trans-
formations that project all the variables onto the same scale.

Standardization: The most commonly used transformation is standardization which leads to all the
variables having zero mean and unit variance. Indeed, if Xj is one of the variables in X and we

have n observations X1j, X2j, · · · , Xnj, then the standardized version of Xij is

X̃ij =
Xij − X̄j

√

∑
n
i=1 (Xij − X̄j)2

, where nX̄j =
n

∑
i=1

Xij

Unitization: is another form of transformation commonly used. Unitization simply consists of
transformation the variables such that all take values in the unit interval [0, 1]. The resulting

input space is therefore the unit p-dimensional hypercube, namely [0, 1]p. With unitization, if Xj is

one of the variables in X and we have n observations X1j, X2j, · · · , Xnj, then the unitized version
of Xij is given by

X̃ij =
Xij − min Xj

max Xj − min Xj
.

Dimensionality reduction and feature extraction

Learning, especially statistical machine learning, is synonymous with dimensionality reduction.

Indeed, after data is gathered, especially massive data, nothing can be garnered in terms of in-
sights until some dimensionality reduction is performed to provide meaningful summaries reveal-

ing the patterns underlying the data. Typically, when people speak of dimensionality reduction,
they have in mind the determination of some intrinsic dimensionality q of the input space, where

q ≪ p. There are many motivations for dimensionality reduction (a) achieve orthogonality in

the input space (b) eliminate redundant and noise variables, and as a result perform the learning
in a lower dimensional and orthogonal input space with the benefit of variance reduction in the

estimator. In practice, lossy data compression techniques like principal component analysis (PCA)
and singular value decomposition (SVD) are the methods of choice for dimensionality reduction.

However, when n ≪ p, most of these techniques cannot be directly used in their generic forms.

Kernelization and the Power of Mapping to Feature Spaces

In some applications, like signal processing, it is always the case that n ≪ p in time domain. A

ten seconds audio track at a 44100Hz sampling rate, generates a vector of dimension p = 441000
in time domain, and one typically has only few hundreds or maybe a thousand tracks for the

whole analysis. Typically image processing problems are similar in terms of dimensionality
with a simple face of size 640 × 512 generating a p = 327680 dimensional input space. In both

these cases, it’s impossible to use basic PCA or SVD, because n ≪ p, making it impossible to

estimate the covariance structure needed in eigenvalue decomposition. One of the solution to
this problem is the use of the methods that operate in dual space, like kernel methods. In recent

years, kernelization has been widely applied and with tremendous success to PCA, Canonical
Correlation Analysis (CCA), Regression, Logistic Regression, k-Means clustering just to name a

few. Given a dataset with n input vectors xi ∈ X from some p dimensional space, the main

5

ingredient in kernelization is a bivariate function K(·, ·) defined on X ×X and with values in IR,

and the corresponding matrix of similarities K known as the Gram matrix and defined as

K =











K(x1, x1) K(x1, x2) · · · K(x1, xn)
K(x2, x1) K(x2, x2) · · · K(x2, xn)

...
. . . · · ·

...
K(xn, x1) K(xn, x2) · · · K(xn, xn)











.

Crucial to most operations like kernel PCA is the centered version of the Gram matrix given by

K̃ = (In − IIn)K(In − IIn) = K − IInK − KIIn + IInKIIn,

where In ∈ IRn×n and IIn ∈ IRn×n are both n × n matrices defined as

IIn =
1

n











1 1 · · · 1
1 1 · · · 1
...

. . . · · ·
...

1 1 · · · 1











and In =











1 0 · · · 0
0 1 · · · 0
...

. . . · · ·
...

0 0 · · · 1











.

The next step is to solve the eigenvalue problem

1

n
K̃vi = λivi,

where vi ∈ IRn and λi ∈ IR for i = 1, · · · , n. In matrix form, the eigenvalue problem is

1

n
K̃ = VΛV

⊤ .

In fact, basic PCA can be formulated in kernel form using the Euclidean inner product kernel

K(xi, xj) = 〈xi, xj〉 = x
⊤
i xj, sometimes referred to as the vanilla kernel. If we center the data, i.e,

such that ∑
n
i=1 xij = 0, then the Gram matrix is

K =











x
⊤
1 x1 x

⊤
1 x2 · · · x

⊤
1 xn

x
⊤
2 x1 x

⊤
2 x2 · · · x

⊤
2 xn

...
. . . · · ·

...

x
⊤
n x1 x

⊤
n x2 · · · x

⊤
n xn











= XX
⊤.

Now, the covariance matrix is C = 1
n ∑

n
i=1 xix

⊤
i = 1

n X
⊤

X, and PCA based on the covariance is

simply 1
n X

⊤
Xwj = λjwj for j = 1, · · · , p with wj ∈ IRp and λj ∈ IR.

Aggregation and the Appeal of Ensemble Learning

It is often common in massive data that selecting a single model does not lead the optimal

prediction. For instance, in the presence of multicollinearity which is almost inevitable when p
is very large, function estimators are typically unstable and of large variance. The now popular

bootstrap aggregating also referred to as bagging offers one way to reduce the variance of the
estimator by creating an aggregation of bootstrapped versions of the base estimator. This is an

example of ensemble learning, with the aggregation/combination formed from equally weighted

6

base learners.

Bagging Regressors: Let ĝ(b)(·) be the bth bootstrap replication of the estimated base regression

function ĝ(·). Then the bagged version of the estimator is given by

ĝ(bagging)(x) =
1

B

B

∑
b=1

ĝ(b)(x).

If the base learner is a multiple linear regression model estimator ĝ(x) = β̂0 + x⊤β̂, then the bth

bootstrapped replicate is ĝ(b)(x) = β̂
(b)
0 + x⊤β̂(b), and the bagged version is

ĝ(bagging)(x) =
1

B

B

∑
b=1

(

β̂
(b)
0 + x⊤β̂(b)

)

Bagging classifiers: Consider a multi-class classification task with labels y coming from Y =
{1, 2, · · · , m} and predictor variables x = (x1, x2, · · · , xq)⊤ coming from a q-dimensional space

X . Let ĝ(b)(·) be the bth bootstrap replication of the estimated base classifier ĝ(·), such that

(ŷ)(b) = ĝ(b)(x) is the bth bootstrap estimated class of x. The estimated response by bagging is
obtained using the majority vote rule, which means the most frequent label throughout the B

bootstrap replications. Namely, ĝ(bagging)(x) = Most frequent label in Ĉ(B)(x), where

Ĉ(B)(x) =

{

ĝ(1)(x), ĝ(2)(x), · · · , ĝ(B)(x)

}

.

Succinctly, we can write the bagged label of x as

ĝ(bagging)(x) = arg max
y∈Y

{

freq
Ĉ(B)(x)(y)

}

= arg max
y∈Y

{

B

∑
b=1

(

1{y=ĝ(b)(x)}
)

}

.

It must be emphasized that in general, ensembles do not assign equal weights to base learners in

the aggregation. The general formulation in the context of regression for instance is

ĝ(agg)(x) =
B

∑
b=1

α(b)ĝ(b)(x).

where the aggregation is often convex, i.e. ∑
B
b=1 α(b) = 1.

Parallelization

When the computational complexity for building the base learner is high, using ensemble learn-

ing techniques like bagging becomes very inefficient, sometimes to the point of being impractical.
One way around this difficulty is the use of parallel computation. In recent years, both R and

Matlab have offered the capacity to parallelize operations. Big data analytics will increasingly
need parallelization as a way to speed up computations or sometimes just make it possible to

handle massive data that cannot fit into a single computer memory.

7

Regularization and the Power of Prior Information

All statistical machine learning problems are inherently inverse problems, in the sense that learn-

ing methods seek to optimally estimate an unknown generating function using empirical obser-
vations assumed to be generated by it. As a result statistical machine learning problems are

inherently ill-posed, in the sense that they typically violate at least one of Hadamard’s three well-

posedness conditions. For clarity, according to Hadamard a problem is well-posed if it fulfills the
following three conditions: (a) A solution exists; (b) The solution is unique; (c) The solution is stable,

i.e does not change drastically under small perturbations. For many machine learning problems, the
first condition of well-posedness, namely existence, is fulfilled. However, the solution is either

not unique or not stable. With large p small n for instance, not only is there a multiplicity of solu-

tions but also the instability thereof, due to the singularities resulting from the fact that n ≪ p.
Typically, the regularization framework is used to isolate a feasible and optimal (in some sense)

solution. Tikhonov’s regularization is the one most commonly resorted to, and typically amounts

to a Lagrangian formulation of a constrained version of the initial problem, the constraints being
the devices/objects used to isolate a unique and stable solution.

IV. Statistical Machine Learning Methods for Massive Data

We consider the traditional supervised learning task of pattern recognition with the goal of esti-

mating a function f that maps an input space X to a set of labels Y . We consider the symmetric
zero-loss ℓ(Y, f (X)) = 1{Y 6= f (X)}, and the corresponding theoretical risk function

R(f) = E[ℓ(Y, f (X))] =
∫

X×Y
ℓ(y, f (x))dP(x, y) = Pr[Y 6= f (X)].

Ideally, one would like to find the universally best classifier f ∗ that minimizes the rate R(f) of
misclassification, i.e.,

f ∗ = argmin
f

{

E[ℓ(Y, f (X))]
}

= argmin
f

{

Pr[Y 6= f (X)]
}

.

It is impossible in practice to find f ∗, because that would require knowing the joint distribution

of (X, Y) which is usually unknown. In a sense, R(f), the theoretical risk, serves as a standard

only and helps establish some important theoretical results in pattern recognition. For instance,
although in most practical problems one cannot effectively compute it, it has been shown theo-

retically that the universally best classifier f ∗ is the so-called Bayes classifier, the one obtained
through the Bayes’ formula by computing the posterior probability of class membership as the

discriminant function, namely,

f ∗(x) = class∗(x) = argmax
j∈{1,··· ,g}

{Pr[Y = j|x]} = argmax
j∈{1,··· ,g}

{

πj p(x|y = j)

p(x)

}

.

Assuming multivariate Gaussian class conditional densities with common covariance matrix Σ

and mean vectors µ0 and µ1, the Bayes Risk, that is the risk associated to the Bayes classifier, is
given by R(f ∗) = R∗ = Φ(−

√
∆/2) where Φ(·) is the standard normal cdf and

∆ = (µ1 − µ0)
⊤Σ−1(µ1 − µ0).

8

Once again, it is important to recall that this R∗ is not knowable in practice, and what typically

happens is that, instead of seeking to minimize the theoretical risk R(f), experimenters focus
on minimizing its empirical counterpart, known as the empirical risk. Given an i.i.d sample

D = {(x1, y1), (x2, y2) · · · , (xn, yn)}, the corresponding empirical risk is given by

R̂(f) =
1

n

n

∑
i=1

1{yi 6= f (xi)},

which is simply the observed (empirical) misclassification rate. It is re-assuring to know that

fundamental results in statistical learning theory (See Vapnik (2000)) establish that as the sample
size goes to infinity, the empirical risk mimics the theoretical risk

lim
n→∞

Pr[|R̂(f)− R(f)| < ǫ] = 1.

From a practical perspective, this means that the empirical risk provides a tangible way to search
the space of possible classifiers. Another crucial point is the emphasis on the fact that even with

this empirical risk, we still cannot feasibly search the universally best function, for such a space

would be formidably large. That’s where the need to choose a particular function class arises.
In other words, instead of seeking an elusive universally best classifier, one simply proposes a

plausible classifier, possibly based on aspects of the data, then finds the empirical risk minimizer
in that space, and then, if the need arises maybe theoretically find out how the associated risk

compares to the Bayes risk. One of the fundamental results in statistical learning theory has to do

with the fact the minimizer of the empirical risk could turn out to be overly optimistic, and lead
to poor generalization performance. It is indeed the case, that by making our estimated classifier

very complex, it can adapt too well to the data at hand, meaning very low in-sample error rate,
but yield very high out of sample error rates, due to overfitting, the estimated classifier having

learned both the signal and the noise. In technical terms, this is referred to as the bias-variance

dilemma, in the sense that by increasing the complexity of the estimated classifier, the bias is
reduced (good fit all the way to the point of overfitting) but the variance of that estimator is

increased. On the other hand, considering much simpler estimators, leads to less variance but
higher bias (due to underfitting, model not rich enough to fit the data well). This phenomenon

of bias variance dilemma, is particularly potent with massive data when the number of predictor

variables p is much larger than the sample size n. One of the main tools in the modern machine
learning arsenal for dealing with this is the so-called regularization framework whereby instead

of using the empirical risk alone, a constrained version of it, also known as the regularized or
penalized version is used.

R̂reg(f) = R̂(f) + λ‖ f‖H =
1

n

n

∑
i=1

1{yi 6= f (xi)} + λ‖ f‖H ,

where λ is referred to as the tuning (regularization) parameter, and ‖ f‖H is some measure of the

complexity of f with the class H from which it is chosen. It makes sense that choosing a function

f with a smaller value of ‖ f‖H helps avoid overfitting. The value of λ ∈ [0,+∞), controls the
trade-off between bias (goodness of fit), and function complexity (which is responsibility for

variance). Practically though, it may still be hard to even explore the theoretical properties of
a given classifier and compare it to the Bayes risk, precisely because, methods typically do not

directly act on the zero-one loss function, but instead use at best surrogates of it. Indeed, within a

selected class H of potential classifiers, one typically chooses some loss function ℓ(·, ·) with some

9

desirable properties like smoothness and/or convexity (this is because one needs at least to be

able to build the desired classifier), and then finds the minimizer of its regularized version, i.e.,

R̂reg(f) =
1

n

n

∑
i=1

ℓ(yi, f (xi)) + λ‖ f‖H .

Note that λ stills controls the bias-variance trade-off as before. Now, since the loss function
typically chosen is not the zero-one loss on which the Bayes classifier (universally best) is based,

there is no guarantee that the best in the selected class H under the chosen loss function ℓ(·, ·)
will mimic f ∗. As a matter of fact, each optimal classifier from a given class H will typically
perform well if the data at hand and the generator from which ut came, somewhat accord with

the properties of the space H. This remark is probably what prompted the famous so-called no
free lunch theorem, herein stated informally.

Theorem 1. (No Free Lun
h) There is no learning method that is universally superior to all other

methods on all datasets. In other words, if a learning method is presented with a data set whose inherent
patterns violate its assumptions, then that learning method will under-perform.

The above no free lunch theorem basically says that there is no such thing as a universally su-
perior learning method that outperforms all other methods on all possible data, no matter how

sophisticated the method may appear to be. Indeed, it is very humbling to see that some of the
methods deemed somewhat simple sometimes hugely outperform the most sophisticated ones

when compared on the basis of average out of sample (test) error. It is common practice in data

mining and machine learning in general, to compare methods based on benchmark data, and
empirical counterparts of the theoretical predictive measures, often computed using some form

of re-sampling tool like the bootstrap or cross-validation. Massive data, also known as big data,

come in various types, shapes, forms and sizes. The specific statistical machine learning tech-
nique used to handle a particular massive data set depends on which aspect of the taxonomy it

falls in. Indeed, it is important to emphasize that the no free lunch theorem applies more potently
here, in the sense that there is no panacea that universally applies to all massive data sets. It is

important however to quickly stress the fact that simplicity in the sense of Ockham’s razor non

plurality principle of parsimony tends to reign supreme when it comes to massive data. In this
paper, we propose a rough idea of a possible taxomony of massive data, along with some of the

most commonly used tools for handling each particular class of massiveness. In this paper, we
consider a few datasets of different types of massiveness, and we demonstrate through compu-

tational results that the no free lunch applies as a stronger as ever. We typically consider some

of the most commonly used pattern recognition techniques, from those that are most simple and
intuitive to some that are considered sophisticated and state-of-the-art, and we show that the

performances vary sometimes drastically from data to data. It turns out, as we will show, that
depending on the type of massiveness, some methods cannot even be used. We also provide our

taxonomy of massiveness along with different approaches to dealing with each case. See Vapnik

(2000) and Guo et al. (2005)

Linear Discriminant Analysis

Under the assumption of multivariate normality of the class conditional densities with equal

covariance matrices, namely (x|y = j) ∼ MVN(µj, Σ), or specifically,

p(x|y = j) =
1

(2π)p/2|Σ|1/2
exp

{

−1

2
(x − µj)

⊤Σ−1(x − µj)

}

,

10

a classifier with excellent desirable properties is Linear Discriminant Analysis (LDA) classifier,

which, given any new point x, will estimate the corresponding class Y as

ŶLDA = f̂LDA(x) = 1{β̂0+β̂⊤x>0} = 1{δ1(x)>δ0(x)}

where

δj(x) = x⊤Σ
−1µj −

1

2
µ⊤

j Σ
−1µj + log πj

or

β̂ = Σ̂−1(µ̂1 − µ̂0) and β̂0 = −1

2
(µ̂1 + µ̂0)

⊤Σ̂−1(µ̂1 − µ̂0) + log
π̂1

π̂0

where using the indicators zij = I(yi = j) = 1{yi=j}, the estimated prior probabilities of class
membership is given by π̂j = (nj/n) = (1/n) ∑

n
i=1 zij, the sample mean vectors µj are given by

µ̂j = (1/nj) ∑
n
i=1 zijxi and the sample covariance matrices Sj = (1/(nj − 1)) ∑

n
i=1 zij(xi − µ̂j)(xi − µ̂j)

⊤,

so that the sample pooled covariance

Σ̂ = (1/n)
1

∑
j=0

n

∑
i=1

zij(xi − µ̂j)(xi − µ̂j)
⊤

The estimation of Σ is clearly central to the use of Linear Discriminant Analysis. However, when

n ≪ p, Σ̂ is ill-defined at best. One of the approaches to dealing with this drawback is the
use of regularization which essentially consists of adding a jitter to the diagonal of Σ̂. For α ∈
(0, 1) or alternatively for λ ∈ (0, ∞), the regularized version Σ̂, namely Σ̂reg can be obtained

Σ̂reg = (1 − α)Σ̂ + αI or Σreg = Σ̂ + λI or even Σreg = λΣ̂ + I. Friedman (1989) provides one
of the earliest full treatment of this approach to singularity in LDA. Guo et al. (2005) give a very

compelling application of this kind of regularization to microarray data.

Nearest Neighbors Methods

The so-called k-Nearest Neighbors approach to learning computes the estimated response Ŷ∗
kNN

of a new point x∗ as follows: first set the neighborhood size k; then choose a distance measure

d(·, ·) defined on X × X ; then compute d∗i = d(x∗, xi), i = 1, · · · , n, then rank all the distances

d∗i in increasing order d∗(1) ≤ d∗(2) ≤ · · · ≤ d∗(k) ≤ d∗(k+1) ≤ · · · ≤ d∗(n). Then specify Vk(x
∗) =

{

xi :

d(x∗, xi) ≤ d∗(k)

}

, the size k neighborhood of x∗, made up of the k points in D that are closest to

x∗ according to d(·, ·). The estimate response is the Most frequent label in Vk(x
∗), specifically

Ŷ∗
kNN = f̂kNN(x

∗) = argmax
j∈{1,··· ,g}

{

p
(k)
j (x∗)

}

(2)

where

p
(k)
j (x∗) =

1

k

n

∑
i=1

I(Yi = j)I(xi ∈ Vk(x
∗)) (3)

estimates the probability that x∗ belongs to class j based on Vk(x
∗). Indeed, p

(k)
j (x∗) can be

thought of as a rough estimate of πj(x
∗) = Pr[Y∗ = j|x∗], the posterior probability of class

membership of x∗,ie p
(k)
j (x∗) =≈ π̂j(x∗). See Hastie et al. (2001) and Clarke et al. (2009). kN-

earest Neighbors (kNN) essentially performs classification by voting for the most popular re-

11

sponse among the k nearest neighbors of x∗. In a sense, kNN provides the most basic form of

nonparametric classification Thanks to the fact that the estimated response Ŷ∗
kNN for x∗ is - at

least - a crude nonparametric estimator of Bayes classifier’s response, which somewhat justifies

(or at least explains) the great interest in kNN. Typical distances used in practice include the

Euclidean distance d(xi, xj) = ‖xi − xj‖2 =
(

∑
p
ℓ=1 (xiℓ − xjℓ)

2
)1/2

, and the Manhattan distance

d(xi, xj) = ‖xi − xj‖1 = ∑
p
ℓ=1 |xiℓ − xjℓ|. One of the appeals of the k-Nearest Neighbors approach

in both classification and regression lies in the fact it seamlessly applied to data of any type, as

long as a valid and appropriate distance can be defined. For instance, with binary data where
each x⊤i = (xi1, · · · , xip) ∈ {0, 1}p is a p-dimensional vector of binary (indicator) values, one could

use the Hamming distance or the very useful Jaccard distance defined as d J(xi, xj) = 1 − J(xi, xj),
where, J(xi, xj) is the Jaccard similarity index, defined by

J(xi, xj) =
x⊤i xj

x⊤i xi + x⊤j xj − x⊤i xj

.

Clearly, |J(xi, xj)| ≤ 1, with maximum value of 1 attained at J(xi, xi) and minimum value of 0

corresponding to two vectors with no matching 1 values. Since the fundamental building block
of kNN is the distance measure, one can easily perform classification beyond the traditional setting

where the predictors are numeric. For instance, classification with kNN can be readily performed
on indicator attributes xi = (xi1, · · · , xip)

⊤ ∈ {0, 1}p. kNN classifiers are inherently naturally multi-

class, and are used extensively in applications such as image processing, character recognition

and general pattern recognition tasks.

When it so happens as it often does that the input space X is nonhomogeneous, a typical ap-

proach to nearest neighbors pattern recognition consists of defining a distance that is the direct
or convex sum of the type-specific variables. For instance, if there is a group of numeric variables

and a group of categorical variables, one could use the distance d1(·, ·) for the first group, and
d1(·, ·) for the second group, and then either use the direct sum d(xi, xj) = d1(xi, xj) + d2(xi, xj)
or the convex sum d(xi, xj) = αd1(xi, xj) + (1 − α)d2(xi, xj) for some α ∈ (0, 1).
Nearest Neighbors Algorithms are extremely popular in Statistical Data Mining and Machine

Learning probably due to the fact that they offer the simplest and most flexible form of nonpara-
metric predictive analytics. In this paper, we explore various aspects of predictive analytics in

regression and pattern recognition (classification) using kNearest Neighbors. The complexity of

the underlying pattern in k-Nearest Neighbors Analysis is controlled by the size k of the neighbor-
hood. We show how Cross validation and other forms of re-sampling can be used to determine

the optimal value k that helps achieve bias-variance trade-off and thereby good generalization
(low prediction error).

Support Vector Machines

Consider a response variable taking values in {−1,+1} and a regularized empirical risk func-

tional given by

R̂reg(β0, β) =
1

n

n

∑
i=1

(1 − yi(β0 + β⊤xi))+ +
λ

2

p

∑
j=0

|β j|2,

where λ ∈ IR∗
+ is the regularization (tuning) hyperparameter, and the hinge loss (u)+ is defined as

(u)+ = max(0, u) =

{

0 if u < 0
u if u ≥ 0

12

Solving the optimization problem

(β̂0, β̂⊤)⊤ = argmin
(β0,β⊤)⊤∈IRp+1

{

1

n

n

∑
i=1

(1 − yi(β0 + β⊤xi))+ +
λ

2

p

∑
j=0

|β j|2
}

yields the linear support vector machine (SVM) binary classifier whose predicted response is

f̂svm(x) = sign

(

β̂0 + β̂⊤x
)

The above solution assumes that the decision boundary between the two classes is a hyperplane.
However, it often happens that the decision boundary is not linear. Kernelization is the standard

approach to handling the nonlinearity of the decision boundary in support vector machine clas-
sification. The kernel version of the SVM classifier is given by

f̂svm(x) = sign

(

n

∑
i=1

yiα̂iK(x, xi) + β̂0

)

,

where K(·, ·) is a bivariate function called kernel defined on X × X , and used to measure the
similarity between two points in observation space. The α̂i’s are determined via quadratic pro-

gramming optimization, with the nonzero α̂i’s corresponding to the so-called support vectors.

One of the most general and most commonly used kernel in the context of pattern recognition is
the Gaussian Radial Basis Function kernel given by

K(xi, xj) = exp

(

− 1

2

‖xi − xj‖2
2

τ2

)

.

The second most commonly used kernel is the Laplace radial basis function kernel defined as

K(xi, xj) = exp

(

− 1

2

‖xi − xj‖1

τ

)

.

There are many other kernels like the polynomial kernel K(xi, xj) = (scale〈xi, xj〉+offset)degree,

and others, see Clarke et al. (2009), Bousquet (2003), Tipping (2001), Vapnik (2000) among others.

When it so happens that the input space is nonhomogeneous, one could remedy by defined a
hybrid that is a linear convex combination of other dat-type specific kernels, namely

K(xi, xj) = αK1(xi, xj) + (1 − α)K2(xi, xj)

It can therefore be said that the Support Vector Machine has the potential to use massive data
tools like Regularization, Kernelization, Hybridization. In fact, we will see later that even aggre-

gation/combination will be using in both the bagging and boosting SVM classifiers.

Logistic Regression

Arguably one of the most widely used pattern recognition machines, logistic regression is indeed
used in the context of massive data with both regularization and kernelization frequently resorted

to in a variety of scenarios. Using the traditional {0, 1} indicator labelling, the empirical risk for

13

the binary linear logistic regression model is given by

R̂(β0, β) = − 1

n

n

∑
i=1

{

yi(β0 + β⊤xi)− log
[

1 + exp
{

(β0 + β⊤xi)
}]}

.

However, if we use the labelling {−1,+1} as with SVM, the empirical risk for the linear logistic

regression model is given by

R̂(β0, β) =
1

n

n

∑
i=1

log
[

1 + exp
{

−yi(β0 + β⊤xi)
}]

.

One of the most common extensions of this basic formulation of logistic regression is the use
of the regularized version of the empirical risk with ℓ1 norm on the space of the coefficients

β j’s. This so-called LASSO logistic regression achieves both shrinkage and variable selection in

situations where the data contains redundant and/or noise variables.

R̂reg(β0, β) =
1

n

n

∑
i=1

log
[

1 + exp
{

−yi(β0 + β⊤xi)
}]

+ λ
p

∑
j=0

|β j|

An even more powerful extension of the logistic regression model comes with the use of kernels

to capture the nonlinearity of underlying decision boundary of the classifier. Using kernels as
defined earlier, the regularized empirical risk for the kernel logistic regression is given by

R̂reg(g) =
1

n

n

∑
i=1

log [1 + exp {−yig(xi)}] +
λ

2
‖g‖2

HK

where

g(xi) = v +
n

∑
j=1

wjK(xi, xj).

with g = v + h, v ∈ IR and h ∈ HK. Here, HK is the Reproducing Kernel Hilbert Space (RKHS)

engendered by the kernel K. The predicted class (label) of x via KLR is given by

f̂KLR(x) = sign

(

1

1 + exp{−ĝ(x)} − 1

2

)

.

One of the main advantages of KLR over SVM lies in the fact that KLR unlike SVM provides both

the predicted label (hard classification) and the probability (soft classification) thereof, while SVM
is inherently built to provide only the predicted label. KLR also extends naturally to multi-class

while SVM requires more complicated modelling to extend beyond binary classification.

Classification and Regression Trees Learning

Understanding trees is indeed straightforward as they are intuitively appealing piecewise func-

tions operating on a partitioning of the input space. Given D =
{

(x1, Y1), · · · , (xn, Yn)
}

, with

xi ∈ X , Yi ∈ {1, · · · , g}. If T denotes the tree represented by the partitioning of X into q regions

R1, R2, · · · , Rq such that X = ∪q
ℓ=1Rℓ, then, all the observations in a given terminal node (region)

14

will be assigned the same label, namely

cℓ = argmax
j∈{1,··· ,g}

{

1

|Rℓ| ∑
xi∈Rℓ

I(Yi = j)

}

As a result, for a new point x, its predicted class is given by

ŶTree = f̂Tree(x) =
q

∑
ℓ=1

cℓIℓ(x),

where Iℓ(·) is the indicator function of Rℓ, i.e. Iℓ(x) = 1 if x ∈ Rℓ and Iℓ(x) = 0 if x /∈ Rℓ. Trees
are known to be notoriously unstable. Methods like bagging described earlier are often applied

to trees to help reduce the variance of the tree estimator.

V. Predictive Performance Comparison of Learning Machines on some

Massive Datasets

When we are given a benchmark test set {(x1, y1), (x2, y2), · · · , (xm, ym)}, we can assess the gen-

eralizability (predictive strength) of a regression function f using the Empirical Prediction Error
(EPE) defined as

EPE(f) =
1

m

m

∑
j=1

ℓ(yj, f (xj)).

In the k-Neatest Neighbors context, we consider Sk = {kmin, · · · , kmax}, the set of possible values

of k, and the optimal k can then be estimated as

k̂(opt) = argmin
k∈Sk

{

EPE(f̂kNN)
}

.

It’s often the case in practice that the training set is the only dataset available. In such cases, the

training set is subsampled. Typically, the data set is split into training set and test set, and many
realizations of the EPE are computed over many replications of the split. Let f̂ j be a regression

estimator and let f̂
(r)
j be its r-th replication based on the rth split of the data into training and

test sets. Now, let

Er = EPE(f̂
(r)
j)

be the rth replication of the test Empirical Predictive Mean Squared Error based on the test por-

tion of the split. Then we have E1, E2, · · · , ER, and can perform all kinds of statistical analyses on
these numbers in order to gain deeper insights in the predictive strength of f̂ j. For instance, given

different competing estimators f̂1, f̂2, · · · , f̂s, we can plot comparative boxplots to assess virtually
which of the estimators has the best performance. We could also simply compute measures of

central tendency and measures of spread on these empirical predictive measures. Clearly, this

gives us a potent framework that can be used for determining the predictively optimal value of k
when using the kNearest Neighbors Algorithm. Indeed, if we consider each value of k as defin-

ing a different regression estimator, we can then compare them using EPE and indeed choose the
value of k at which EPE is minimized.

A more commonly used approach involving a systematic subsampling as opposed to random

(stochastic) subsampling is provided by the ubiquitous cross validation tool. To choose the opti-

15

mal number of neighbors by leave one out cross validation (LOOCV), one computes

k̂(opt) = argmin
k∈Sk

{

CV(f̂kNN)
}

,

where Sk = {kmin, · · · , kmax} is the set of possible values of k, and

CV(f̂kNN) =
1

n

n

∑
i=1

ℓ(yi, f̂
(−i)
kNN (xi)) =

1

n

n

∑
i=1

1{yi 6= f̂
(−i)
kNN (xi)}

with f̂
(−i)
kNN (·) denoting an instance of the estimator f̂kNN obtained without the ith observation.

Once the "optimal" value of k is estimated using one of the above approach, we compare the

predictive performance of the k-Nearest Neighbors estimates to the estimates produced by other
function estimators.

Our first data set the Musk data set, with n = 476 and p = 166 which will fall in category E of
our taxonomy, since n < 1000 and 1 < n/p < 10.

LDA SVM CART rForest GaussPR kNN adaBoost NeuralNet Logisti

Musk 0.2227 0.1184 0.2450 0.1152 0.1511 0.1922 0.1375 0.1479 0.2408
Pima 0.2193 0.2362 0.2507 0.2304 0.2304 0.3094 0.2243 0.2570 0.2186
Crabs 0.0452 0.0677 0.1970 0.1097 0.0702 0.0938 0.1208 0.0350 0.0363

LDA SVM CART rForest Gauss kNN Boost NNET Logistic

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

Figure 1: Comparison of the average prediction error over R = 100 replications on the Musk data

VI. Conclusion and discussion

We have shown in this paper that despite their simplicity and tremendous intuitive appeal, k-

Nearest Neighbors can be implemented quite straightforwardly in the R environment. The ubiqui-

16

0 2 4 6 8 10

0.1
0

0.1
5

0.2
0

0.2
5

Method (Classifier)

Av
era

ge
 pr

ed
ict

ion
 er

ror

LDA

SVM

CART

rForest

Gauss

kNN

Boost

NNet

Logistic

Figure 2: Comparison of the average prediction error over R = 100 replications on the Musk data

tous cross validation tool is also readily implemented and does provide an easily understandable

approach to estimating the true generalization error of any estimating function, including the
k-Nearest Neighbors estimator. To guarantee the completeness of our analysis, we have provided

a comparison of predictive strength between optimally tuned k-Nearest neighbors estimates and
support vector machines regression estimates.

References

Bousquet, O. (2003, August). Statistical learning theory. Machine Learning Summer School,

Tuebigen, Germany.

Clarke, B., E. Fokoue, and H. Zhang (2009). Principles and Theory for Data Mining and Machine

Learning (First ed.). Springer Texts in Statistics. Springer-Verlag.

Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the American Statistical Asso-
ciation 84, 165–175.

Guo, Y., T. Hastie, and R. Tibshirani (2005). Regularized linear discriminant analysis and its

application in microarrays. Biostatistics 1(1), 1–18.

Hastie, T., R. Tibshirani, and J. Friedman (2001). Elements of Statistical Learning. Springer Texts in
Statistics. Springer-Verlag.

Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine. Journal of
Machine Learning Research 1, 211–244.

Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. Springer.

17

	A Taxonomy of Massive Data for Optimal Predictive Machine Learning and Data Mining
	Recommended Citation

	Introduction
	On the Diversity of Massive Data Sets
	Methods and Tools for Handling Massive Data
	Statistical Machine Learning Methods for Massive Data
	Predictive Performance Comparison of Learning Machines on some Massive Datasets
	Conclusion and discussion

