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Abstract

The evaluation of instructors by their students has been practiced at most universities for many decades,

and there has always been a great interest in a variety of aspects of the evaluations. Are students matured

and knowledgeable enough to provide useful and dependable feedback for the improvement of their instruc-

tors’ teaching skills/abilities? Does the level of difficulty of the course have a strong relationship with the

rating the student give an instructor? In this paper, we attempt to answer questions such as these using

some state of the art statistical data mining techniques such support vector machines, classification and

regression trees, boosting, random forest, factor analysis, kMeans clustering. hierarchical clustering. We

explore various aspects of the data from both the supervised and unsupervised learning perspective. The

data set analyzed in this paper was collected from a university in Turkey. The application of our tech-

niques to this data reveals some very interesting patterns in the evaluations, like the strong association

between the student’s seriousness and dedication (measured by attendance) and the kind of scores they

tend to assign to their instructors.

I. Introduction

The evaluation of instructors by their students has been practiced at most universities for many
decades. Typically, these evaluations are administered in the form of long surveys answered by
students at the end of the semester (quarter). Questions in the survey are related to such aspects
as course organization, level and quality of delivery, clarity of course objectives, level of difficulty
of the course, impact of the course on the student’s overall university experience and goals, rele-
vance of the course, preparedness and competency of the instructor, likeability and fairness of the
instructor, overall satisfaction of the student, and overall rating of the instructor by the student,
just to name a few. The overarching goal of students’s evaluations of instructors is the extraction
of feedback from students with the finality of inspiring their professors to teach better and help
students learn more/better. Typically, most university administrators such as department heads,
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school directors, college deans, provosts and chancellors have tended to rely on a single grand av-
erage of the questionnaire scores as a measure of the quality of an instructor. Given the complex
and multidimensional nature of the questionnaires administered, it is clearly misleading to sum-
marize such evaluations with a single number. Besides, the averages usually relied upon are not
valid, because of the non-numeric nature of the Likert-type of the evaluation responses/scores.
Indeed, since the publication of the seminal Likert (1932) paper, Likert-type scores have been
extensively used in a wide variety of fields ranging from Anthropology, Psychology, Education,
Sociology, Sports just to name of a few. Unfortunately, with the astronomical number of appli-
cations of the Likert measurement system, there have also been innumerable abuses, especially
the misuse of Likert-type scores as real-valued scores. Authors such as Sisson and Stocker (1989),
Clason and Dormody (1994), Jamieson (2004) and Allen and Seaman (2007) provide pointers to
the uses abuses of Likert-type data. Many authors have indeed cautioned experimenters on the
meaninglessness of statements made based on analyses with inappropriate techniques. To quote
Adams et al. (1965), "Nothing is wrong per se in applying any statistical operation to measurements of
given scale, but what may be wrong, depending on what is said about the results of these applications, is

that the statement about them will not be empirically meaningful or else that it is not scientifically sig-

nificant". Along the lines of Adams et al. (1965), many authors have written numerous articles
providing guidelines as to which statistical techniques are most appropriate for Likert-type and
the so-called Likert-scale datasets. Boone and Boone (2012) of instance provides a clear separa-
tion between Likert-type and Likert-scale, and strongly recommends nonparameteric techniques
for Likert-type and parametric techniques for Likert-scale. To avoid such pitfalls of meaningless
conclusions on our data, we strive to guarantee the validity of our analyses and summaries, by
using mostly Likert-type specific (or at least Likert-type compatible) techniques and tools of ex-
ploratory data analysis, cluster analysis, dimensionality reduction and pattern recognition. The
rest of this paper is organized as follows: in section 2 we present some general definitions and
address important aspects of survey data such item reliability and respondent reliability. We also
present empirical answers to most of the above questions using both appropriate exploratory data
analysis tools and some straightforward tests of association. In section 3 we focus on the multi-
variate aspects of the data and answer most of the students’ evaluation of instructors questions
by using tools such as factor analytic and cluster analysis which both reveal very meaningful
confirmation of some beliefs and perceptions about the rating of professors by their students.
Section 4 uses some of the results from section 3 to perform predictive analytics on this data. We
specifically apply state of the art pattern recognition techniques such as support vector machines,
boosting, random forest and classification trees to predict the satisfaction level of a given student
based on their answers to the 28 questions on the survey. Section 5 provides our conclusion and
discussion, along with pointers to our future work.

II. Exploratory Data Analysis, Data Quality and Definitions

The dataset analyzed in this paper is made up of n = 5820 evaluations completed by students
in recent years at a university in Turkey. The questionnaires have a total of 31 questions, 28
of which are course evaluation specific, and the remaining 3 represent scores on such items as
student’s perceived difficulty level of the course, attendance, number of repetitions of the course.

II.1 Definitions and data quality

The dataset is represented by an n× p matrix X whose ith row x⊤i ≡ (xi1, xi2, · · · , xip) denotes the
p-tuple of characteristics, with each xij ∈ {1, 2, 3, 4, 5} representing the Likert-type level (order)

2



of preference of respondent i on item j. Recall that a Likert-type score is obtained by translat-
ing/mapping the response levels {Strong Disagree, Disagree, Neutral, Agree, Strongly Agree}
into pseudo-numbers {1, 2, 3, 4, 5}. With each xij ∈ {1, 2, 3, 4, 5}, the data matrix X for a survey of
p = 7 questions answered by n = 10 respondents looks like

X =
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(1)

A usually crucial part in the analysis of questionnaire data is the calculation of the Cronbach’s
alpha coefficient which measures the reliability/quality of the data. Let X = (X1, X2, · · · , Xp)⊤

be a p-tuple representing the p items of a questionnaire. The Cronbach’s alpha coefficient is a
function of the ratio of the sum of the idiosyncratic item variances over the variance of the sum
of the items, and is given by

α =

(

p

p − 1

)



1 −
∑

p
j=1 V(Xj)

V

(

∑
p
ℓ=1 Xℓ

)





For our data, we found α = 0.992, indicating a reliable (ie good quality) survey instrument from
Cronbach’s point of view. We must emphasize however, that this is just item reliability, which is
of course of great importance, but herein contrasted with respondent reliability which we had to
assess and address as a result of some patterns discovered in our data.

Definition 1. Let D = {x1, x2, · · · , xn} be a dataset with x⊤i = (xi1, xi2, · · · , xip). An observation
vector xi will be called a zero variation vector if xij = constant, j = 1, · · · , p. Respondents with zero

variation response vectors will be referred to as single minded respondents/evaluators.

Example 1. Observations 2 and 5 in equation (1) are zero variation observations. In our data set of

n = 5820 evaluations, we found a rather high prevalence of single minded evaluators, specifically, about
half of the evaluations (2985/5820 ≈ 51%). In fact, zero variation responses essentially reduce a p items

survey to a single item survey.

Theorem 1. Let X = (X1, X2, · · · , Xp)⊤ be a p-tuple representing the p items of a questionnaire. If X

is zero variation, then the Cronbach’s alpha coefficient will be equal to 1.

Proof. If X = (X1, X2, · · · , Xp)⊤ is zero variation, then Xj = W for j = 1, · · · , p, and ∑
p
j=1 Xj = pW.

As a result, ∑
p
j=1 V(Xj) = pV(W) and V

(

∑
p
j=1 Xj

)

= V(pW) = p2
V(W). Therefore,

α =

(

p

p − 1

)



1 −
∑

p
j=1 V(Xj)

V

(

∑
p
ℓ=1 Xℓ

)



 =

(

p

p − 1

) [

1 −
pV(W)

p2V(W)

]

=

(

p

p − 1

) [

1 −
1
p

]

= 1
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It is our view that zero variation responses are an indication that the respondent did not give
deep thought to each of the questions/items of the survey. One could always argue that such
evaluators came in with a single rating on all the items, ad that such responses are just fine.
However, considering the sometimes drastically different foci of the questions, it is rather unlikely
that a given instructor on a given course would perform exactly the same on all the items. On
the other hand, such zero variation responses convey the impression that the respondent rushed
the answering process. Finally, from a point of view of feedback to the instructor in order to help
them improve the course, such answers provide very little if any feedback at all. For all the above
reasons, we deem the zero variation responses unreliable. We use a straightforward adaptation of
the Cronbach’s alpha coefficient to measure and capture respondent reliability

Definition 2. Let D = {x1, x2, · · · , xn} be a dataset with x⊤i = (xi1, xi2, · · · , xip). Let the estimated

variance of the ith respondent be S̃2
i = ∑

p
j=1 (xij − x̄i)

2/(p − 1). Let Zj = ∑
n
i=1 xij represent the sum of

the scores given by all the n respondents to item j. Our respondent reliability is estimated by
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


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

Given a data matrix X, respondent reliability can be computed in practice by simply taking the
Cronbach’s alpha coefficient of X

⊤, the transpose of the data matrix X. Let m be the number of
nonzero variation. If m ≪ p and m/n is very small, then respondent reliability will be very poor.
Fortunately, for our data, respondent reliability is estimated at 0.996, which is very satisfactory.
We think this large value is due to the fact that, despite having more than 50% zero variation
respondents, we still a large enough sample. Despite this however, we will perform analyses
taking into account the dichotomy between single minded respondents and their counterparts.

II.2 Exploratory Data Analysis and Basic Tests

As we said earlier, students’ evaluations of instructors are administered with the goal of measur-
ing the effectiveness (quality) of instructors and hopefully provide them (the instructors) with
useful feedback to help them teach better. Clearly, such a goal is complex, and because of its
complexity, there have always been heated and often very passionate debates about the validity
and the appropriateness of such evaluations. As a matter of fact, many professors strongly be-
lieve and claim that students, especially undergraduate students, are neither mature enough nor
knowledgeable enough nor objective enough to provide useful feedback to their instructors. To
a certain degree, such anti-students’ evaluations professors do have a valid point because even
with the crucial issues of maturity, knowledge and objectivity, there are very important points of
concerns with students’ evaluations of instructors: (a) a complex multidimensional instrument
like a 28 items questionnaire should never be summarized using a single number (as it is com-
monly practiced around the world), because such a simplistic summarization definitely fails to
capture all the niceties inherent in the complex art of teaching (b) given the Likert type nature
of the scores (responses), the often used grand average is at best misleading because averages
computed on non-numeric variables are often meaningless as we will show later in very striking
simple examples, see Adams et al. (1965). It makes sense that only a multidimensional summary
or better yet a functional summary (density or mass function) can meaningfully capture the pat-
tern underlying a multidimensional instrument like the students’ evaluations of instructors. In
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this section, we provide just such summarizations, bearing in mind the Likert-type nature of our
data, and therefore providing only the kind of statistic analysis appropriate for such data types.

II.2.1 Beware of misleading and meaningless averages

It’s a very common practice among people dealing with Likert type data to use averages and
standard deviations as their measures of central tendency and measures of spread (variation)
respectively. Universities use the grand mean as the overall rating of an instructor

grandmean(x) =
1

np

p

∑
j=1

n

∑
i=1

xij = mean

(

mean
j=1:p

(s(xj))

)

,

where s(xj) = {xij : i = 1 · · · , n}. Typically, when an instructor opens the website containing
her/his student evaluation data, there are 28 averages, one for each questions, and then there
is the average of those averages which is the grand mean representing the overall rating of the
instructor. With xij ∈ {1, 2, 3, 4, 5}, such a grand average is a best misleading and at worst just
plain invalid. In the hierarchy of data types, Likert type scores are no more than ordinal, which
prohibits the use of averages. By their very nature, Likert-type observations are inherently def-
initely not numerical in the usual sense of interval or ration data. Consider a sample of size 2
with x1 = 4 = Agree and x2 = 2 = Disagree. When treated as a sample of numeric (ratio) ob-
servations x̄ = (x1 + x2)/2 = (4 + 2)/2 = 3 = Neutral = (Agree+ Disagree)/2, which means
that if one agrees and the other disagrees, one should expect neutrality. It’s somewhat weird
that one should expect neutrality as a result of an agreement and a disagreement. Consider
another sample of size 3 with x1 = 3 = Neutral, x2 = 4 = Agree and x3 = 5 = Strongly Agree.
Then our corresponding average is x̄ = (x1 + x2 + x3)/3 = (3 + 4 + 5)/3 = 4 = Agree =
(Neutral+ Agree+ Strongly Agree)/3. Such an average is meaningless and somewhat mislead-
ing. In fact, if consider even the following example where we have x1 = 1 = Strongly Disagree,
x2 = 1 = Strongly Disagree, x3 = 5 = Strongly Agree and x4 = 5 = Strongly Agree. Then,
the average is x̄ = (x1 + x2 + x3 + x4)/4 = (1 + 1 + 5 + 5)/4 = 3. Written in orginal Likert, it
is x̄ = (Strongly Disagree+ Strongly Disagree+ Strongly Agree+ Strongly Agree)/4 = Neutral.
This means that two instances of Strongly Disagree combine with two instances of Strongly
Agree to yield a neutral as the expected opinion. There is definitely no valid basis for such
an average. In fact, if push the same kind of reasoning even further by considering a sam-
ple of 50 observations, with 25 instances of Agree, namely {xi = 4, i = 1, · · · , 25}, and 25
instances of Disagree, namely {xi = 2, i = 26, · · · , 50}, we get the average x̄ = ∑

50
i=1 xi/50 =

(∑25
i=1 4/25 + ∑

50
i=16 4/25)/2 = (4 + 2)/2 = 3 = Neutral = (Agree+ Disagree)/2. It is definitely

misleading to conclude that 25 agreements combined with 25 disagreements should yield neu-
trality. The use of averages for data collected/scored this way is at best misleading because the
numbers assigned to the opinions do not have an objective numerical value in the sense of a mea-
surement. Going back to our motivating example of the students’ evaluation of instructors, the
use of the grand mean as the overall rating of the instructor misses the subtle and important infor-
mation reveal by appropriate frequencies (proportions) and the corresponding bar plots. When
the grand mean is used, Instructor 1 scores an average of 3.4, which of course tells us nothing
about the distribution of her scores. Figure (1) reveals that the distribution for this instructor is
skewed to the left, with a pronounced/strong mode at 4 for most of the questions/items. Al-
though we still do not advocate the use of a single number to summarize a complex instrument
like a students’ evaluations of instructor, we would recommend trusting the mode rather than
the mean if a single number were to be used. This led us to defining a grand mode in place of
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the invalid grand mean as follows: Let s(xj) = {xij : i = 1 · · · , n} and let x̃ij = unique(xij). If mj

denotes the mode of variable Xj, then for j = 1, · · · , p, we can readily compute the mode of the
jth column as

mj = arg max
x̃ij∈s(x j)

{

f requency(x̃ij)
}

= mode(s(xj)).

The set M = {m1, m2, · · · , mp} containing the modes for the p columns. Let m̃j = unique(mj).
We can find the grand mode as

grandmode(x) = arg max
m̃j∈M

{

f requency(m̃j)
}

= mode

(

mode
j=1:p

(s(xj))

)

,

The grand mode for instructor 1 is found to be 4, which, in light of the distribution of her scores,
is a more accurate summarization of her effectiveness and teaching quality.
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Figure 1: Barplot of the scores received by Instructor 1 from the n1 = 775 who evaluated her courses.

It might be tempting, given the ordinal nature of Likert-type data, to use the grand median

grandmedian(x) = median

(

median
j=1:p

(s(xj))

)

,

in place of the grand mean. From our experience, such a summarization is not as accurate as the
grand mode, partly due to the floor and ceiling effect. See Clason and Dormody (1994)
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If instead of considering only instructor 1 we use the entirety of the data with all the n = 5820
evaluations, the distribution of all the 28 course specific questions is given in Figure (2). Clearly,
most questions attain their mode at 3, and we find the grand mode to be 3.
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Figure 2: Barplots for all the n = 5820 student evaluation regardless of the professor.

Thanks to the distributional features of the scores of the instructors in this dataset, namely the
skewness to the left, we able to comment in a more complete manner on the effectiveness (or at
least the students’ perception thereof). With the highest frequencies being between 3 and 5, it is
fair to say that the instructors evaluated here are not negatively perceived by their students.

Zero Variation Nonzero Variation Total

Instru
tor 1 0.0789 0.0543 0.1332
Instru
tor 2 0.1309 0.1172 0.2481
Instru
tor 3 0.3031 0.3156 0.6187
Total 0.5129 0.4871 1

Table 1: Distribution of response variation among instructors

II.2.2 Examining the Effect of Response Variation

Despite the ability to provide a more meaningful single summarization of the whole evalua-
tion through the grand mode along with distributional qualifications, we still need to answer
relational questions like the association between student maturity and their rating, student se-
riousness/dedication/objectivity and their rating. We now propose to focus on zero variation
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responses, as we believe that the reflect the reliability of the respondent. In a sense, we claim that
a student who gives a zero variation response is providing a less objective and less mature answer
to the survey. We then try to find out if there is an association between zero variation and the
answers to the questions. First and foremost, it is interesting to assess the association between
response variation and instructors. See Table 1.
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Figure 3: Barplot of the distribution of response variation as a function of instructor.

As expected based on the above barplot, the chi-squared test of association between Instructor
and Response Variation is significant, namely with χ

2
obs

= 28.45, df = 2, p-value = 0.000.
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Figure 4: Barplot of the distribution of Zero Variation Responses for all the instructors.

Strongly Disagree Disagree Neutral Agree Strongly Agree

Instru
tor 1 0.1678 0.0545 0.2288 0.2767 0.2723
Instru
tor 2 0.1378 0.0407 0.3018 0.3084 0.2113
Instru
tor 3 0.2086 0.0726 0.3294 0.2183 0.1712

Table 2: Proportion of each response category for answers with zero variation

The lack of richness of the zero variation responses in this study is less concerning because most
of such responses are either neutral or positive. In a sense, those who were single minded about
their rating of the courses, were so mostly not because of dissatisfaction, which somewhat means
that their feedback was really not needed. For that reason, we can proceed with the remaining
aspects of the analysis of this data, secured that both the item reliability (measured by Cronbach’s
alpha) and the respondent reliability are satisfactory.

8



II.2.3 Examining Various Important Associations

We now examine a variety of association between different important variables. Taking the view
that attendance is a measure of dedication/seriousness, and therefore a decent and plausible indi-
cator of the ability/authority of the student to correctly assess their instructor, we will now test
the association of various variables with attendance. In other words, if a student is not dedicated ie
not serious (as measured by attendance), their assessment should probably not be taken seriously.
We also consider the variable difficulty, a self reported variable provided to allow the student to
indicate their perception of the level of difficulty of the course. This variable is particularly im-
portant because some instructors strongly believe that students tend to give a negative feedback
when they perceive the course to be difficult.

Association between Attendance Level and Response Variation for Instructor 3.

Poor Minimal Good Good Ex
ellent

nonzero 0.14912524 0.08747570 0.07220217 0.12663149 0.07470147
zero 0.22299361 0.07497917 0.05942794 0.07275757 0.05970564

Table 3: Cross tabulation of Attendance level vs Response Variation for Instructor 3.

The corresponding chi-squared test of association between Attendance level and Response Variation

is significant, specifically with χ
2
obs

= 117.7398, ν = df = 4, p-value < 2.2e − 16.
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Figure 5: Instructor 3: (left) Response variation vs attendance level; (right) Response variation vs difficulty level.

Association between Difficulty Level and Response Variation for Instructor 3.

Too Easy Easy Normal Diffi
ult Too Diffi
ult

nonzero 0.12385448 0.04498750 0.14940294 0.12968620 0.06220494
zero 0.19550125 0.03471258 0.10274924 0.09080811 0.06609275

Table 4: Cross tabulation of Difficulty level vs Response Variation given by students for Instructor 3.

The corresponding chi-squared test of association between Difficulty level and Response variation
is significant, specifically with χ

2
obs

= 117.7398, ν = df = 4, p-value < 2.2e − 16.
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Various Tests of Association using the whole dataset

It appears that for all the evaluations provided for Instructor 3, both Attendance Level Difficulty
Level are strongly associated with Response Variation. The question then arises as to whether that
association holds when all the 5820 evaluations are considered together.

Poor Minimal Good Good Ex
ellent

nonzero 0.1273 0.0880 0.0718 0.1218 0.0782
zero 0.1995 0.0887 0.0643 0.0933 0.0672

Table 5: Cross tabulation of Attendance level vs Response Variation for all the Instructors.
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Figure 6: All instructors: (left) Response variation vs attendance level; (right) Response variation vs Difficulty level.

The corresponding chi-squared test of association between Attendance level and Response variation

is significant, namely with χ
2
obs

= 118.3, ν = df = 4, p-value < 2.2e − 16

Too Easy Easy Normal Diffi
ult Too Diffi
ult

nonzero 0.1065 0.0527 0.1601 0.1158 0.0519
zero 0.1718 0.0416 0.1447 0.0947 0.0601

Table 6: Cross tabulation of Difficulty level vs Response Variation for all the Instructors.

The corresponding chi-squared test of association between Difficulty level and Response variation

is significant, namely with χ
2
obs

= 113.5, ν = df = 4, p-value < 2.2e − 16.
As the barplots in Figure 6 clearly shows, students with poor attendance give an overwhelmingly
large number of zero variation answers whereas students with reasonable to excellent attendance
level tend to give nonzero variation answers. This somewhat confirms or at least supports the
strongly held belief that only those answers provided by dedicated/serious students should be
taken into account. On the other hand, students who perceive a course as too easy and therefore
boring or at least uninteresting also tend to give an overwhelming proportion of zero variation

answers. Interestingly, students who think the course has a normal difficulty level tend to take
time to provide varied answers to different questionnaire items.
There was a total of 13 courses included in the 5820 evaluations considered here. With the
interesting patterns discovered between response variation and both attendance and difficulty
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level, it is interesting to examine if there might be a similar type of strong association between
the courses and the response variation.
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Figure 7: Cross-tabulation of response variation versus course indicator for all the instructors.

The above barplot does indeed show that there is an association, and the corresponding chi-
squared test of association between Course and Response variation is significant, with χ

2
obs

= 150.7,
ν = df = 12, p-value < 2.2e − 16.

Too Easy Easy Normal Diffi
ult Too Diffi
ult

Poor 0.2263 0.0170 0.0380 0.0249 0.0206
Minimum 0.0137 0.0311 0.0653 0.0431 0.0234
Reasonable 0.0093 0.0131 0.0591 0.0393 0.0153
Good 0.0158 0.0187 0.0859 0.0679 0.0268
Ex
ellent 0.0132 0.0144 0.0565 0.0352 0.0259

Table 7: Cross tabulation of Difficulty level vs Attendance Level for all the Instructors.

Too Easy Easy Normal Difficult Too Difficult

Poor
Minimum
Reasonable
Good
Excellent
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Figure 8: Cross-tabulation of attendance level versus difficulty level for all the instructors.

The corresponding chi-squared test of association between Difficulty level and Attendance Level is
significant, with χ

2
obs

= 2528.06, ν = df = 16, p-value < 2.2e − 16. The most obvious feature of
this association is the astronomically high proportion of poor attendance in courses deemed too
easy. No surprise here, just plain common sense. Sadly however, there is no category in which
excellent attendance dominates.
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Although all the 28 items in the questionnaire were carefully selected by the designers of the
students’ evaluation, one could make a strong case that some questions are better indicators of
overall assessment than others. We have selected 4 such questions, and we know examine the
association between those questions and both attendance level and difficulty level.

Q10: My initial expectations about the course were met at the end of the period or year.

Q14: The Instructor came prepared for classes.

Q20: The Instructor explained the course and was eager to be helpful to students.

Q24: The Instructor gave relevant homework assignments/projects, and helped students.
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Figure 9: Cross-tabulation of attendance level versus scores on Questions 10,14,20,24
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Figure 10: Cross-tabulation of difficulty level versus scores on Questions 10,14,20,24

One of the most striking remarks in the distribution of difficulty level and scores is the fact that
disagree is the smallest percentage across the board. Also, when students deem the class too

easy, they tend to express their dissatisfaction in a forceful and really angry tone with the strong

disagree answers dominating the subgroup. Based on suggestions and speculations by vari-
ous instructors, we hypothesized 3 groups of students overall, namely Satisfied, Neutral and
Dissatisfied. In some cases, we just considered a binary categorization, focusing on dissatisfac-
tion as our positive, leading to Not Dissatisfied Dissatisfied as our class labels. Using such
classifications of students, we can say that Figure 10 and 9 reveal rather clear separations among
the groups. On Figure 9 for instance, Question 14 does reveal a clear difference of percentages
when our three hypothesized groups are considered. In the next section, we use cluster analysis
to extract possible groups in the data, and we then use various techniques of pattern recognition
to assess how well one can predict the group of a student based on the pattern of their answers.
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III. Pattern Recognition and Association Analysis

In this section, we turn our attention to the multivariate aspects of our data set. We perform Factor
Analysis to extract meaningful latent structure and cluster analysis to identify potential groups
in the way students rate their professors. As we said clearly in section 1 and 2, Likert-type scores
are inherently non-numeric, and applying techniques designed for numeric data on Likert-type
will yield answers that are potentially meaningless or at best very difficult to interpret. When it
comes to correlation analysis for instance, the default choice is the Pearson correlation measure.
With Likert type data however, one wonders if Pearson correlation should ever be used. Based
on recommendations by Adams et al. (1965), Boone and Boone (2012), and Clason and Dormody
(1994), the correct type of correlation for Likert-type data should be Kendall-tau-B correlation or
the Spearman correlation, as these are designed for (ordinal) ranked data. There have been many
recent interesting contributions to the multivariate analysis of Likert-type: in her doctoral thesis,
Javaras (2004) provides a wide variety of univariate and multivariate tools for analyzing Likert-
type data. Narli (2010) proposes the use of rough sets in the analysis of Likert-scale data. We
start off by checking how different the Pearson correlation matrix would be from the Kendall-tau
B correlation matrix on our data. Recall, that given two random variables Xi and Xj for which
observed (realized) values x1i, x2i, · · · , xni and x1j, x2j, · · · , xnj have been respectively gathered,
the so-called Pearson sample correlation matrix is given by

rij = correlation(xi, xj) = r(xi, xj) =
1

n − 1

n

∑
ℓ=1

(

xℓi − x̄i

sxi

)

(

xℓj − x̄j

sxj

)

For a random p-tuple X = (X1, X2, · · · , Xp)⊤ and the corresponding data matrix X = (xij), i =
1, · · · , n, j = 1, · · · , p, the Pearson sample correlation matrix is given by

R =











1 r12 · · · r1p

r21 1 · · · r2p
...

...
. . .

...
rp1 rp2 · · · 1











As we have been stressing all along, the Likert-type nature of our data makes the matrix R

meaningless, in the sense that the averages on which it is based may not have an interpretable
meaning. If consider two Likert type (ordered categorical) variables X and Y once again, their
Kendall τ-B correlation coefficient τB(X, Y) is given by

τB(X, Y) =
nc(X, Y)− nd(X, Y)
√

(n0 − n1)(n0 − n2)

where n0 = n(n − 1)/2, n1 = ∑i ti(ti − 1)/2, n2 = ∑j uj(uj − 1)/2, ti=number of tied values in

the i-th group of ties for the first quantity, uj=number of tied values in the j-th group of ties for the
second quantity, nc = number of concordant pairs, nd=number of discordant pairs. For a p-tuple X =
(X1, · · · , Xp) of p Likert type variables, the Kendall Tau-B correlation matrix is K where

K =











τB(X1, X1) τB(X1, X2) · · · τB(X1, Xp)
τB(X2, X1) τB(X2, X2) · · · τB(X2, Xp)

...
...

. . .
...

τB(Xp, X1) τB(Xp, X2) · · · τB(Xp, Xp)











13



Figure 11 depicts the graphical representation of both the Pearson and the Kendall τ-B correlation
matrices for our data. Surprisingly, the two matrices are very similar, to the point of being almost
indistinguishable.
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Figure 11: (left) Pearson correlation matrix (right) Kendall τB correlation matrix for our whole dataset.

III.1 Are there distinguishable groups among students?

A natural question that arises in the presence of data like the one we have, is whether it can be
clustered. In other words, is there such a thing as different groups of students as far as their
patterns of feedback to instructors are concerned? Can the patterns of students’s evaluations of
their instructors be grouped into distinct and clearly describable categories? Now, one of the
most celebrated approaches to cluster analysis is the ubiquitous kMeans clustering algorithm.
Obviously, as the name suggests, it is based the computation of averages that represent the
centers of potential underlying groups. With Likert-type data, it has been stressed all along
that averages are potentially meaningless because for the inherently categorical non numeric
nature of such data. With correlation matrices computed earlier looking very similar, one might
conjecture that for this data, it might be worth using numeric techniques on our data. The kMeans
clustering algorithm in this case would proceed by partitioning the data into k clusters such that
P = C1 ∪ C2 ∪ · · · ∪ Ck such that the best cluster minimizes the within-cluster sum of squares
(WCSS). In other words, if P∗ denotes the best partitioning (clustering) of the data, we must have

P∗ = argmin
P

{

k

∑
j=1

n

∑
i=1

I(xi ∈ Cj)‖xi − µj‖
2

}

where µj is the mean vector (center) for cluster Cj. Figure (12) seems to clearly suggest that one
should retain three distinct clusters. Indeed, two clusters would capture a very low percentage of
the variation in the data, while four clusters do not substantially improve the amount of variation
captured by three clusters. We therefore retained three clusters and carefully examined both the
percentage of observations in each one of them and the values of the centers. As Table 8 shows,
one could venture to say that almost 60% of the students have a neutral opinion of the courses
they took, and this seems to apply to almost all the 28 questions of the survey. The cluster analytic
result also suggests that 17% expressed maximum satisfaction with the courses they took. Finally
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Figure 12: Percentage of variation explained by cluster size

a third group of the students seems to be the group of very dissatisfied students, with our data
showing roughly 23% of such students. These numbers apply to all the 5820 evaluations analyzed.
It certainly would be more interesting, in the context of instructor’s improvement, to extract such
clustering for each course in order to help the instructor identify areas of improvement.

Cluster 1 Center 2 Center 3

Average of Center 4.80 1.52 3.37
Number of Observations 1010 1364 3446
Per
entage of observations 17.35% 23.44% 59.21%
Suggested 
lass label Satisfied Dissatisfied Neutral

Table 8: Clusters extracted using kMeans clustering.

Besides kMeans clustering, we thought it useful to also perform hierarchical clustering. We use
the Euclidean distance coupled with the Ward linkage to generate three clusters. We extracted
the corresponding labels, y ∈ {Dissatisfied, Neutral, Satisfied} and performed classification
with various pattern recognition techniques. We also merged the Neutral and Satisfied into one
group call Not Dissatisfied and performed binary classification, again using many different
pattern recognition techniques.

Cluster 1 Center 2 Center 3

Average of Center 2.93 4.25 1.40
Number of Observations 2176 2471 1173
Per
entage of observations 37.38% 42.45% 20.15%
Suggested 
lass label Neutral Satisfied Dissatisfied

Table 9: Clusters extracted using hierarchical clustering with the Euclidean distance and the Ward linkage.

We now use the Jaccard distance combined with the Ward linkage. Prior to using the Jaccard
distance, the data must be binarized. Consider two subjects with observation vectors x⊤i =
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Cluster 1 Center 2 Center 3

Average of Center 3.00 4.44 1.25
Number of Observations 916 1335 734
Per
entage of observations 30.68% 44.72% 24.60%
Suggested 
lass label Neutral Satisfied Dissatisfied

Table 10: Clusters extracted using hierarchical clustering on evaluations with zero variation.

(xi1, xi2, · · · , xip) and x⊤j = (xj1, xj2, · · · , xjp) respectively, where each item xκℓ ∈ {1, 2, 3, 4, 5} is
gathered on a Likert-scale. How does one go about measuring the similarity between the two
subjects? For instance, if p = 2 and we have x⊤1 = (1, 2), x⊤2 = (2, 3), x⊤3 = (4, 5), x⊤4 = (3, 3), x⊤5 =
(4, 4), x⊤6 = (3, 5), x⊤7 = (1, 5) How does equidistance (or the lack of it) affect the interpretation
of distances between two Likert-scale vectors. For instance, if we compute some of the City
block (Manhattan) distances among the above subjects (vectors): ‖x1 − x2‖1 = 2, ‖x2 − x3‖1 =
2, ‖x4 − x5‖1 = 2, ‖x4 − x6‖1 = 2, ‖x5 − x6‖1 = 2, ‖x6 − x7‖1 = 2. What does one do with the fact
that all the above distances are 2? Due to the very nature of Likert-type data, those distances
cannot be interpreted in the same way that Manhattan distances are interpreted!

Many researchers have argued that a suitable transformation of Likert-type should suffice to
allow the use of general parametric statistical techniques. Wu (2007) provides an empirical study
of the kind of transformations that make it possible to derive numerical scores from Likert-type
data. For our data however, we simply binarize the scores and use the Jaccard distance on them.
Indeed, once binarized, the data can be analyzed using other distances and tools dedicated to
indicator variables. Consider two subjects with responses x⊤i = (xi1, xi2, · · · , xip) and x⊤j =

(xj1, xj2, · · · , xjp) where xκℓ ∈ {1, 2, 3, 4, 5}. We binarize the Likert-type in such a way that

x ∈ {1, 2, 3, 4, 5}p 7→ x̃ ∈ {0, 1}5p,

For instance, four subjects in three dimensions

X =









3 4 1
3 5 5
5 1 3
5 1 1









7→ X̃ =









0 0 1 0 0 0 0 0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 1 0 0 0 0









After the data is binarized, we can then calculate K(xi, xj), the similarity between the two subjects
using the Jaccard similarity index defined by

K(xi, xj) = J(x̃i, x̃j) =
x̃⊤i x̃j

|x̃i|2 + |x̃j|2 − x̃⊤i x̃j

.

When performing cluster analysis, we use the Jaccard distance defined as

d J(xi, xj) = 1 − J(x̃i, x̃j) = 1 −
x̃⊤i x̃j

|x̃i|2 + |x̃j|2 − x̃⊤i x̃j

.

This distance is also known as the asymmetric binary distance because matching 1’s counts toward
similarity, whereas matching 0’s do not. Another very popular similarity measure is the Sorensen
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similarity given by

K(xi, xj) = S(x̃i, x̃j) = 2
x̃⊤i x̃j

|x̃i|2 + |x̃j|2
.

Now, for the example given above, the corresponding Manhattan and Jaccard distances are re-
spectively given below:

1 2 3

2 5
3 7 8
4 5 10 2

=⇒

1 2 3

2 0.8
3 1.0 1.0
4 0.8 1.0 0.5

Noted that the dissimilarity between subject 1 and subject 3 is perfectly captured by the Jaccard
distance, whereas the Manhattan distance does not capture the fact that subjects 1 and 3 mismatch
on every question. Using the above definition of the Jaccard distance, we performed hierarchical
clustering on the whole data. Also, the Jaccard distance is particularly appealing because it has
been shown that it has probabilistic basis. See Real and Vargas (1996) and Jousselme et al. (2001).
Table 11 provides the details of the clustering results.

Cluster 1 Center 2 Center 3

Average of Center 1.03 3.33 3.95
Median of Median 1.00 3.00 4.00
Number of Observations 659 4100 1061
Per
entage of observations 11.32% 70.45% 18.23%
Suggested 
lass label Dissatisfied Neutral Satisfied

Table 11: Clusters extracted using hierarchical clustering on binarized version of the data. For this binarized version
of the data, we used the Jaccard distance along with Ward linkage.

III.2 Are there meaning concepts underlying the items of the evaluation?

It goes without saying that 28 questions for a single respondent can be quite overwhelming.
Besides, it’s indeed very likely that many of the questions end measuring the same aspect of
the perception of the student. Recall for instance that the correlation matrices calculated ear-
lier revealed extremely large correlation values. We should therefore expect the 28 dimensional
questionnaire given to students to boil down to a much lower number of latent concepts. From
a factor analytic perspective, this means that the student evaluation vector X⊤ = (X1, · · · , X28)
does have a representation of the form

X = ΛZ + ǫ

where Λ ∈ IR28×q and Z⊤ = (Z1, · · · , Zq) for some q ≪ 28. Factor Analysis typically assumes that
the factor scores vector Z has a multivariate Gaussian (normal) distribution. Such an assumption
is bound to be violated here because of the non-normality of the vector X. Many authors have
performed factor analysis on Likert-type data despite this non-normality. Muthen and Kaplan
(1992) and Lubke and Muthen (2004) provide a detail account of the pitfalls resulting from the
misuses of factor analysis on Likert-type data. It turns out that part of the problem with the
use of factor analysis on Likert-type data stems from the fact that some analysts use the Pearson
covariance matrix as their main ingredients. To somehow avoid the pitfalls and hope for mean-
ingful factor analytic results, we use the Kendall τ-B correlation matrix as the basis of our factor
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analysis. Based of Table 12 our factor analytic seem to reveal the following facts: Questions 13 to
28 have estimated factor loadings that are all higher on factor 1 than they are on Factor 2. These
18 questions are all related to how the student rate the competence of the instructor teaching the
course. We therefore name the first factor score Z1 the "instructor rating score". Questions 1 to
12 have estimated factor loadings that are all higher on factor 2 than they are on Factor 1. These
12 questions are all related to how satisfied the student was about the course. We therefore name
the second factor score Z2 the "student satisfaction score".

Fa
tor 1 Fa
tor 2

Q1 0.376 0.781
Q2 0.495 0.767
Q3 0.567 0.689
Q4 0.475 0.770
Q5 0.505 0.793
Q6 0.497 0.776
Q7 0.465 0.819
Q8 0.456 0.815
Q9 0.545 0.699
Q10 0.524 0.791
Q11 0.564 0.680
Q12 0.486 0.751
Q13 0.753 0.558
Q14 0.794 0.517
Q15 0.791 0.514
Q16 0.705 0.611
Q17 0.827 0.391
Q18 0.762 0.541
Q19 0.790 0.517
Q20 0.825 0.475
Q21 0.844 0.447
Q22 0.846 0.446
Q23 0.756 0.564
Q24 0.713 0.593
Q25 0.826 0.463
Q26 0.749 0.543
Q27 0.695 0.567
Q28 0.811 0.452

Table 12: Two factor model from the p = 28 questions on the student evaluation. There was a total of n = 5820
evaluations submitted by the students and used to estimate these factor loadings.

The two factors described above captured 85% of the variation, and any attempt to generate/derive
more factors resulted in very little gain along with the loss of interpretability inherent in these
two factors. From a practical perspective, it seems to make sense that a student’s answers would
be summarized into their overall satisfaction along with some rating of the instructor who led
the whole experience on the course. Clearly one could hypothesize more factors, but these two
tend to intuitively capture what one would expect.
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IV. Supervized Learning Techniques

Our final analysis of this data consists of performing classification using the labels generated by
the clustering algorithms. We specifically used classification trees, and then we boosted the trees
and finally check the performance of random forests. The great appeal of trees was triggered by
our interest in finding out if there were some questions that drove the classification and that could
therefore considered somewhat key questions in the evaluation. Classification trees are usually
highly preferred by analysts who desire an interpretable learning machine. Understanding trees
is indeed straightforward as they are intuitively appealing piecewise functions operating on a

partitioning of the input space. Given D =
{

(x1, Y1), · · · , (xn, Yn)
}

, with xi ∈ X p, Yi ∈ {1, · · · , g}.

If T denotes the tree represented by the partitioning of X into q regions R1, R2, · · · , Rq such that
T = ∪

q
ℓ=1Rℓ, then, given a new point x

∗ in node ℓ, its predicted response Ŷ∗ is

Ŷ∗
Tree = f̂Tree(x

∗) = arg max
j∈{1,··· ,g}

{

pjℓ

}

where

pjℓ =
1

|Rℓ|
∑

xi∈Rℓ

I(Yi = j)

estimates the proportion of node ℓ observations that belongs to class j. Using the three labels
obtained from kMeans clustering, namely {Satisfied, Dissatisfied, Neutral}, we obtained the
tree of Figure 13.
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Figure 13: Tree yielded for the 3 class classification of the whole dataset.
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Before we delve into details about what the tree of Figure 13 reveals, it is important to mention
that the threshold values are somewhat weird. The root for instance checks Q10 < 3.5. Clearly,
no student has any mechanism for answering 3.5 to any question. The appearance of 3.5 reveals
that the tree method is treating Likert-type scores as if they were real values. We should bear in
mind that abuse of variable type while drawing far reaching conclusions from this tree result.
Now, the root of the tree being Q10 seems to suggest that Question 10 was found by the tree
building algorithm to be one of the variables with the greatest importance. This dominance of
Question 10 on the tree somewhat makes sense, because it is the question that seeks to know
whether the student’s objectives and goals were satisfied at the end of the school term (period).
It is worth mentioning that the remaining variables actually used by the tree are Q14, Q20 and Q24

which we believe are very important questions when it comes to feedback from students. From a
predictive analytics perspective we also generated the confusion matrix on the test set shown in
Table 13.

Dissatisfied Neutral Satisfied

Dissatisfied 0.19 0.01 0.00
Neutral 0.01 0.39 0.01
Satisfied 0.00 0.04 0.35

Table 13: Confusion matrix based on the test set for the three class recognition task.

Table 13 shows that the test error is 7%, which seems to suggest that the classification is very
good at predicting the satisfaction of a student based on the way they answered the survey.
Our next and final task is binary classification, with labels Dissatisfied, Not Dissatisfied.
Here, the second label, Not Dissatisfied, is simply created by merging Neutral and Satisfied.
We did this primarily to generate comparative ROC curves for five different pattern recognition
methods, namely classification trees, Random Forest, Boosting (ada), Support Vector Machines and
Neural Networks. For brevity, we show only the binary tree, but we present the ROC curve
revealing the predictive performance of the other methods.
When we had the three class recognition task, the root of the tree was Question 10. In this binary
classification task, the root is now Question 20. Unsurprisingly, the two questions driving this
new tree are questions that were in the previous tree. It is re-assuring also to see that Question
20 acts here in the same manner it did in the previous tree. The huge dimensionality reduction
in both trees, namely from 28 variables to 4 and now to 2 is somewhat to be expected giving the
extremely high correlations encountered earlier.
The ROC Curve reveals that all the other four methods produce a better predictive performance
than the single classification tree. It suffices to note that the satisfaction level of a student on a
course can be predict quite accurately based on their answers.

V. Conclusion and Discussion

We have provided a comprehensive statistical analysis of a relatively large dataset containing
students’ evaluations of various courses at a university in Turkey.
Factor Analytic results appear to reveal a very plausible two factor model suggesting that stu-
dents’ evaluations inherently reveal the overall satisfaction of the student at the end of the course
along with impact the instructor had on their overall satisfaction. With the instructor’s factor
coming out as the most dominant one, it is fair to say that the instructor does play a central role
in the over experience of the student.
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Figure 14: Tree yielded on the binary classification of our students into Dissatisfied and Not Dissatisfied
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Figure 15: ROC curve comparing the five classification methods used, namely Classification trees, Random Forest,
Boosting (ada), Support Vector Machines and Neural Networks.
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Anyone analyzing students’ evaluations should be careful to consider the number of zero variation

responses and examining their association with the pattern of answers provided by the students.
We strongly believe that these zero variation responses somewhat determine the quality of the
survey and reliability of the answers provided.
We have shown evidence to support the fact dedicated students (attendance) will tend to reveal a
more satisfactorily learning experience than those students who do not take their course seriously.
We combined unsupervised and supervised learning techniques and were able, not only to find
meaningful and interpretable groups in the data, but also identify the items in the questionnaire
that appeared to be driving the students’ assessment of their learning experience.
The dominance of Question 10 on the three class recognition tree confirmed our intuition in the
sense that it is the question that seems to measure the overall satisfaction of a student on a course,
and it is re-assuring to have the tree model reveal it.
From a questionnaire design perspective, it is our view that 28 questions is a bit too much for
the students, and this usually large survey might be the reason why some students ended up
giving zero variation responses. We would also like to suggest the use of two questions that have
been found to be very revealing of the experience of student, namely (1) What is your overall rating

of this instructor? (2) Would you recommend this course to any other student?. Although these two
questions are inherently correlated
Part of our future work on this data will consist of adapting traditional classification trees to
Likert-type data. This essentially boils down to using Likert-type specific loss functions for
splitting the nodes of the tree. We specifically plan on deriving adaptations of the Jaccard distance
as loss function or using the cross entropy measure on the tendencies of respondents.
We are also planning to include the final grades of the respondents. The motivation for this is
the fact that many instructors around the world have repeatedly argued that students who know
(based on quiz scores, homework assignment scores, and midterm exam scores) that they will
be receiving a good grade on the course tend to rate their professors very highly. We plan on
finding out if there is evidence to support such a belief.
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• Q1: The semester course content, teaching method and evaluation system were provided at the start.

• Q2: The course aims and objectives were clearly stated at the beginning of the period.

• Q3: The course was worth the amount of credit assigned to it.

• Q4: The course was taught according to the syllabus announced on the first day of class.

• Q5: The class discussions, homework assignments, applications and studies were satisfactory.

• Q6: The textbook and other courses resources were sufficient and up to date.

• Q7: The course allowed field work, applications, laboratory, discussion and other studies.

• Q8: The quizzes, assignments, projects and exams contributed to helping the learning.

• Q9: I greatly enjoyed the class and was eager to actively participate during the lectures.

• Q10: My initial expectations about the course were met at the end of the period or year.

• Q11: The course was relevant and beneficial to my professional development.

• Q12: The course helped me look at life and the world with a new perspective.

• Q13: The Instructor’s knowledge was relevant and up to date.

• Q14: The Instructor came prepared for classes.

• Q15: The Instructor taught in accordance with the announced lesson plan.

• Q16: The Instructor was committed to the course and was understandable.

• Q17: The Instructor arrived on time for classes.

• Q18: The Instructor has a smooth and easy to follow delivery/speech.

• Q19: The Instructor made effective use of class hours.

• Q20: The Instructor explained the course and was eager to be helpful to students.

• Q21: The Instructor demonstrated a positive approach to students.

• Q22: The Instructor was open and respectful of the views of students about the course.

• Q23: The Instructor encouraged participation in the course.

• Q24: The Instructor gave relevant homework assignments/projects, and helped/guided students.

• Q25: The Instructor responded to questions about the course inside and outside of the course.

• Q26: The Instructor’s evaluation system (midterm and final questions, projects, assignments, etc.)
effectively measured the course objectives.

• Q27: The Instructor provided solutions to exams and discussed them with students.

• Q28: The Instructor treated all students in a right and objective manner.
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