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Abstract

This paper reports an experiment designed to investigate whether the Model of Mul-

tiple Identity Tracking can be use to predict air traffic controller performance in terms of

situation awareness. The experiment tests a number of predictions derived from the Model

of Multiple Identity Tracking. This model posits that when tracking multiple moving ob-

jects, the location of 4-5 objects can be acquired in parallel but the identification of any

one target needs serial attention. While one object is being identified, an error factor as-

sociated with the location of all other objects increases with respect to an objects speed

and the amount of time since the object’s location-identity binding was refreshed. On an

individual basis, working memory limits the number location-identity bindings that be

stored at any one time and long term memory makes familiar objects easier to track.

The experimental task consisted of tracking a set of moving objects for twenty sec-

onds. The objects were 6-character strings; three letters followed by three numbers. After

tracking the objects for twenty seconds, the participant was instructed to locate a target-

objects. The time required to find the target object was recorded. The number of objects

and the magnitude of direction changes (entropy) were manipulated. The main effect of

number of objects was found to be significant. The main effect of entropy was found to be

marginally significant. The pattern of results supports the idea that the Model of Multiple

Identity Tracking (MOMIT) can be used to predict air traffic controller performance. A

formula derived from MOMIT to predict completion time showed a good fit to the experi-

mental data.
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Introduction

The air traffic control (ATC) industry is constantly looking for new ways to improve

performance of the controllers and reduce the number of accidents while at the same time

increase efficiency and reduce costs. A predictive model of controller performance could

help the ATC industry accomplish these goals. For example, automation systems relating

to air traffic control could benefit from performance models. Models are useful for design-

ers who want to know how users will interact with their systems. Oftentimes, there is not

enough time or resources to test their designs with actual users. This is especially true

for systems intended for trained users, like air traffic controllers. It can be expensive to

train users with a prototype, but unskilled users do not interact with a product in the

same way as a skilled user. Performance modeling aims to solve this problem by predicting

how a skilled user will interact with a system. Simulation and analysis take the place of

expensive training and testing. Performance models could also be used in an attempt to

prevent controllers from making errors, for example, offloading work when a controller’s

performance is predicted to drop below a certain threshold (Charlton & O’Brien, 2002).

Air Traffic Controller Performance

A central factor in ensuring aircraft safety is the degree to which controllers have suf-

ficient situation awareness (SA) to maintain safe separation of aircraft. SA is critical for

controllers who must maintain up-to-date assessments of the rapidly changing location of

each aircraft and their projected future locations relative to each other. Controllers typ-

ically call the mental model from which they base all their decisions the “picture”. This

picture is what researchers are referring to when they mention SA. Many definitions of SA

have been developed; some are very closely tied to the avaition domain and some are more

general. “A general definition of SA that has been found to be applicable across many
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domains breaks SA into 3 levels: level-1, the perception of the elements in the environ-

ment within a volume of space and time; level-2, the comprehension of their meaning; and

level-3, the projection of their status in the near future” (Endsley & Garland, 2000, p. 5).

Many of the technological changes being implemented to enable free flight involve the use

of automation. Human operators acting as monitors of automated systems often exhibit

problems in detecting system errors and performing tasks manually in the event of automa-

tion failures (Wickens & Hollands, 2000). With many automated systems, forming the

higher levels of SA becomes significantly difficult (Carmody & Gluckman, 1993; Endsley &

Kiris, 1995). A performance model for ATC needs to account for factors affecting all levels

of situation awareness.

Aircraft Trajectory Predictability and Situation Awareness

In the current system, controllers gain information about how the aircraft is going to

behave from knowledge of their assigned flight path and destination. There are a limited

number of ways that aircraft will proceed through a given airspace according to a given

flight plan and the aircraft intended activity in that sector (e.g., approach, departure, or

en route). The controller can usually detect deviations from these norms quickly (Wickens,

Mavor, & McGee, 1997; Wickens, Mavor, Parasuraman, & McGee, 1998). With the advent

of technologies such as GPS and the Traffic Collision Avoidance System (TCAS), the con-

cept of free flight is changing the way that air space is managed. With free flight, aircraft

may come from almost any direction into a sector, change paths many times without con-

troller action or approval, and depart the sector in almost any direction. With this loss of

aircraft predictability comes lower situation awareness and subsequently, the ability of the

controller to determine potential separation problems may be reduced (Endsley & Rodgers,

1996; Mogford, 1997; Endsley et al., 1997; Metzger & Parasuraman, 2001).
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Confounds of Location Predictability

There are three aspects of an object’s motion that can be manipulated which all affect

the predictability or uncertainty associated with its location: (a) the velocity of an object

(Oksama & Hyönä, 2008), (b) the rate at which an object changes direction, and (c) the

magnitude of changes in direction. The common link between these three factors is that

each affects the average displacement per second. Speed by definition is related to displace-

Figure 1: The individual line segments are supposed to represent an object traveling for 1 second
at a constant speed, thus line a, b, and c represent the displacement of the object after 5 seconds.
Path a and b have the same speed but different rates of direction change; the path with the
higher rate of direction change has lower average displacement. Path b and c have the same speed
and the same rate of direction change but different magnitudes of direction change; the path with
the larger magnitude direction change has lower average displacement.

ment per second. When speed is held constant, an object that changes direction will have

a smaller average displacement than an object that does not change direction, see lines (a)

and (b) in Figure 1. When velocity and the rate of direction changes are held constant, an

object with large magnitude direction changes with have a smaller average displacement

than an object with small magnitude direction changes, see lines (b) and (c) in Figure 1.

There is no way to separate the effects of velocity from from the effects of changing di-

rection on displacement. Therefore, average displacement per second best quantifies the

uncertainty of a moving objects location. Average displacement per second is similar to
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velocity in both magnitude and units. To calculate an average displacement per second,

sample the displacement of an object over many seconds then divide the displacement by

the sample duration. Consider the example in Figure 1. Lines a, b, and c represent the

path of an 3 objects. Each line segment represents equal displacement of that object in

one second. If the displacement of each object was sampled after each 1 second interval,

the displacement of each object is equal. If the displacement of each object was sampled

after 5 seconds however, the displacement of each object is different.

Entropy: probability of direction change magnitude. None of the past MOT research

has attempted to quantify an object’s motion in terms other than velocity, nor have they

systematically manipulated how often an object changes direction or the magnitude of

direction changes. Information theory could be used to predict the probability of a direc-

tion change of a certain magnitude. In information theory, entropy is a measure of the

uncertainty (or predictability) associated with a random variable. When applied to moving

objects, entropy could refer to predictability of an object making a direction change of

certain magnitude. If the velocities and the rate of direction change of a set of moving ob-

jects are all equal, then the entropy of any one object could be quantified using a modified

version of the entropy formula introduced by Shannon (1948):

𝐻(𝑥) = −1
𝑛∑︁

𝑖=0

𝑝(𝑥𝑖)𝑙𝑜𝑔𝑛𝑝(𝑥𝑖) (1)

where n is the number of bins the range of possible direction changes is divided into, and

𝑝(𝑥𝑖) is the probability of turning in the direction associated each bin x. When there is no

entropy, the probability of going straight (a change of direction of zero degrees) is 100%

and the probability of all other directions is 0. When there is a medium amount of en-

tropy, the probability of going straight is less than 100% and the probability of a direction

change in a certain direction decreases as the magnitude of the direction change increases.

When entropy is at its lowest, the probability of all magnitude direction changes are equal,
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see Figure 2. The deviation from Shannon’s original equation is in the base of the loga-
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Figure 2: Entropy probability distributions for none, medium and high entropy conditions.

rithm. Shannon’s equation used a base of 2 whereas Equation (1) uses a base of n. Using

a base of n ensures that 𝐻(𝑥) = 1 when the probability of every one of the n direction

changes are equal (the highest entropy level) and 𝐻(𝑥) = 0 when the probability of going

straight is 100% (the lowest entropy level).

Models of Visual Attention

Most models of visual attention are based on fixed- or limited-capacity parallel process-

ing. Fixed-capacity parallel models have been used to describe both general “static” visual

attention (Bundesen, 1990; Logan, 1996, 2002; Bundesen, Habekost, & Kyllingsbaek, 2005)

and “dynamic” visual attention (Cavanagh & Alvarez, 2005; Pylyshyn & Storm, 1988).

An assumption common to the fixed-capacity parallel models is that multiple visual ob-

jects can be selected and spatially tracked in parallel. This tracking is done preattentively

(Pylyshyn & Storm, 1988), attentively (Cavanagh & Alvarez, 2005) or a combination of
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both (Bundesen, 1990; Logan, 1996, 2002; Bundesen et al., 2005).

Pylyshyn and Storm (1988) most explicitly define fixed capacity at 4-5 “FINgers of

INSTantiation” or FINST, visual indexes that move along with the moving objects, as

if the fingers were glued to the tracked objects. The multi-focal model of Cavanagh and

Alvarez (2005) posits four attentional foci, two of which are tracked from the left visual

field and two from the right visual field (Alvarez & Cavanagh, 2005).

Multiple Object Tracking

Multiple object tracking (MOT) is an experimental paradigm, similar to ATC, de-

signed to study how the human visual system tracks multiple moving objects. It was cre-

ated by Pylyshyn and Storm (1988) in an attempt to test and illustrate their proposed

theoretical mechanism called a Visual Index or FINST (for FINgers of INSTantiation).

The FINST theory posits a small number of indexes or pointers that pick out and stay at-

tached to individual objects in the visual field independent of any changes in their proper-

ties, allowing for the objects to be tracked. The theory was created to address the question

of how conceptual descriptions can pick out individual visual objects despite the fact that

descriptions themselves are insufficient in general to pick out tokens. The FINST theory

claims that the tracking aspect of MOT is automatic and non-attentional, though others

view it as illustrating split attention (Cavanagh & Alvarez, 2005).

A typical MOT task (shown in Figure 3) starts with a display of identical objects

(t=1). Subsequently, a subset of “target” objects are cued with a brief flash to make them

distinctive (t=2). After the cue, the targets stop blinking so that the “target” objects be-

come once again indistinguishable from the other “distracter” objects. All objects then

move in a random fashion for about 10 seconds (t=3). The motion then stops (t=4) and

the observer’s task is to indicate all the tracked objects by clicking on each one using a

computer mouse. In some studies instead of identifying all targets, the observers task is to

6



Figure 3: Sequence of events in a typical multiple object tracking experiment (Pylyshyn & Storm,
1988).

judge whether a particular object, flashed at the end of the trial, was a target (Pylyshyn,

2005). ATC could be considered a real life MOT task (without distracters). Controllers

must maintain up-to-date assessments of the rapidly changing location of each aircraft and

their projected future locations relative to each other (Endsley & Jones, 1996).

Visual Search

The MOT task has been used widely in the study of visual attention and particularly

in the study of sustained multiple-locus of attention. However, the question of what is

selected by visual attention is equally important as the question of how and under what

conditions selection takes place. The previous research has shown that selection can be

automatically induced by what some have called exogenous cues that are automatic and

data-driven, or can be voluntarily allocated by symbolic or endogenous cues (Theeuwes,

1994). While Pylyshyn has provided abundant evidence that selected objects are available

simultaneously, it is not clear whether they must be selected automatically (and preatten-

tively) or whether some voluntary and perhaps serial process may be involved.

In a static visual search, depending upon the relationship between targets and dis-

tracters, search can vary from being either be extremely efficient and unaffected by the

number of distracters in the field, to being inefficient and directly related to the number of
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distracters present. Both types of search can be observed when observers do not make eye

movements, and so the differences reflect the variations in the efficiency of internal mech-

anisms of selection (Zelinsky & Sheinberg, 1997). Typically when targets and distracters

differ on the basis of some salient, simple feature (e.g., orientation or color), search is effi-

cient. This suggests that such simple features can be computed and compared in parallel

across the visual field. Such computations can be carried out prior to any selection of one

part of the field. In contrast, when search is directly related to the number of distracters

present, it may be that the differences between targets and distracters are not computed

prior to selection but only afterwards (Humphreys, 1996). “Early” selection theories stress

that only simple visual properties, such as edges of particular spatial frequencies, colors

and orientations, are coded prior to selection “pre-attentively” (Treisman, 1998). Such

properties may be registered rapidly by special purpose detectors, which operate in paral-

lel across the visual field. Higher-order representations of objects (conjunctions of features)

can only be computed more slowly, following selection, and perhaps even at just one loca-

tion at a time (Humphreys, Gilchrist, & Free, 1996). In ATC, objects only differ based on

higher-order features. For example, all callsigns have 3 letters and 3 to 4 numbers; what

differs is the combination of the letters and numbers. A recent study (Pylyshyn & An-

nan, 2006) supports the idea that selection of multiple targets, defined by features that do

not capture attention in an automatic exogenous manner, requires that targets be visited

serially.

Model of Multiple Identity Tracking

A new model titled the Model of Multiple Identity Tracking (MOMIT) accounts for

both the parallel and serial aspects of dynamic visual attention. MOMIT is based on five

premises: 1) Efficient maintenance of multiple dynamic objects requires serial refreshing

(or reactivation) of identity-location bindings; if the bindings are not refreshed periodi-

8



cally, they will eventually be lost. The refreshing of existing bindings is assumed to be

non-automatic (serial) and effortful requiring continual shifting of attention between tar-

gets. 2) The number of identity-location bindings that can simultaneously kept active

in the episodic buffer is limited. Furthermore, the maximum number of bindings varies

significantly between individuals. 3) Long-term memory (LTM) facilitates bindings; track-

ing performance is better for familiar than unfamiliar targets. 4) As targets continuously

move, there is a location error in the spatial index, which is stored in visual short term

memory, (VSTM). 5) The system responsible for switching attention during tracking also

obtains location information of moving targets in parallel though peripheral vision. How-

ever, unlike the information provided by VSTM, this spatial information is not indexed

(Oksama & Hyönä, 2008).

MOMIT and Entropy. In order to predict an object’s future location (a sign of high

level-3 situation awareness), it is possible that besides binding location with identity, the

direction of travel and speed of an object might also be bound to identity. For example, in

ATC, a controller might anticipate where each object is based on the object’s last known

velocity and direction of travel. Freyd and Finke (1984) and Finke and Shyi (1988) provide

evidence supporting this form of mental extrapolation which they call representational

momentum. When an object changes direction before it’s identity-location binding is re-

freshed, then the anticipated object location might not be the actual object location. If

controllers do use something like a velocity vector to anticipate where objects will be in

the future, then increases in the entropy of an object should cause decreases in the con-

troller’s tracking performance and situation awareness.

MOMIT and ATC Performance. MOMIT has the potential to predict ATC perfor-

mance. While MOMIT in its current form predicts object tracking accuracy, a formula

could be derived to predict reaction time. A mathematical formula based on MOMIT
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which predicts search time consists of two components:

𝑇 = 𝑁 * 𝑡 (2)

the average number of objects visited before finding the correct target N, and time needed

to process one object t. If the number of objects to track is n, the probability of having

access to a binding is m/n, when guessing probability is not considered. In addition to the

binding capacity, MOMIT posits the probability of guessing affects the performance. 𝑃𝑔𝑢𝑒𝑠𝑠

is influenced by the number of response alternatives and by possible strategies adopted

by the participant. In other words, the number of objects visited varies as a function of

binding capacity m, the number of objects to track n, the probability of guessing (𝑃𝑔𝑢𝑒𝑠𝑠)

non-remembered items 1 - m/n, and the toal number of objects n-1; see equation (3).

𝑁 = (
𝑚

𝑛
+ (1− 𝑚

𝑛
) * 𝑃𝑔𝑢𝑒𝑠𝑠) * (𝑛− 1) (3)

Using equation (3) in place of N in equation (2), the final formula for search time is shown

in equation (4).

𝑇 = (
𝑚

𝑛
+ (1− 𝑚

𝑛
) * 𝑃𝑔𝑢𝑒𝑠𝑠) * (𝑛− 1) * 𝑡 (4)

This formula resembles a non-linear function when n is small and becomes linear with a

slope close to 𝑃𝑔𝑢𝑒𝑠𝑠 as n get larger. Thus, if 𝑃𝑔𝑢𝑒𝑠𝑠 was equal to 0.5 (chance levels), this

formula would resemble the formula for a typical serial search at large values of n.

Differences between classic MOT and ATC

Although the classic MOT task is very similar to ATC, there is a fundamental differ-

ence that makes applying MOMIT to ATC difficult. There is no concept of targets and

distracters in ATC. In ATC, all objects on controllers’ displays are usually targets that
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need to be tracked. There are seldom distracter objects in ATC. Having distracters present

allowed past research to use signal detection theory to quantify performance. Without dis-

tracters and eye tracking equipment, the only performance measure that does not modify

the task too much, is a reaction time measure, the time required to find a target object in

the set total objectscompletion time. Relating performance in terms of signal detection to

performance based on completion time is not trivial.

Goals and Hypotheses

The present study sought to accomplish a number of goals. The first goal was to de-

termine if research based on MOT tasks with distracters can be applied to tasks without

distracters, like ATC. Accomplishing this goal required completion of two subgoals: (a) a

novel MOT experimental paradigm more similar to real life ATC than past MOT tasks

needed to be created, and (b) the predictions of past research needed to combined into

a predictive formula performance. The new experimental task was created to more accu-

rately resemble ATC by: (a) using objects that look like aircraft callsigns, (b) using speeds

consistent with what is found on ATC displays, (c) using object set-sizes similar to ATC,

and (d) requiring all objects to be tracked (no distracters). The second goal was to explore

how entropy manipulations might affect tracking performance. Before the present study,

entropy had never been systematically manipulated. Entropy could affect tracking perfor-

mance in two ways. If an object’s future location can be predicted based on it’s current

direction of travel, then tracking performance should decreases with increases in entropy.

On the other hand, since average displacement decreases as a function of entropy, and dis-

placement has been shown to be negatively correlated with tracking performance, increases

in entropy could increase performance (Keane & Pylyshyn, 2006). In the experimental

task used in the present study, the number of objects and the entropy of the objects were

manipulated. Performance was measured by the time required to find a target object in
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the set of objects, or task completion time. The following predictions were made: (a) the

time required find the target object should be based on equation (4), and (b) search time

should increase as a function of entropy.
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Method

Participants: sampling procedure, size and power

A priori power analyses were conducted prior to recruiting participants. Based on an

𝛼 = 0.05, 1− 𝛽 = 0.8 and the desire to detect a medium effect size (𝑟 = 0.3), the target sam-

ple size was thirty (Cohen, 1988). Thirty one students (15 male, 16 female) volunteered to

participate in the present study. Of the thirty one participants, 3 were hearing impaired.

All participants had normal or corrected to normal vision. There were no restrictions with

regards to who could participate, however, all participants were sampled from the under-

graduate population of Rochester Institute of Technology in Rochester, NY. Participants

were referred to the present study by psychology class professors and as compensation,

given extra credit. The amount of extra credit offered was determined by each professor

and was different from class to class.

Apparatus

The computers used to run the experiment were all Dell Optiplex GX260s with 1280

MB of ram and a 2.8 GHz Pentium 4 processor. The display for each computer was a 17”

LCD running at a resolution of 1280x1024 (96 DPI) at 60Hz. The program used in the

experiment was written in Java.

Stimuli

The stimuli in the present study, or the objects which the participants were instructed

to track, were 6-character strings. The strings consisted of a 3-letter International Civil

Aviation Organization (ICAO) airline designator (ex. SWA, AAL, UAL) picked randomly
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from a table of real airline designators, followed by a random 3 digit number between 99

and 1000; see Figure 4 for an example. A mono-spaced font was used to ensure the width

of all the objects remained constant. A font size of 12 was used to ensure focal vision was

required to determine the identity of the object. Based on an average viewing distance of

16”, each object was approximately 1.57 degrees of visual angle wide and 0.45 degrees of

visual angle high requiring the participant to use focal vision to clearly see and recognize

the object.

Trial generation. The initial object locations were picked randomly at the beginning

of each trial. In an attempt to prevent this randomization from influencing the dependent

variable, the function in the experimental program responsible for generating the initial

object locations only used sets of objects that passed certain criteria (X,Y offset and X,Y

variance). If a set of initial object locations did not meet the spatial randomness criteria, a

new set of initial object locations was generated.

To ensure that the distribution of initial targets was centered on the screen, the aver-

age of the x and y coordinates of the initial target locations were calculated. To meet the

required spatial randomness criteria for the present study, sets of targets needed to have

an average x and y coordinate within a 20-pixel by 20-pixel box (±10 pixels in the x and y

direction) relative to the center of the screen.

To ensure the initial target locations were not clustered in any one part of the screen,

the variance of the x and y coordinates of the initial target locations was calculated. The

selection criteria for the x and y variance was the resolution of the screen in one direction

multiplied by that same resolution but first divided by the greatest common divisor (GCD)

of the x and y resolution. The result was then multiplied by a constant; the larger this

constant, the higher the minimum variance. During the coding stage of the experimental

program, it was determined that setting the constant to 20 resulted in an even dispersion

of objects on the screen in the x and y axis. For a 1280x1024 resolution, the GCD is 256.
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The x and y resolution was then divided by the GCD to get the screen ratio; 1280 / 256

= 5, 1024 / 254 = 4. For the x direction the variance had to be greater than or equal to

1280 X 5 / 20 = 128000. The variance in the y direction had to be greater than or equal

to 1024 X 4 X 20 = 81920.

Determining Direction of Travel for Objects. In addition to initial object location, the

initial direction of travel (in degrees from 0 to 359) was also picked randomly at the begin-

ning of each trial. The experimental program contained 3 static ten-thousand cell arrays

(one for each level of entropy) containing the change in direction associated with, and in

proportion to, the 19 bins listed in Table 1. For example, if the probability of a particular

bin was 0.40, then 40% of the ten-thousand cells contained the direction change associated

with that bin. When it was time for an object to change direction, a random number be-

tween -1 and 10000 was picked. This random number was then used to pick a direction

change from a cell in the entropy array corresponding to the level of entropy of the current

trial. The direction change was then added to the objects current direction of travel.

Object Movement. At the beginning of each trial when the direction of travel was first

set, and after an object’s direction of travel was updated following a change in direction,

the direction of travel (in terms of degrees) was broken into its x and y velocity compo-

nents by taking the sine and cosine of the direction of travel. The loop responsible for

moving the objects performed the following steps on each target: (a) the x and y velocity

components is added to the x and y location coordinates; (b) the new location is checked

to determine if a screen border was crossed and if a border was crossed, the object’s loca-

tion was moved to being exactly on the border and the direction of travel was modified

to mimic a mirror-like reflection off the border; (c) if a border was crossed the x and y

velocity component was recalculated and a steps counter reset to 0, the steps counter was

incremented if a border was not crossed; (d) the steps counter is compared k (the number

of steps the object makes before changing direction) and if the steps counter is larger, a
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new direction of travel is picked; (e) if a new direction of travel was picked the x and y

velocity components are recalculated, and the steps counter is reset to 0. After completing

these steps for each object, the screen was repainted which updated the object locations.

The object moving thread then slept for 20 ms before repeating the process.

Independent variables

Number of moving objects: 4 levels (4,9,14,19). Since the primary goal of the present

study was to predict air traffic controller performance, the range of number of objects

used was specifically chosen to mimic what a real controller might experience. ATC com-

monly requires tracking in excess of 40 objects. The number of moving objects used in the

present study was also much larger than what was used in past research. In past MOT

experiments, the most number of moving objects used at one time was typically around

8 to 10 objects in total with a subset of those objects (usually about 1 to 5) being target

objects (objects which the participant is supposed to pay attention to or track). In the

present experiment the highest number of moving objects was 19, and unlike past studies,

any object could be a potential target. Since Pylyshyn and Storm (1988) and Oksama and

Hyönä (2008) showed performance tracking is near perfect with around 4 or less objects, 4

was chosen as the lowest level of the number of objects factor.

Entropy of object: 3 levels (0.00, 0.69, 1.00). The probability distributions used with

Equation (1) to calculate the three levels of entropy are shown in Table 1. The distri-

butions were created first by dividing the range of possible direction changes (-35°to

35°relative to an objects current direction of travel) into 19 equal bins (n=19 ). The prob-

abilities used in each level of entropy were intended to create a low, medium and high

entropy condition. There was initially four levels of entropy. However, in order to reduce

the length of the experiment, the low entropy condition (𝐻(𝑥) = 0.34) was dropped. As
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a result, the medium entropy condition did not turn out to be equal distant between the

none and high entropy conditions. In the 𝐻(𝑥) = 0.00 condition, each object traveled in

one direction, the objects did not change direction as they move. For the 𝐻(𝑥) = 0.69

condition, objects changed direction every 7 steps. For the 𝐻(𝑥) = 1.00 condition, objects

changed direction every 7±2 steps determined randomly at the beginning of each trial for

each target. One step refers to one complete cycle of the loop in the experimental program

responsible for moving the objects. This loop will be explained in further detail momentar-

ily. The number of steps an objects took before changing directions (k) remained constant

for the duration of the trial.

Table 1: A table of probability distributions for three levels of entropy: none, medium and high.
H(x) for each level of entropy was calculated with equation (1).

Entropy Probabilities
Directions None Medium High

0/9 * 35° 1.0000 0.4000 0.0526
1/9 * 35° 0.0000 0.1250 0.0526

−1/9 * 35° 0.0000 0.1250 0.0526
2/9 * 35° 0.0000 0.0800 0.0526

−2/9 * 35° 0.0000 0.0800 0.0526
3/9 * 35° 0.0000 0.0500 0.0526

−3/9 * 35° 0.0000 0.0500 0.0526
4/9 * 35° 0.0000 0.0100 0.0526

−4/9 * 35° 0.0000 0.0100 0.0526
5/9 * 35° 0.0000 0.0100 0.0526

−5/9 * 35° 0.0000 0.0100 0.0526
6/9 * 35° 0.0000 0.0100 0.0526

−6/9 * 35° 0.0000 0.0100 0.0526
7/9 * 35° 0.0000 0.0050 0.0526

−7/9 * 35° 0.0000 0.0050 0.0526
8/9 * 35° 0.0000 0.0050 0.0526

−8/9 * 35° 0.0000 0.0050 0.0526
9/9 * 35° 0.0000 0.0050 0.0526

−9/9 * 35° 0.0000 0.0050 0.0526
H(x) 0.00 0.69 1.00
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Design. The present study was a 4x3x5 fully-factorial within-subjects design. The 4

levels of the number of objects and the 3 levels of the entropy created 12 experimental

blocks. Each participant performed 5 consecutive trials in each of the 12 experimental

blocks creating 60 observations from each participant. The order of the 12 blocks was

random for each participant instead of counterbalanced. With 31 participants, each block

had 155 observations. There were 1860 observations in total.

Dependent variables

The main dependent variable was completion time, or the time required to find the

target object starting from the moment the targets were masked and ending the moment

the target object was clicked. Directly measured completion time was used to indirectly

measure level 1 situation awareness. If a participant had maintained an awareness of the

object identities and locations while they were moving, he or she should be able to click

the target object immediately without checking identities of other objects, resulting in a

very short completion time.

Task

The participant’s task was to track a set of objects which moved on a computer screen

for a fixed period of time after which the motion stops and a target object must be found,

see Figure 4. At the beginning of each trial, the objects were drawn on the screen, but did

not move (a). The objects remained motionless for n X 0.5 seconds where n was equal to

the number of objects on the screen at that time. This ensured there was enough time for

the participant to view the starting location of each object. After this “preview” period,

the objects moved for 20 seconds (b). After 20 seconds of motion the objects stopped

moving (c) and the identity of each object was masked (changed to “$$$$$$”). At the same
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time, a message at the bottom of the screen appeared instructing the participant to click

on a target object (d). When the cursor was moved over a masked object, its identity was

revealed; when the cursor was moved off an object, the object was re-masked. To complete

a trial the participant was required to click on the target object.

Figure 4: Sequence of events in the multiple object tracking task of the present experiment.

Procedure

Prior to starting the experiment, the task was explained to the participants and any

questions from the participants were answered. The participants were then instructed to

read and sign the consent form if they wanted to continue participating. Once the consent

form was signed, the participant started the experimental trials. Participants were seated

approximately 16” away from the screen. Before starting, participants were reminded to

find the target object as quickly and accurately as possible. There were 65 trials in total; 1

block of 5 practice trials followed by 12 blocks (each block representing a combination of
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the independent variables) of actual trials. Before each trial, a splash screen was displayed

for 2 seconds showing the block number and replicate. The order in which the blocks were

presented were random for each participant to minimize the effects of practice and/or

fatigue. The experiment took, on average, 45 minutes to complete. After the experiment

was completed, any additional questions a participant might have had were answered.
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Results

All analyses were done with the R statistical computing language. Analysis of variance

computations were done with the aov function in the stats package for R. Linear and non-

linear mixed-effects model computations were done with the lmer and nlmer functions

in the lme4 package for R (Bates, Maechler, & Dai, 2008; R Development Core Team,

2008). The independent variable completion time was non-normally distributed and thus

log-transformed in all calculations and analyses (Rosenthal & Rosnow, 2008). The good-

ness of fit for mixed-effects models is compared using Akaike’s information criterion (AIC).

AIC is based on the concept of entropy, in effect offering a relative measure of the infor-

mation lost when a given model is used to describe reality and can be said to describe

the trade off between bias and variance in model construction, or loosely speaking that

of precision and complexity of the model. AIC is computed using the maximized value of

the likelihood function and differences in AIC of nested models can be tested using a chi-

squared test since the likelihood function assumes that the underlying errors are normally

distributed (Sakamoto, Ishiguro, & Kitagawa, 1986; Crawley, 2007).

Preliminary Analyses

Outliers. Potential completion time outliers were detected using the modified Z score

introduced by Iglewicz and Hoaglin (1993). Z scores were calculated based on the log of

“completion time divided by number of objects”. The absolute value of only 4 of the 1860

Z scores were above the outlier criterion value of 3.5. For this reason, the complete data

set was used in the remaining analyses.

Sphericity. Within-subjects ANOVA assumes, for all factors, that the different lev-

els of each factor have equal varriance, or sphericity. Violating the sphericity assumption
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results in a loss of power; the F-ratios produced cannot be trusted. To test the data for

unequal variance between groups, Levene’s test for equality of group variability was used.

Levene’s test of the entropy factor on completion time was not statistically significant,

F(2,1857)=0.73, p<0.49. Levene’s test of the number of objects factor on completion time

was statistically significant, F(3,1856)=213.14, p<0.001. To compensate for the viola-

tion of the sphericity assumption, either post-hoc corrections to the F-ratio (such as the

Greenhouse-Geisser or Huynh-Feldt corrections) or an analysis technique that does not

require sphericity, like mixed-effects models, can be used.

Dispersion of initial object locations. Since the initial object locations on each trial

were random, it was possible that the dispersion of initial object locations formed pat-

terns that might have affected completion time. In order to rate each trial’s “quality of

dispersion”, the index of dispersion was used. The index of dispersion (Equation (5)) or

variance-to-mean ratio is used as a measure to quantify how clustered or dispersed a set of

observations is (Diggle, 1983).

𝐼 =
𝑚∑︁

𝑖=1

(𝑛𝑖 − 𝑛̄2)/[(𝑚− 1)𝑛̄] (5)

The index of dispersion along the X and Y axis (𝐼𝑥 and 𝐼𝑦) was calculated for each trial.

Twenty-four chi-square goodness-of-fit tests were per performed to determine if 𝐼𝑥 and 𝐼𝑦

were equally distributed among participants for each of the twelve factor combinations.

The results of the chi-square tests can be found in Table 2. The distribution of 𝐼𝑥 and

𝐼𝑦 were unequal among participants for a few of the conditions with only 4 objects. The

significance of the chi-square tests in some of the four-objects conditions was probably

due to the index of dispersion being most reliable when 𝑚 > 6. Any inequalities in the

dispersion of the four objects between participants was unlikely to have an impact on their

performance in the easiest of conditions.
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Table 2: Results of the chi-square goodness-of-fit tests performed to determine whether the Index
of Dispersion along the X and Y axis was equally distributed among participants (N=30) for each
factor combination. A p-value < 0.05 indicates an unequal distribution among participants.

Factors 𝐼𝑥 𝐼𝑦

Targets Entropy 𝜒2 p sig. 𝜒2 p sig.
4 Low 48.25 0.019 ** 22.79 0.824
4 Medium 43.48 0.053 . 35.89 0.212
4 High 74.73 0.000 *** 65.81 0.000 ***
9 Low 3.76 1.000 4.19 1.000
9 Medium 7.55 1.000 4.59 1.000
9 High 6.16 1.000 2.99 1.000
14 Low 2.71 1.000 1.94 1.000
14 Medium 1.96 1.000 1.37 1.000
14 High 2.68 1.000 1.28 1.000
19 Low 0.67 1.000 1.15 1.000
19 Medium 0.91 1.000 1.08 1.000
19 High 1.26 1.000 0.75 1.000

Analysis of Variance

A table of means and standard deviations of completion time for each of the factor

combinations can be found in Table 3.

Table 3: The means and standard deviations of completion time in miliseconds for each of the 12
experimental blocks, (N=155).

No Entropy Medium Entropy High Entropy
Objects Mean (ms) Std.Dev. Mean (ms) Std.Dev. Mean (ms) Std.Dev.
4 3121.67 1318.15 3137.95 1475.03 3086.85 1199.30
9 6347.84 3081.58 6352.80 3521.23 5471.20 2835.46
14 9321.14 5586.84 9057.77 5100.11 8798.21 5581.65
19 11413.81 6336.45 11375.95 6547.51 10758.10 6292.93

Planned Contrasts. A planned linear contrast of the targets factor using the lambda

weight assignments of -3, -1, 1, and 3 for 4, 9, 14, and 19 targets respectively was per-

formed for completion time. As predicted, the contrast for the targets was significant,
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t(30)=24.22, p<0.001, r=0.98, 1-beta=1. A planned linear contrast of the entropy factor

using the lambda weight assignments of -1, 0 and 1 for the none, medium, and high en-

tropy levels respectively was performed for completion time. As predicted, the contrast

for entropy was significant, t(30)=-2.23, p=0.018, r=0.38. While the effect of entropy on

completion time was significant, it was to the opposite direction of what was predicted;

completion times were faster in the high entropy than in the no entropy conditions.

Omnibus ANOVA. A three-way (Number of Objects x Entropy x Replicate) within-

subjects analysis of variance was performed, see Table 4. The main effect of number of ob-

jects was significant, F(3,90)=338.65, p<0.001. The main effect of entropy was marginally

significant, F(2,60)=2.70, p=0.075. Neither the main effect of replicate or the interaction

between number of objects and entropy were significant.

Table 4: Analysis of Variance: 4x3x5 Within-Subjects

Df Sum Sq Mean Sq F value Pr(>F)
Error: Participants

Residuals 30 26.9820 0.8994
Error: Participants:Objects

Objects 3 363.79 121.26 338.65 < 0.001
Residuals 90 32.23 0.36

Error: Participants:Entropy
Entropy 2 2.1633 1.0817 2.703 0.07516
Residuals 60 724.010 0.4002

Error: Participants:Replicates
Replicates 4 0.378 0.094 0.3173 0.866
Residuals 120 35.727 0.298

Error: Participants:Objects:Entropy
Objects:Entropy 6 1.283 0.214 0.6844 0.6624
Residuals 180 56.228 0.312

Error: Within
Residuals 1364 361.87 0.27

Analysis of Covariance. It is possible that one of the random factors present in the ex-

perimental design affected completion time and thus reduced the effect size of entropy. In
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order to make sure that the randomization of initial object locations or the randomization

of block order didn’t have a significant impact on completion time, the goodness-of-fit of

four mixed-effects models were compared; see Table 5 for the degrees of freedom and AIC

value for each model. Model 1 is the mixed-effects equivalent of a within-subjects ANOVA

Table 5: In order to determine if block order or the dispersion of initial object locations had an
impact on completion time, mixed-effects models with varying covariates were created. Model 1 is
equivalent to a within-subjects ANOVA model. Model 2 included block order as a covariate; block
order did not improve the quality of fit of the model in comparison to model 1. Models 3 and 4
included the index of dispersion measures as covariates; their presence did not improve the quality
of fit of the model in comparison to model 1.

Model Fixed Factors Covariate Random Factors Df AIC
1 Objects, Entropy Participants 8 2995
2 Objects, Entropy Block Order Participants 9 3005
3 Objects, Entropy 𝐼𝑥 Participants 9 3009
4 Objects, Entropy 𝐼𝑦 Participants 9 3008

(compare APPENDIX RCode 2 and 3); number of objects and entropy were included as

fixed factors and participants was included as a random factor. Model 2 is the same as

model 1 with the addition of block order as a covariate. Models 3 and 4 are the same as

model 1 with the addition of 𝐼𝑥 and 𝐼𝑦 as covariates respectively. The goodness-of-fit for

models 2, 3 and 4 were worse than the model 1 which suggests that the randomization of

block order and initial object locations did not influence completion time.

Entropy and Displacement Per Second

Since entropy had an inverse relationship with average displacement per second, the

marginal significance of the entropy factor could be related to an unknown factor influ-

encing displacement. Speed and the rate of direction change were held constant in the

present study, so the only changes in average displacement per second should have come

from the entropy factor. In order to compare the effect size of entropy to average displace-
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ment per second, two mixed-effects regressions were performed; both regressions included

participants as a random factor.

The first regression (model 1) included number of objects and entropy as fixed continu-

ous factors. The second regression (model 2) included number of objects and displacement

per second as fixed continuous factors. In order to estimate the average displacement per

second of each entropy level, the experimental program was modified to spawn one object

at the center of the screen, then for 20 trials of each of the three levels of entropy, the ob-

ject would move for 5 seconds in a random direction. After each trial, the displacement of

the object from the center of the screen was calculated, divided by 5, then recorded. The

average displacement per second (DPS) for the none, medium and high entropy conditions

was 86.87, 83.83, 74.56 pixels per second respectively. Pixels per second can additionally

be converted to degrees of visual angle. Based on an average viewing distance of 16 inches

and 72 pixels per inch, 86.87, 83.83, and 74.56 pixels per second is equivalent to 4.32, 4.17,

and 3.71 degrees of visual angle per second. This reaffirms that as entropy increases the

displacement of the object decreases. Parameters estimates, standard errors, significance

values and effect sizes are shown in Table 6.

Table 6: The probability and effect size values were calculated using a 𝑑𝑓 = 30. The goodness-of-
fit measured by AIC for model 1, 2 and 3 were 3046, 3048, and 3043.

Model Parameter Estimate Std. Error t value p r
5 (Intercept) 7.8105 0.03781 206.57 0.000 0.99

Number of Objects 0.0770 0.00224 34.41 0.000 0.98
Entropy -0.0689 0.02993 -2.30 0.028 0.38

6 (Intercept) 7.2403 0.19810 36.55 0.000 0.98
Number of Objects 0.0770 0.00224 34.43 0.000 0.98
Displacement Per Second 0.0065 0.00239 2.72 0.011 0.44

7 (Intercept) 7.6324 0.19810 168.22 0.000 0.99
Number of Objects 0.0770 0.00224 34.68 0.000 0.98
Displacement Per Second 0.0032 0.00252 1.28 0.210 0.22
Final Target Displacement 0.0002 0.00005 3.90 0.000 0.57

The results of these regressions confirm the inverse relationship between entropy and
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displacement per second. The relative similarity in significance and effect size suggest that

entropy and displacement per second both measure the same aspect of an object’s motion;

see Figure 5(a) and Figure 5(b). Both entropy and displacement per second quantify the

amount of uncertainty associated with an object independent of the object’s speed. In

light of average displacement per second having a slightly larger effect size (r=0.44) than

entropy(r=0.38), the final displacement of the target object was included as a covariate in

addition to displacement per second and a third regression was performed. The effect size

target displacement (r=0.57) was much larger than the average displacement per second

(r=0.22).

A closer look at target-object displacement shows an odd interaction with the 14-object

condition, see Figure 6(a) and Figure 6(b). Target displacement should follow the same

trend as average displacement, but there is an obvious deviation. This interaction is proba-

bly what caused the marginal significance of the entropy factor.

Model Fitting

The completion time data was fitted to Equation (4), which includes 5 parameters,

two of which, t and m, are free parameters. The parameters that were not free were fixed

(𝑃𝑔𝑢𝑒𝑠𝑠) or derived from the structure of the experiment (n). The parameter n was set to

4, 9, 14, or 19. The probability of guessing was set to reflect guessing strategy no better

than chance, 𝑃𝑔𝑢𝑒𝑠𝑠 = 0.5. With respect to the free parameters, the static binding capac-

ity m was assumed to be approximately 4 (consistent with Oksama and Hyönä (2008)

and Pylyshyn and Storm (1988)) and a plausible range of 500-1000 ms for the time spend

processing each object t, which is consistent with the time required to fixate on and rec-

ognize a static object, serially shift attention between objects (Oksama & Hyönä, 2008)

and physically move the mouse cursor. The best fitting parameters and confidence inter-

vals are shown in Table 7. Model 8 fixed 𝑃𝑔𝑢𝑒𝑠𝑠 at 0.05, m and t were left as free param-
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Table 7: Non-linear least squares regression models based on Equation (4).

Fixed Std. 95% CI
Model Parameter Value Estimate Error t value p Lower Upper AIC
8 𝑃𝑔𝑢𝑒𝑠𝑠 0.5 2989

m 5.50 0.51 10.76 0.000 4.57 6.59
t 0.82 0.03 27.58 0.000 0.76 0.88

9 𝑃𝑔𝑢𝑒𝑠𝑠 0.42 0.02 18.59 0.000 0.38 0.47 2989
m 4
t 0.97 0.02 42.74 0.000 0.93 1.02

10 𝑃𝑔𝑢𝑒𝑠𝑠 0.41 0.01 27.58 0.000 0.38 0.44 2989
m 3.83 0.16 24.33 0.000 3.51 4.13
t 1

eters. Model 9 fixed m at 4, 𝑃𝑔𝑢𝑒𝑠𝑠 and t were left as free parameters. Model 10 fixed t

at 1, 𝑃𝑔𝑢𝑒𝑠𝑠 and m were left as free parameters. The fit these models which was based on

equation (4) provided a better fit to the completion time data (AIC 2989) than linear re-

gression models (AIC>=2995) from 6. Additionally, the best fitting values for 𝑃𝑔𝑢𝑒𝑠𝑠, m

and 𝑠 are both psychologically plausible and consistent with past research. Figure 7 shows

a comparison of fit between the MOMIT based model and a standard linear model.
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(a) Completion time with respect to entropy for each level of number of objects.
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(b) Completion time with respect to average displacement per second for each level of num-
ber of objects.

Figure 5: Completion time with respect to entropy (a) and average displacement per second (b)
for each level of number of objects.
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(a) Average displacement of all objects with respect to number of objects for each level of
entropy.
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(b) Target-object displacement with respect to number of objects for each level of entropy.

Figure 6: The average displacement of all objects (a) and the dispacement of the target-object
only (b) for each level of number of objects.
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Figure 7: The dashed line represents the best fit line though the mean completion time for each
level of number of objects (represented by the triangle points). The solid line represents the
completion time predicted by equation (4).
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Discussion

The present study investigated an observer’s ability to track and maintain multiple

uniquely identified objects in a dynamic environment similar to air traffic control. The

following findings were found: (1) a highly significant object set-size effect was observed;

completion time increased as a function of number of objects, (2) a marginally significant

effect of entropy was observed; completion time decreased as a function of entropy, and (3)

a significant effect of displacement per second was observed; completion time increased as

a function of displacement per second.

The mathematical reformulation of MOMIT to predict completion time captured both

the effect of object set-size and binding capacity and provided a decent quantitative fit

to the data, see Figure 7. The main aspects of the model are that continuous attention

switching along with the storage of the spatial indexes in VSTM, bindings stored in the

episodic buffer, and LTM representations are intimately involved the creation and mainte-

nance of identity-location bindings. Based on these principles, MOMIT correctly predicted

the effects of object set-size and displacement per second. A look at the raw data seems

to indicate that participants spend more time per object when there are a few objects and

have a higher accuracy in finding the target object on the first try. This observation fur-

ther supports participants using a mental model to track multiple moving objects when

the number of total objects is close to the binding capacity.

The generalizability of the observed effects

The observation that tracking performance deteriorates as a function of object set-size

is a finding consistent with numerous other studies with similar tracking tasks (Yantis,

1992; Pylyshyn & Storm, 1988; Oksama & Hyönä, 2008). The influence of entropy, how-
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ever, is a phenomenon that has not been systematically manipulated or studied. The find-

ing that performance increased with increases in entropy is opposite of hypothesis (2) and

does not support Finke and Shyi (1988) concept of representational momentum. This ob-

servation could be explained a number of ways. The strongest explanation is that this type

of task is simply too difficult to develop higher-order representations such as velocity vec-

tors. This observation could also be a result of the relatively short duration of each trial;

maybe there was not enough time to develop higher-order representations in the trials

with large object set-sizes.

The lack of evidence supporting the prediction of object locations could also be caused

by the nature of the task. It is possible that either the experimental task did not require

participants to anticipate where objects would be in the future, or the task was too diffi-

cult for novices to actually anticipate future locations of each object.

This opposite relationship of entropy and performance however can be explained by

the tight relationship of entropy and displacement per second. Past studies have shown

that velocity affects tracking performance (ex. Saiki (2002); Oksama and Hyönä (2008))

and if the objects do not change direction while moving, then velocity is a measure of dis-

placement per second. However, the objects did change direction, so velocity was really

measuring distance per second, not displacement per second. The systematic manipulation

of displacement through changes in entropy, all while keeping velocity constant, is a unique

contribution of the present study to the field of object tracking research. The small effect

size of the entropy manipulations is most likely due to the relatively small differences in

the displacement per second once converted to degrees of visual angle. The difference in

displacement per second between the low and high entropy conditions was only 0.61 de-

grees of visual angle per second. In comparison, Oksama and Hyönä (2008) used velocity

manipulations that resulted in differences in velocity as large as 9.7 degrees of visual angle

per second; the smallest difference in velocity was 3.9 degrees of visual angle per second.
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Contributions to MOMIT

The relationship between displacement per second and the location error component

of MOMIT is quite evident. The lower the displacement per second, the closer an object

stays to its last known location. Thus, the location error will be lower with high entropy

than it will be with low entropy. This fits well with location error component from the

original MOMIT. Since the concept of displacement captures not only changes in veloc-

ity but changes in direction of travel, average displacement per second is a more robust

measure of the uncertainty of an object from motion than speed. This distinction should

be made more clear and MOMIT should be adjusted to use average displacement per sec-

ond instead of distance per second in the location error component. The present paper

also provides a formula based on the components of MOMIT which predicts reaction time

instead of accuracy.

Application to ATC

The predictive utility of MOMIT with respect to air traffic controller performance

seems to the strong. The past MOT research appears to hold up on tasks without dis-

tracters (something that was unclear at the start of this experiment). Even in the presence

of lots of noise, a result of both individual differences in tracking performance and the ran-

dom nature of the experimental design, equation (4) still had a decent fit to the data. In

addition, the new experimental paradigm created in this study can be used as a base for

future research.

Design Issues

Despite the main effect of entropy being significant, there was an issue with the design

of the experiment that could influence the true effect size of the entropy factor. When an
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objects motion resulted with a collision with the edge of the screen, the objects motion

was reflected like a mirror. This caused the total displacement of the object, from the

moment of reflection (and/or until any other direction change), to decrease instead of

increase. This factor is most likely confounded with the entropy factor since both end

up affecting the total displacement of an object and is most likely the cause of the odd

interaction in the 14-object conditions. Another potential confound of this study comes

from the familiarity of the callsigns used for objects. Oksama and Hyönä (2008) showed

that familiarity facilitates tracking performance. It is possible that the callsign prefix, the

3-character airline designator, could be more familiar to one participant than another; this

was not controlled for in the present study.

Conclusion

All in all, the new experimental paradigm used in the present study provides a MOT

task that is similar to a very basic ATC task which should be suitable for use in future

studies involving multiple object tracking performance without distracters. Performance

on the experimental task of the present study was also consistent with the results of

Oksama and Hyönä (2008). The decent fit of MOMIT to the experimental data supports

the use of MOMIT to predict ATC performance.
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Completion Time VS. Number of Objects By Participant
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Completion Time VS. Number of Objects By Participant
No Entropy
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Completion Time VS. Number of Objects By Participant
Medium Entropy
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Completion Time VS. Number of Objects By Participant
High Entropy
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APPENDIX B: RCode
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1. Datafile

> datafile = "http://people.rit.edu/rmh3093/master.csv"
> master = read.table(datafile, header = T)
> master$Entropy = factor(master$Entropy, ordered = T, levels = c("Low",
+ "Medium", "High"))
> master$Objects = as.ordered(master$Targets)
> master$Replicates = as.factor(master$Replicate)
> master$BlockOrder = as.factor(master$Block_Order)
> master$Participants = as.factor(master$Participant_ID)
> names(master)

[1] "Participant_ID" "Trial_Order" "Block_Order"
[4] "Replicate" "BlockN" "BlockC"
[7] "Targets" "VA" "VA2"

[10] "DPS" "E" "Entropy"
[13] "H" "X_Offset" "Y_Offset"
[16] "X_Variance" "Y_Variance" "D_x"
[19] "D_y" "SNR_x" "SNR_y"
[22] "I_x" "I_y" "Variance_Ratio"
[25] "Offset_Ratio" "Average_Displacement" "Target_Displacement"
[28] "AD.TD" "TD.AD" "Completion_Time"
[31] "Visited_Targets" "CT.VT" "CT.T"
[34] "SP" "Resp1" "SA1"
[37] "SA2" "SA3" "SA4"
[40] "T1" "T2" "Objects"
[43] "Replicates" "BlockOrder" "Participants"
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2. Analysis Of Variance

> summary(aov(log(Completion_Time) ~ Objects * Entropy + Replicates +
+ Error(Participants/(Objects * Entropy + Replicates)), master))

Error: Participants
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 30 26.9820 0.8994

Error: Participants:Objects
Df Sum Sq Mean Sq F value Pr(>F)

Objects 3 363.79 121.26 338.65 < 2.2e-16 ***
Residuals 90 32.23 0.36
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Participants:Entropy
Df Sum Sq Mean Sq F value Pr(>F)

Entropy 2 2.1633 1.0817 2.703 0.07516 .
Residuals 60 24.0104 0.4002
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Participants:Replicates
Df Sum Sq Mean Sq F value Pr(>F)

Replicates 4 0.378 0.094 0.3173 0.866
Residuals 120 35.727 0.298

Error: Participants:Objects:Entropy
Df Sum Sq Mean Sq F value Pr(>F)

Objects:Entropy 6 1.283 0.214 0.6844 0.6624
Residuals 180 56.228 0.312

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 1364 361.87 0.27
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3. Mixed Effects

> m1 = lmer(log(Completion_Time) ~ Objects + Entropy + (1 | Participants),
+ master)
> anova(m1)

Analysis of Variance Table
Df Sum Sq Mean Sq F value

Objects 3 363.79 121.26 432.2429
Entropy 2 2.16 1.08 3.8556
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INFORMED CONSENT FORM 

Rochester Institute of Technology

Title of Project:The predictive utility of the Model of Multiple Identity Tracking in Air Traffic Control 
Performance

Investigators in Charge: Mr. Ryan Hope
MS Candidate
Dept. of Psychology.
Rochester Inst. of Technology
Tel. (716) 308-1835
Email: rmh3093@rit.edu

A. Explanation of the Project.

1. You are being asked to participate in an experiment that seeks to quantify the level of situation awareness 
you aquire while performing a multiple object tracking task.

2. Situation awareness is the perception of environmental elements within a volume of time and space, the 
comprehension of their meaning, and the projection of their status in the near future.

3. This research will be used to test and refine a mathematical model which can assist air traffic controllers by 
predicting when their situation awareness falls below a critical level.

4. During this study, you will monitor a computer screen and track airplane callsigns (groups of 3 letters and 3 
numbers) as they move around on the screen. At the end of each trial, the identity of the targets will be 
masked and you will be asked to click on a particular target. When you move the mouse pointer of a 
particular callsign it will become unmasked and its original identity will be revealed.

5. This experiment should take about 45 minutes to complete.

6. This research poses no risk to you beyond that of which you would normally experience operating a 
computer.

7. As a benefit of participating in this experiment, your future air travel experiences could be safer.

B. Your rights as a research participant

1. I will be happy to answer any questions you have about the study at any time.  Mr. Hope may be contacted 
at the telephone number and e-mail addresses shown above.  If you have questions about your rights as a 
research subject, you can call collect the Rochester Institute of Technology Institutional Review Board at 
(585) 475-7673, or e-mail hmfsrs@rit.edu.

2. No subsequently published results will contain any information that could be associated with individual 
participants. All data will be stored and secured only on the investigator’s computer.

3. Your participation is wholly voluntary. Your decision to participate, or to not participate, or to withdraw 
from the study during the experiment will in no way influence your relationship with the researcher or your 
co-workers.

4. You may refuse to participate or may discontinue participation at any time during the project without 
penalty or loss of benefits to which you are otherwise entitled.
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