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ABSTRACT

A tvo dimensional, two degree of freedom vehicle model 1is
studied. A randomly profiled road 1is assumed to impart
hyperbolic distributed stationary vertical random displacements
to the front and the rear wvwheel. A computer program has been
developed to evaluate transfer function matrices. The
performance characteristic of the vehicle based on the Pover
Spectral Density of the vertical acceleration as well as the
rattle space, for different values of damping factors, are

studied.



TABLE OF CONTENTS

Acknovledgement

Abstract
Table of Contents

Nomenclature

1. Introduction
1.1 Vehicle Suspension System
1.2 Scope of Study ’
2. Problem Formulation and Solution
2.1 Mathematical Model
2.2 Vehicle Disturbances
2.3 Behavior Variable Representation
2.3.1 Autocorrelation
2.3.2 Spectral Density
2.3.3 RMS Value
2.4 Vehicle Performance
2.4.1 Vehicle Controllability and Ride Comfort
2.4.2 Ride Comfort
2.4.3 Dynamic Excursion
3. Evaluation of Vehicle Responses.
3.1 Vehicle Excitation
3.2 Acceleration Response

3.3 Rattle Space Response

3.4 Numerical Method to Evaluate Vehicle Responses

11

11

14

16

17

17

18

19

19

20

21

22

22

25

28

30



4.

3.

6.

Result and Discusgsions
Conclusion

References

33

34

36



a,b

H(P

),

H

NOMENCLATURE

-

Distance of front and rear wvheel from CG of the
vehicle

Non dimensional distance of front and rear vheel
from CG of the vehicle.

Coefficient of the polynomial D (s).

Damping coefficient of the damper of the main
suspension system.
Non Dimensional Characteristics equation of the
tvo degree of freedom model.
Dynamic variation of the ground force.

Non Dimensional transfer function between an
output and an input.
Stiffness of the wmain suspension system.
Non dimensional stiffness rate of the springs of
the wain suspension and the spring of the
absorber, for the twvo degree of freedowm model.
Distance between the front and the rear wvheel.

Unsprung wass of the two degree of freedowm

wQdel. S B

o P
Spatfal Frequency.

Reference Spatial Frequency.

Autocorrelation function.
Laplace operator.
Input displacement spectral density in the time

domain.

Value of input displacement mspectral density at



Spectral density of terrain surface in spatial

dowmain.

Sprung wass acceleration spectral density for an

input displacewment spectral density.

Time

Forwvard vehicle velocity.

Dieplacement of tvo degree of freedom vehicle
model

Input displacement to the front vheel

Input Velocity of the front vheel

Input Acceleration of'the front wvheel

Input Displacewent to the rear vheel.

Input Velocity of the rear vheel

Input Acceleration of the rear vheel.

Non diwmensional displacewent of tvo diwmensional
vehicle wmodel.

Non diwmensional displacement of the front wvheel.
Non diwmensional velocity of the front wvheel.

Non diwmensional acceleration of the front wheel.
Non dimensional displacewment of the rear vheel.

Non diwmensional velocity of the rear vheel.

Non diwensional acceleration of the rear vheel.



Xri,xi1

To

Wrim

max
min
rms

PSD

Nornn dimersional relative displacement of the
front wheel suspernsion system.

Non dimensional relative displacement of the rear
wheel suspension system.

Nori dimensional frequercy.

Nor dimensional damping factor of the front wheel
suspension system of the two degree of freedom
vehicle model.

Norn dimensional damping factor of the rear wheel
suspension system of the two degree of freedom

vehicle model.

Shift or 1lag of orne function with respect to
ancther.

Time required to travel wheel base distance.
Input circular frequency.
Design natural frequency of the two degree of

freedom model.

Maximurm
Miriirurmnm
The root mean square.

Fower spectral density.



INTRODUCTION

1.1 Vehicle Suspension System

Vehicle suspension synthesis can be considered in a part as
an application of the mechanical isoclation theory. A
considerable amount of work has been performed on general vehicle
suspension analysis, design, and optimization . Analysis of
vehicle suspension has been largely confined to one-dimensional
two degree of freedom vehicle wmodel [1,7,9,141. Some studies have
been concerned with one-dimensional three degree of freedom model
15,171 and others have included wultidegree of freedom system

£3,12,171.

System disturbance are usually considered individually and
are caused by guideway irregularities. They cover step input,
different pulses, ginusoids [3,9,12,191 and random inputs
(1,2,8,13,14,15,17, 1. Hedrik and Young have considered the
simultaneous effect of guidevay and external force (vind gust)

disturbances.

System vhich have been considered are usually linear except
for few gtudies [1,3,8,15,191. Nonlinear exponential damping and
nonlinear exponential elastic restoring elements [15] have been
videly used. Sometimes, Coulomb friction [3,15]1 and nonlinearity
due to the 1loss of contact betveen tire and terrain [1,3]1 are

considered. Unsymmetric damping has been treated by Thompson,



vhile actual tire characteristic has been investigated by Omata

[(191.

Most of the previous studies select a behaviour variable as a
performance criterion. These 8selected variables include the
relative displacement as a measure of the dynamic excursion of
the suspension, body acceleration as a comfort criteria, and
ground force (normal force between tire and terrain) as a
controllability criteria. Hovever, perceived acceleration has
been chosen as a ride comfort criterion (1,81, also, contact

frequency has been proposed as guideway clearance criterion [141].

1.2 Scope of study

This study deals vith the random vibration of vehicle
suspension system (10,11, 18]. Herein, we are adopting the
technique of input-output relation for spectral densities:
knovwing the excitation mean square spectral density together with
the linear system characteristics, we can obtain the mean s8quare

spectral density of any desired vehicle responses.

The response spectral density could serve as a basis for
subjective Jjudgement of the vehicle performance. It is also
possible to integrate the spectral density to obtain the variance
of the output signal. The variance is also a wmeasure of the
vehicle performance and can be used for design purposes. When
integrating, hovever, some of the information contained in the

response mean square spectral density is lost.

The vehicle model used in this study is a linear tvo-degree

of freedom (2D0OF) system. The model is excited at the front and



the rear wheel. Concerning the vehicle wvhole body vibration,
only the vertical displacement (lifting) and the pitch movement
are studied. The vehicle model thus represents vehicle as vell
as excitation wvhich 1is symmetrical with respect to its
longitudinal axis. Further, it is assumed that the rear vheel

follov the track of the front wheel.



2. PROBLEM FORMULATION AND SOLUTION

2.1 Mathewatical Model

The equivalent diagram of an automobile (Fig. 1) showvs the
individual components wvhich are relevent to vibration
investigation. It has ten degree of freedom, the body has six
(three in translation and three in rotation ) and four degree of

freedom for vheel masses wvhich are shown in individual sprungs.

Since such a large numbher of degrees of freedom cowmplicates
the solution, the model is simplified to a tvo dimensional vhere
only heaves and pitching are considered. In addition, the mwmodel
is further siwplified by neglecting the effect of the tires.
Fig. 2, showvs the resulting tvo-dimensional, tvo-degree of freedom
model, vhere the body 1is replaced by a sprung wass and the
suspension system is represented by massless elewents (spring and
dashpot) providing forceas betveen the body and the roadwvay

directly.

The mathematical model considered is linear and about the
position of static equilibrium and from rest, this includes the
restriction that no separation is allowed between the tire and
the terrain. Linearity assumption is not very severe since many
systems are inherently quite linear over a wide operatiornal range
and certain types of nonlinearities such as Coulomb friction are

often urndesirable, and should be minimized in any advarnced



Fig.1l. Equivalent diagram of a vehicle
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Fig. 2, Two-Dimensional, two degree of freedom
vehicle model.



isaolator design.

Nov the wmathewatical representation of the wodel 1is
coneidered.
The equation of motion of the system shown in Fig. 2 are:

mx + (k + k)x +(c +c)lx + (cb-cab«
1 2 1 2 2 1

(k b-kalO=cx +cx + kx + kx

2 1 11 22 11 22
1)
" 2 2,
JO+ (cb-ca)x + (kb-ka)x + (cb +ca)f
2 1 2 1 2 1
2 2 .
+ (kb + kal)O=(cx + kx )b -
2 1 22 22

(cx + k x )a
11 11

(2)

For non diwensionalization we consider the following non

dimensional design parameters: using t = t*/Wnn:

I =J/md , W =‘,k /m , A = a/x ,B = b/x
o nn 1 o o

X = x/x . X = x /x e X = x /x

. 2 . 2
X = x/x W e X = x /x W ¢

K =k /k . §§‘= c /2mW . E;; = c /2mW (3)



Where x is

a length related to the input wagnitude and W
o

nn

ie a natural deasign frequency.

Taking the Laplace tranaform of (1) and (2) and using the

nondimenaionalized quantitieas, we obtaein (See Appendix I):

(D% +2(5,+3,)P + K+ 1)x + ((2(5,8 - 3 A)p + kB - A)Q+
(254 1x; + (25 KX

‘

(4)
(J4>2 + (25282 + 2§’A2)¢ + kg2

+ Ao + (2(B3, - A$)p + KB - A)X
= (23+ K)BX, - (25,¢p+ 1)AX,

(35)
Where

43 = s/Wnn

Combining (4) and (S) in matrix forwm, we obtain:

A1y = (Qiy)

1
(6)
Where .
5 —_
C | v 205,45 K+ 1 (2BS - 2A%,) + KB - A
(ACG)) = 2
‘ 2 2 2
(2BZ - 2A%)) <+ KB - A IP+ 2B 3+AT))
2 2
- + KB + A
(6a)
(25¢+ 1) (25 + K)
apry =
-(25¢ + 1)A (25.$+ K)B
(6b)

- 13 -



X X
1
Y = R Y =
1
&) X
2
L — L —
(6c)
2.2 Vehicle Disturbance
In actual enviourment, vehicle suspension systems are
subjected to multiple input-disturbances. However, in this

study, ewphasis is placed on guidewvay disturbances resulting from
terrain irregularity. This guideway disturbance is treated as
random and is described by ite Powver Spectral Density (PSD).
Experimental data shows that, for wide range of surfaces the
spectrum may be well approximated by a hyperbolic displacement
density function (10,111:

2
SOV = AL

(7)

wvhere
A is roughness parameter (m)
and

J+- is the wave number (rad/w), representing the number of waves

in unit distance (161

Howvever applying this form of spectrum, it should be kept in

2
mind that there will be some situation in which (A/fL) would not

fit the real roadway spectrum very well. Also for a very long or



shoart wave length (Q{fLE) may represent extrapolation of data,
which may not very well be justified. However, the use of such
form has the great advantage that all roadways - smooth or rough
are represented by a single parameter A, thus rather gerneral
preliminary design studies may be made which should have a wide

application.

If a vehicle traverses the surface with a constant forward
velocity V, and if w is the circular frequency in time, the
height of roadway urder the vehicle [181 may be described by a

random process in time, i.e.,

Sy = w

(8)

The spectral density in spatial domain may be converted ta a

spectral dernsity in the time domain [111

Sx(d = Sx{w)dw

(3)
From (7) and (8) we abtain :
Sx{w) = QV/Q%

(9a)
The rondimensional form of (9a) is
Sx(¥) = Sx(w)/Sx{lWrm) = lﬁrE

{9b)

- 1§ -



where

¥ = ww
nn

and
2
S (W ) = AV/W
X nn nn
It wight be wvorth mentioning that by wusing a similar

expression in (9), it can be shown that for a hyperbolic

displacement, input spectral density is

X = l AV/W
o nn

(10)

More discussion of the vehicle disturbance is presented in

section 3.

2.3 Behaviour Variable Representation

Since the input to the vehicle 1is considered as a random
excitation, the behaviour variables of the response are expected
to be random as well, consequently, the response can only be

described in terms of any of the following statistical parameters

% Autocorrelation function

% Vibration spectrum, continuous in frequency, expressed as

spectral density.

% RMS value

% Amplitude probability distribution, expressed as a

probability density.



2.3.1 Autocorrelation

The autocorrelation function for a random process x(t) is
defined as the average value of the product x(t)x(t+T). The
procees is sampled at time t and then again at time t+T, (Fig.
3), and the average value of the product, Elx(t)x(t+T)1 is
calculated for the ensemble (18], provided that the process is
stationary, the value of Elx(t)x(t+7)] will be independent of
absolute time t and will depend only on time seperation so that
we may have :

R (1) = Elx(t)x(t+])]

x

(11)
wvhere
R (T) ie the autocorrelation function for the randowm process
x(t) )
If the time lag T 1is brought to zero, then
2
R (o) = Elx (t)1

b4

(12)

2.3.2 Spectral Density

The autocorrelation function provides information concerning
properties of a random process in the time domain. The spectral
dersity is the Fourier transform of the autccorrelation function
£163, which means that the spectral derisity provides information
in the frequercy domain. It provides measure of amplitude of the

response over the frequency domain.



(s)

X9 / . /

Fig. 3, Schematic representation of a random process x(t).



For stationary ergodic random process, ensemble averages and

sample average are same, Hence from (11), we obtain :

t =T/2
R (T) = Elx(t)x(t +T)H1 = 1im 1 |x(tIx(t +T)Hidt
x T
T—voO ]
T = -T/2 (13)

Taking Fourier transform of R (7), wve obtain 1

x
oo
iwy
S (w) = 1/2T R (T)e dT
x x
-0 (14)
and oo
1w
R (T ) = S (w)e dw
x x
-00 (15)
vhere

S(v) ims the spectral density of the random process x(t) and

For time lag T= o, relation (15) transform intol

o
R (0Q) = | S (w)dw
x x
e
(16)
Cowmbining (12) and (16), wve obtain :
od
2
Elx (t)]1 =|S (wv)dvw
x
-0
(17)



2.3.3 RMS Value

The mean square value of a random variable provides a measure
of the energy associated with the vibration described by the
variables. The positive square root of the mean square value is

knovn as the root mean square or RMS.

RMS wagnitude wmay be considered as the most convenient
statistical parameter that can be selected for the behaviour
variable represention, since it is the only statistical
quantitative parameter and also because, generally, all other

statistical parameters can be expressed in terwms of the RMS.

However, when the behaviour variable is strongly frequency
dependent, we therefore need to know more about the frequency
distribution, i.e., it would be advisable to study the PSD
together with the RMS value as representatives of the behaviour

variables.

2.4 Vehicle Performance

The vehicle performance and vibration characteristics
ingeneral, are obtained based on the following evaluation
criteria.

% Wheel Controllability and Ride Comfort

% Ride Comfort

% Allovable Dynamic Excursion



2. 4.1 Wheel Controllability and Ride Comfort

— et —— e — — —— e e k. e —

The dynamic variation of the normal force betweeri the tire of
the wheel and the terrain (ground force), in general, determines
the tire terrain contact area during normal operation,

consequently, the vehicle controllability can be indicated by the

tire—-terrain normal force.

Also, since the increase of the variation of the tire-terrain
dynamic force relative to the static force would increase the
change in wvheel load, and consequently the possibility of the
vheel to leave the road, thus the ground force variation of the
the gtatic vheel force could be considered as vwell a good

indicator of safety.

It should be pointed ocut that in this study considering the

safety is irrelevant since the tires are neglected.
2.4.2 Ride Comfort

Thie is one of the basic goal to be provided by vehicle
suspensions, particularly in case of passenger’s cars. - The use
of integral square of vehicle body acceleration in case of
deterwministic inpute, such as, isolated bumps and obstacles, has
the advantage of giving greater vwveight to the large values
acceleration experienced during the subsequence decay of the

oscillation. In addition, it has been ashown that force



transmitted to the human body is, in the case of vertical
vibration, an approximate measure of discomfort. At frequency
upto SHz the force transmitted is about the same as if human body
vere replaced by a pure mass. In this range, therefore, the
acceleration of the passenger may be taken as proportional to the
force transmission and hence as a wmeasure of discomfort.
However, human vibration sensitivity depends not only on the
amplitude of vibratory acceleration, but also on its frequency.
Consequently, the PSD of the vehicle acceleration would have the

same weight as the RMS value.

2.4.3 Dynamic Excursion

" r—r —— t— — — — — — — —

Thige indicates +the allowvable clearance space betwveen
guspension components. Large clearance 8space are not only
undesirable from the volume economy point of view, but also

because they often amplify moments arising from multidirectional

forces.
The RMS relative displacement betwveen the suspension
components is chosen as a suitable behaviour variable to

represent the suspension clearance space.



3. EVALUATION OF VEHICLE RESPONSES.

3.1 Vehicle Excitation

The road surfaces overrun by a vehicle is always more or less
irregular. Measurements of the surfaces ehow that ite profile
can randowmly be described in statistical terms. Measurement fromw
larger nuwber of roades have been complied in (6]. It is found
that irregularitiese of wany roads approximately can be described
by the vertical awmplitude wean square spectral density S(n), the
form of S(n) as a function of the apatial frequency variable n (n

> Q) is taken as (4,5,7]:

S(n) = S(n )(n/n )
‘ o o

(18)
wvhere
S{n } is the vertical amplitude mean square deneity
o

(roughness coefficient) at the reference spatial frequency

n (n = 1/2M cyclea/w).
o o

The wmeasurement for typical road surfaces can be classed into
various groups and the parameter values for each groups are given
in Table 1 (6,71. The exponent P has two values, depending on

vhether n < n or n > n . It is found that P = 2.0 and P = 1.5
o o
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are reasonable values for many road surfaces as shown in Table 1.
It has been assumed that the random process giving S(n) is

stationary.

When travelling with the speed V on a road described by the
mean square spectral density according to [18], the vehicle input

spectral density will be [5,6]

S(£f) = S(n)/V

(19)

where
f = Vn (frequency in Hz)

Introducing the angular frequency v = 2nf, one finds that the

vehicle excitation has the two-side mean square spectral density

2
S(w) = S(w )Y(w /w)
o o
(20)
for 'vl £ v =2 n
o o
(20a)
and
1.5
S(w) = S(w )(w /w)
o o
(20b)
for lv| > w =2Tn
o o
(20c)
vhere



S(w ) = S(n )/4TT V
o o

It should be pointed out that, as wentioned before, P is=

a

taken as 2 throughouf the entire spectra.

Since the front and rear vheelas follove the esawe track, they
have the mame excitation which weans
S (v) = § (w) = S(w)
F R

(21)

When etudying reesponaees to wmultiple excitation, aleo cross -

apectral densitiee S (w), k ¢ 1, are needed. It can be shown
k,1

that (14 =}-1)

"1""0
S (w) = S(w)e
12
(22)
iv7y,
S (w) = S(w)e (22a)
21
vhere
To= L/V
(22b)

is the tiwme needed to traevel the vheel base distance L

Combining (20) and (22), the excitation of two vheel vehicle

model can be summarized in matrix forwm as —1
-1iw,
S(w) 1 e
(S(w)] =
1w,
e 1
— (23)




In nondimensional form, we have

-1i7%,

[S(Y )] _—a
K. 1115

| _

(23a)

vhere

3} = LW /V
nn

3.2 Acceleration Response

When wusing the technique of dinput-output relation for
spectral deneities, harmonic transfer functions are needed.
Thege harmonic transfer functions are calculated as follows :

* T
(S(¥)] = [HFIISCY)ILH (X)) ]

(24)

wvhere

(H(Y)>] is the nondimensional transfer function matrix between

the output and the input excitation, and is expresged in matrix

forem as :

H H _7
xx1 xXxx2
CH(Y)) =
(24a)
H H
ex1 Ox2




(S(¥ 1 is the nondimensional input spectral density,

s (¥ S (Y

RXK $7{*)

{(s(¥)1 =

s (¥ ) s (7))
Bx 66

- _

(24b)

and

»
(H (¥)) is the nondimensional conjugate transfer function

matrix of [H(?)]

Taking (4) into consideration and after some manipulation,

(24) can be expressed as :

» » »
S = H S H + H S H + H S H +
xX xxl xx xxl xx1l %@ 6Ox1 Ox1 Bx xxl
»
H S H
Ox1 66 Dx1
(24c)
» » »
S = H S H + H S H + H S H +
x0 xxl xx xx2 xx1l x0 6x2 Ox1 8x xx2
»
H S H
Ox1 80 Ox2
(24d)
» » »
S = H S H + H S H + H S H +
6ex xx2 xx xxl xx2 x0 Ox1 Ox2 Bx xx1
»
H S H
Ox2 86 ©xl1
(24e)

- 26 -



» » » »
] = H S H + H S H + H S H + H S H
00 XX2 XX Xx2 xx2 x6 8x2 Ox2 Ox xx2 ox2 66 B6x2

(24f€)

vhere

(1 + 12%5,7)(KB(A+B) - 1¥* + 125,B(A+BYY )]

H = -
xx1
DY)
2
(K + 123,7) (ACA+B) - 17y + i2§'A(A+B)T)]
H =
Ox1
DCY)
- (1 + iZS,T)(K(A+B) - A% - 125,5A+B)7 )3
H =
xx2
DCY )
2
(K + 123,0)(A + B - BY + 1235 (A+BYT )]
H =
ex2
DCY)
S = s (¥ , S = s ()
xX x o6 x
-1¥7p i¥7o
s = s (Y e , s = s ®e
x8 x ax x
and
4 2 3
D(Y)» = (Ar - AT + A) + itAr -A T )
4 2 o 1 3

(24h)

_27_



A = I

4

2 2
AS = 203(B + I) +§|(A + 1)}
2 2 2
A = 45,;2(A+B) + ICK + 1) + KB + A
2
2
Al = 2[(K3, +3,)(A + B) ]
2
A = K(A + B)
0

(243)
Once the S , S are determined, the corresponding PSD of
XX ee

the acceleration, S and S , can be directly obtained, for

XX

different parameter values, as follows :

n
o
n

(25)

s = ¥'s
oo
(26)

3.3 Rattle Space Response

The rattle space is defined as the relative distance between
the s=suspension components. For acceptable design, namely gpace

requirements and mechanical stability, the RMS rattle space

- 28 -



must be below a certain limit. From (4), we obtain:

Y = [H(YIY
1

and the rattle spaces, X and X are,
ri, x1 r2, x2

X = ((X - ABG) - X 1
ri, x1 1
(27)
X = (X + BB) - X 1
r2, x2 2
where
X = (H X + H X))
xx1l x1 Oxl1 2
(28)
© = (H X + H X))
xx2 x1 Ox2 2
Combining (27) and (28) in wmatrix form, we get:
T T
{ X X 1 = [H (NIIX X 1
rl,xl r2,x2 1 2
(29)
where -
H - AH -1 H - AH —T
xx1 xx2 Ox1 Ox2
tH (7)) =
H + BH H + BH -1
xx1 xx2 Ox1 Ox2
— —
(29a)

To calculate spectral density of the rattle space, similar

procedures to that used for evaluating S and S are adopted :
xK a6

- 29 -



» » »
S = H S H + H S H + H S H

rxl r,xxl xx r,xxl r,xxl x0 r,0Bxl1 r,®1 Bx r,xxl
»

+ H S H
r,Ox1 80 r,0Ox1

(30)
” » »
S = H S H + H S H + H S H +
rx2 r, Xxx2 xx r,xx2 r,xx2 x0 r,0x2 r,®2 Ox r,xx2
»
H S H
r,0x2 86 r,0Qx2
(31)
wvhere
H = H - AH -1
r, xx1 xxl xx2
H = H - AH
r, Ox1 Ox1 Ox2
H = H + BH
r, xx2 xx1 xx2
H = H + BH -1
r, Ox2 Ox1 6x2
(31a)

From (30) and (31), the PSD of the rattle space, as in the
case of acceleration, can be evaluated for different values of

the design parameters.

3.4 Numerical Method to Evaluate Vehicle Responses

The previous analysis of evaluating the PSD’s can be
completely accomplised numerically. The outline of numerical

procedure are presented in this section :
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From (4), we obtain :

CA(cp 1Y = Q¢ q; )1Y
1

or, in the nondimensional frequency domain (7= ﬂp):

LAC T Y
1

Q¢ ¥ raiy

(32)

The matrix [A(Y¥)] as well as matrix [Q(J)] is complex. In
order to obtain the transfer function matrix [H(T)], vhich is
also a complex matrix, determine the inverse of the matrix [Q(7)]

-1
using IMSL-Routine LEQTIC. Then multiply [(Q(?¥)] matrix by CA(T)]

)l, to obtain (M1, i.e.,

-1

[Q(YP)) [AI»IY = (MY =Y
1 1
(33)
where
-1
(M) = [(Q(¥)] (L[A(T)]
(33a)

Relation (33) representa a system of complex equations.

Solution to these equations givea the transfer function.

In order to find tranasfer functions, H ’ H . H R and
xx1 Ox1 xx2

H , the IMSL Routine LEQTIC is wused once again to solve the
Ox2

system of complex equations (33). Thig routine is used twice to

- 31 -



get four transfer functions :

T
(1) with Y = [(1,0] to get H and H
xxl Ox1
and
T
(2) with Y = (0,1) to get H and H
xXx2 ex2

This technique is very effective, since it reduces much of
the tedious analytical work, and can be extended +to solve systems

with higher degrees of freedom. The computer program isg given in

Appendix.
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4 RESULTS AND DISCUSSION

Following are the system parameters which are use in this paper

for a calculation of spectral density:

Generalised mass m = 1000 Kg.

Spring Stiffness ki k2 = 50,000 N/m

Damper Stiffrness cl = c2 = ¢ = 2000 N s/m, 4000 N s/m ,6000 N

s/m
Distarices a = 1.2 m
b=1.3m
L =28.5m

Forward Vehicle Velocity V = 20 m/Sec.
The power spectral density (PSD) of the acceleration Sxx, for

different values of damping factor, C, are obtairned, plotted vs 1}
and shown in Fig. 4. Ingeneral, the PSD is consisting of two
parts :

(1> " Bell Shaped ", for 'K. ( 3.8, and

(2> a fluctuating part ( demonstrated in Fig. S ). The bell
shaped portion of the plot 1is due to the characteristic of the

selected two degree of freedom vehicle model, and the fluctuating
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characteristic is due to the delay time between the two
correlated inputs. From Fig. 3, it is clear that increasing C
flattens out the first peaks at the vicinity of the resonant
frequency, but increases the peaks of fluctuation at higher modes
of frequency. Fig. 6, depicts the two peaks of the corresponding
resonant frequency. These two peaks are not distinguished in

Fig.3, because of higher values of C.

The PSD of +the rattle space S and S
ri, x1 r2, x2

, @&re shown in

Fig. 7 and Fig. 8 respectively. It is clear that increasing C,
decreases the peaks at the vicinity of the resonant frequency.
Ingeneral, increasing C, reduces the rattle space requirewent at
the vicinity of the resonant frequency. Howvever, over the wvhole
spectrum of frequenciee=, another criterion such as the Root HNMean

asquare (RMS) is needed to find out the effect of C.
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CONCLUSION

The PSD of the acceleration exhibits a fluctuating portion at
higher frequencies, which becomes more pronounced with increasing
the damping factor C. This fluctuation is due to the delay time
between the two correlating inputs at the front and the rear
vheel. This phenomenon does not occur in real vehicle vibration,
because of the filtering effect of tires. The presence of tires,
ingeneral, damps out the amplitude of vibration at higher

frequencies.

Alsgo, from the results of the PSD of both acceleration,
excluding the fluctuating part, and the rattle space, it is clear
that increasing the damping factor C, decreases the peak at the
vicinity of the natural frequencies. Hovever, over the wvhole
spectrum (e.g. the area under the curve), increasing C, does not
necessarily decreaseg the acceleration and or rattle space.
Ingeneral, there is an optimum value for C, wvhich will result in
the best performance, i.e., minimum acceleration and rattle space

over the entire spectrum.

Two approaches are presented in this study : Analytical and
Numerical. The analytical approach is accurate and requires a
thorough wunderstanding of all the details of the problems.
Hovever, vhen dealing with higher degrees of freedom model, the

analytical approach 1is formidable and one has to adopt the



numerical technique.

Finally, this study can be extended to wmore sophisticated

models including the effect of tires, inputs and constraints such

as higher order systems, nonlinear systems and advanced
suspension configuration, e.qg., dynamics absorber, an active
suspension together with a damped absorber. Also this study can

be implemented by optimization, in order to obtain the optimum

value of C, for the best performance.
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Appendix I

Laplace Transform of a function f(t) is

)

Fis) = ge'Stf(t)dt (A)

(o]

Replacing t by t*/wnn, ~BHS of (A) becomes,

0

+
RHS = 1 ge—(Ptf(t*/Wnn)dt* (B)
i 0
wnn

where qb= s/wnn

From (A) and (B), we obtain

QO
» * *
Se"/’tf(t Man)dt™ = W F(g) (c)

0

From (1) we have,

mk + (cptey)x + (ky+k, )x + (cpb-cya)B ¢ (kpb-kja)B = cyx *c Xtk x +kyxp

1 2

bing X = x/x;, and t = t*/wnn, we obtain the following

non dimensionalized parameters,

. . . g v = o Yoo o 2
X = x/xownn, X1 Xl/xownn s Xo X2/X0Wnn s X x/xownn

Using above non dimensionalized parameters, equation (1) becomes



2 - . .
mx W- X+ (cp + CZ)XownnX‘+ (ky + kp)x X + (cib - c a)u, O =4+

kgb - k - . + c_X
(ks ,2)60 (e X) *+ e X)x W+ (KX + kpX,)xg (1la)

Taking Laplace Transform of (la), we obtain

2
A¢) = (‘mxownn¢2+ (c) + cadx W b + (ky + ky)x )X+ (1c)

((cyb - cla)4j+~(k2b - kla))8= “1"‘,%’* ky)x Xy + (czwn?*r kz)X°X2
From (1c) and (C), we obtain,

*

(o ®) .
Se"”t'f(t*/wn YAt o+ W FP) (1d)
o

n

where F(¢) is given by (1c)

Dividing (1d) by mx

owgn , we obtain

(¢ + 2(5+5)P + K+ X + (258 -5p) + k8- MO -

(25,p+ 1)X; + (25gp+ KX,

where
A &= a/x0 . B = b/x0 . K = kl/k2 s wnn = ' kl/m
5’ = cl/ZmWnn N 52 = tz/zmwnn

Similarly Laplace Transform of

. . 2 2, ¢ 2 2
Jo + (c2b - cla)x + (k2b - kla)x + (c2b + cja )0 + (kzb + kla )0

= (Cz).(z + k2X2)b - (Cl)'(l + klxl)a is
(3p? + 2582 +3A0P + k82 + AT) 4 (2(63, - AS )+ K8 - A)X
= (254+ K)BX; - (23,<p+ 1)AX4
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PROGRAM : SPECTRAL DENSITY
PROGRAMMER : SHABBIR LOKHANDWALA
DATE WRITTEN : MAY/15/1985
OBJECTIVE

TO FIND THE ROOTS OF COMPLEX EQUATION USING
LEQT1C ROUTINE AND THEN FIND THE SPECTRAL
DENSITY OF ACCELERATION OF RANDOM IN-PUT FUNCTION

DESCRIPTION OF VARIABLES :
AA(N,N) - MASS MATRIX OF COMPLEX VARIABLES

CA(N,N) - FORCE MATRIX

C(N,N) - TRANSFER FUNCTION MATRIX

H(N,N) - COMPLEX CONJUGATE OF C(N,N)

X(N) - COLUMN VECTOR

B(N) - SOLUTION VECTOR OBTAINED FROM LEQTI1C
N - ORDER OF MATRIX

AAARARAAAAAAAAAARAARAAAAAAAAAAAAAARAAARAAAAAARAAA RAARAAARAAAAAAAAAAAAKRAAAkAAkAk

100

5736

7465

INTEGER*4 N,IA,M,IB,IJOB,IER

COMPLEX A(2,2),B(2),C(2,2),BA(2),03(2,2),H(2,2) ,AA(2,2)
COMPLEX H1(2,2),5(2,2),0(2,2),02(2,2),CA(2,2),BB(2,2)
REAL*4 WA(2),P(8),P1(8),V,AM, AK]1 ,AK2 ,AK,ATI,C1(4),C2(4)
REAL*4 21(4),22(4) ,KNN,XO0,R,RO,A1,B1,B2,A2,AL,D,F,G

N 2

IA N

IB N

WRITE(6,100)

FORMAT(1H1////10X, 'PROGRAM FOR FINDING ' //
10X, 'THE VALUES OF VARIABLE X1,X2,X3 & X4 '//
10X, 'BY QUASI LINEAR METHOD'///)

\Y = 20.

AM = 1000.
Cl(1) = 200.
Cl(2) = 2000
C1(3) = 4000
Cl(4) = 6000

DO 5736 I = 1,4
C2(I) = C1(I)
AK1 = 50000.
AK2 = AKl

Al = 1.3

Bl = 1.2

WNN = (AK1l/AM)#*.5
AK = AK2/AK1l

DO 7465 1 = 1,4

Z1(I) = C1(I)/(2.*AM*WNN)
Z2(I) = 21(I)

X0 = (V/WNN)*#0.5

A2 = Al/X0

B2 = B1/X0

AL = 2.5

RO = WNN#AL/V



Al 2000. /7 (AMAX0#%2)
R 1.0
WRITE(6,110)WNN,(Z1(I),I=1,4),X0,A2,B2,R0,AI
110 FORMAT (10X, ‘WNN'2X,‘'Z1(I)'2X,'X0'2X,'A'2X,'B’'2X,
& ‘RO’2X,"AI'//10X,10F15.8//)

DO 7245 II = 1,4

AA(1,2) = CMPLX(B2*AAK-A2,2.*(B24Z2(II)-A24Z1(II))*R)

AA(1,1) = CMPLX(1l.+AK-R#R,2.*(Z1(II)+Z22(I1))*R)

AA(2,1) = AA(1,2)

AA(2,2) = CMPLX(AK#B2*B2+A2*A2-AIARAR,2.*(Z2(II)AB24B2+Z21(II)
& *A24A2)*R)

PRINT*, ((AA(I,J),J=1,N),I=1,N)

WRITE(6,%) 'AA’ - -

WRITE(6,8000) ((AA(I,J),J=1,N),I=1,N)
8000 FORMAT(/10X,4F15.8/)

CA(l1,1) = CMPLX(1l.,2.4Z1(II)#R)
CA(1,2) = CMPLX(AK,2.%Z2(II)#*R)
CA(2,1) = -A2*CA(1,1)
CA(2,2) = B2#CA(1,2)

PRINT*,((CA(I,J),J=1,N),I=1,N)

WRITE(6,%) 'CA’

WRITE(6,8001)((CA(I,J),J=1,N),I=1,N)
8001 FORMAT(/10X,4F15.8/)

M =N
DO 8002 I = I ,M
DO 8002 J = 1,M
8002 BB(I,J) = 0.0
BB(1,1) = CMPLX(1.0,0.0)

BB(2,2) = BB(1l,1)

PRINT%, ((BB(I,J),J=1,N),I=1,N)

WRITE(6,*) BB’

WRITE(6,8004)((BB(I,J),J=l,N),I=l,N)
8004 FORMAT(/10X,4F15.8/)

IJOoB = 0

CALL LEQT1C(CA,N,IA,BB,M,IB,IJOB,HA,IER)

PRINTX, ((BB(I,J),J=1,N),I=1,N)

WRITE(6,*) BB’

WRITE(6,8005)((BB(I,J),J=1,N),I=1,N)
8005 FORMAT(/10X,4F15.8/)

DO 10 I
DO 10 J
03(I,J)
10 A(I,O)
DO B006
DO 8006
DO 8006
A(I,K) = A(I,K) + BB(I,J)*AA(J,K)

8006 03(I,K) = A(I,K)

. -
HFrRRROOZZ

- -

. -

HiHoort+

(S S T TR TR |
222

WRITE(6,6)

WRITE(6,1) ((A(I,J),J=1,N),I=1,N)
6 FORMAT(// /10X, JACOBIAN MATRIX A’,/10X,17(1H-)/)
1 FORMAT(10X,4D12.5/)

M= 1

B(2) = (1.0,0.0)



B(1l) = (0.0,0.0)
PRINT*, ((A(I,J),J=1,N),I=1,N),N,IA,IB,M

IJOB = 0.0
CALL LEQT1C(A,M,IA,B,M,IB,IJOB,WA,IER)
WRITE(6,101)IER

101 FORMAT(/10X,'B’ /10X, '1ER = 12/7)

C(l,2) = CMPLX(B(1))
C(2,2) = CMPLX(B(2))
PRINT#*,C(2,2),C(2,1)

M=1
BA(l) = (1.0,0.0)
BA(2) = (0.0,0.0)

PRINT#*,Q3(1,1),03(1,2),03(2,1),03(2,2),N,IA,IB,M

IJOB = 0.0
CALL LEQ1IC(Q3,N,IA,BA,M,IB,IJOB,WA,IER)
c(1,1) CMPLX(BA(1))
C(2,1) = CMPLX(BA(2))
PRINTA,C(1,1),C(1,2)
WRITE(6,234)

234 FORMAT(//10X,'C’//)
WRITE(6,%*)((C(I1,J),J=1,2),1I=1,2)

]

P(l) = REAL(C(1,1))
P(2) = -AIMAG(C(1,1))
P(3) = REAL(C(1,2))
P(4) = -AIMAG(C(1,2))
P(5) = REAL(C(2,1))
P(e) = -AIMAG(C(2,1))
P(7) = REAL(C(2,2))

P(8) = -AIMAG(C(2,2))

WRITE(6,%) P’

WRITE(6,600) (P(I),I = 1,8)
600 FORMAT(/10X,8F15.8//)

PRINTA, (P(1),I = 1,8)

H1(1,1) = CMPLX(P(1),P(2))
H1(1,2) = CMPLX(P(3),P(4))
H1(2,1) = CMPLX(P(5),P(6)};
H1(2,2) = CMPLX(P(7),P(8))

PRINT*, ((H1(I,J),J=1,N),I=1,N)
WRITE(6,%) 'Hl’
WRITE(6,602) ((H1(I,J),J=1,N),I=1,N)
602 FORMAT(/10X,4F15.8/)
DO 2001 I = 1,4
DO 2001 J = 1,4
2001 H(J,I) = H1(I,J)
PRINT*,((H(I,J),J=1,N),I=1,N)
WRITE(6,%) 'H’
WRITE(6,603)((H(I,J),J=1,N),I=1,N)
603 FORMAT(/10X,4F15.8/)

S(1,1) = CMPLX(1.0,0.0)

S(1,2) = CMPLX(COS(RARO),-SIN(RARO))
S(2,1) = CMPLX(COS(RARO),SIN(R#ARO))
S(2,2) = S(1,1)

PRINT*,((S(I,J),J=1,N),I=1,N)
WRITE(6,%) 'S’



WRITE(6,605)((S(I,J),J=1,N),I=1,N)
605 FORMAT(/10X,4F15.8/)

DO 1005 I
DO 1005 J
1005  Q(I,J) = 0.0
DO 1008 I
DO 1008 K
DO 1008 J ,
1008 Q(I,K) = Q(I,K) + S(I,J)*H(J,K)
PRINT, ((Q(I,J),J=1,N),I=1,N)
WRITE(6,%) Q"
WRITE(6,606) ((Q(L,J),d=1,8),L=1,N)
606 FORMAT(/10X,4F15.8/)

r

non
—

r

r

nonon
AR

N
N
/N
N
N
)

DO 1110
DO 1110
1110 Q2(I,J)
DO 1111
DO 1111
DO 1111
1111 02(I,K) Q2(I K) + C(I,J)*Q(J,K)
WRITE(6,%) 02"
WRITE(6,608) ((Q2(I,J),J=1,2),1I=1,2)
608 FORMAT( /10X, 4F15.8/)
PRINT*, ((Q2(I,J),J=1,2),I=1,2)
7245  CONTINUE
STOP
END

r

r

r

=R
r—-w-w—'or—w—l

N
N
/N
N
/N

[ - N | I S
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