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ABSTRACT

A two dimensional, two degree of freedom vehicle model is

studied. A randomly profiled road is assumed to impart

hyperbolic distributed stationary vertical random displacements

to the front and the rear wheel. A computer program has been

developed to evaluate transfer function matrices. The

performance characteristic of the vehicle based on the Power

Spectral Density of the vertical acceleration as well as the

rattle space, for different values of damping factors, are

studied.
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NOMENCLATURE

# b Distance of front and rear wheel from CG of the

vehicle

A, B Non dimensional distance of front and rear wheel

from CG of the vehicle.

A , A , ..A Coefficient of the polynomial D (a).

0 1 4

c , c Damping coefficient of the damper of the main

1 2

suspension system.

Df Non Dimensional Characteristics equation of the

two degree of freedom model.

f Dynamic variation of the ground force.

9

H<<P), H<1T) Non Dimensional transfer function between an

output and an input.

k , k Stiffness of the main suspension system.

1 2

K Non dimensional stiffness rate of the springs of

the main suspension and the spring of the

absorber, for the two degree of freedom model.

L Distance between the front and the rear wheel.

m Unsprung mass of the two degree of freedom

m4gdel.

Spa-Pfal Frequency.n

no Reference Spatial Frequency.
*

R<t.)v Autocorrelation function.

e Laplace operator.

t

S <w) Input displacement spectral density in the time
x

domain.

S <w ) Value of input displacement spectral density at

x nn
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Si C/D Spectral density of terrain surface in spatial

domain.

S <v) Sprung mass acceleration spectral density for an

K, x

input displacement spectral density.

t Time

V Forward vehicle velocity.

x Displacement of two degree of freedom vehicle

model

x Input displacement to the front wheel

1

x Input Velocity of the front wheel

1

x Input Acceleration of the front wheel

1

x Input Displacement to the rear wheel.

2

x Input Velocity of the rear wheel

2

x Input Acceleration of the rear wheel.

2

X Non dimensional displacement of two dimensional

vehicle model.

X Non dimensional displacement of the front wheel.

1

X Non dimensional velocity of the front wheel.

1

X Non dimensional acceleration of the front wheel.

1

X Non dimensional displacement of the rear wheel.

2

X Non dimensional velocity of the rear wheel.

2

X Non dimensional acceleration of the rear wheel.

2
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Xrl,xl Non dimensional relative displacement of the

front wheel suspension system.

Xr, x2 Non dimensional relative displacement of the rear

wheel suspension system.

0 Non dimensional frequency.

f>
j

Non dimensional damping factor of the front wheel

suspension system of the two degree of freedom

vehicle model.

5^_ Non dimensional damping factor of the rear wheel

suspension system of the two degree of freedom

vehicle model.

*X Shift or lag of one function with respect to

another.

*7e Time required to travel wheel base distance.

w Input circular frequency.

Wnn Design natural frequency of the two degree of

freedom model.

max Maximum

min Minimum

rms The root mean square.

PSD Power spectral density.

7
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INTRODUCTION

1. 1 Vehicle Suspension System

Vehicle suspension synthesis can be considered in a part as

an application of the mechanical isolation theory. A

considerable amount of work has been performed on general vehicle

suspension analysis, design, and optimization . Analysis of

vehicle suspension has been largely confined to one-dimensional

two degree of freedom vehicle model [1,7,9,143. Some studies have

been concerned with one-dimensional three degree of freedom model

[15,171 and others have included multidegree of freedom system

(3,12, 173.

System disturbance are usually considered individually and

are caused by guideway irregularities. They cover step input,

different pulses, sinusoids [3,9,12,19] and random inputs

[1,2,8,13,14,15,17,]. Hedrik and Young have considered the

simultaneous effect of guideway and external force (wind gust)

disturbances.

System; which have been considered are usually linear except

for few studies [1,3,8,15,193. Nonlinear exponential damping and

nonlinear exponential elastic restoring elements [153 have been

widely used. Sometimes, Coulomb friction [3,15] and nonlinearity

due to the loss of contact between tire and terrain [1,3] are

considered. Unsymmetric damping has been treated by Thompson,

- B -



while actual tire characteristic has been investigated by Omata

[19].

Most of the previous studies select a behaviour variable as a

performance criterion. These selected variables include the

relative displacement as a measure of the dynamic excursion of

the suspension, body acceleration as a comfort criteria, and

ground force (normal force between tire and terrain) as a

controllability criteria. However, perceived acceleration has

been chosen as a ride comfort criterion [1,8], also, contact

frequency has been proposed as guideway clearance criterion [141.

1.2 Scope of study

This study deals with the random vibration of vehicle

suspension system [10,11,18]. Herein, we are adopting the

technique of input-output relation for spectral densities:

knowing the excitation mean square spectral density together with

the linear system characteristics, we can obtain the mean square

spectral density of any desired vehicle responses.

The response spectral density could serve as a basis for

subjective judgement of the vehicle performance. It is also

possible to integrate the spectral density to obtain the variance

of the output signal. The variance is also a measure of the

vehicle performance and can be used for design purposes. When

integrating, however, some of the information contained in the

response mean square spectral density is lost.

The vehicle model used in this study is a linear two-degree

of freedom (2D0F) system. The model is excited at the front and



the rear wheel. Concerning the vehicle whole body vibration,

only the vertical displacement (lifting) and the pitch movement

are studied. The vehicle model thus represents vehicle as well

as excitation which is symmetrical with respect to its

longitudinal axis. Further, it is assumed that the rear wheel

follow the track of the front wheel.

- 10 -



2. PROBLEM FORMULATION AND SOLUTION

2. 1 Mathematical Model

The equivalent diagram of an automobile (Fig. 1) shows the

individual components which are relevent to vibration

investigation. It has ten degree of freedom, the body has six

(three in translation and three In rotation ) and four degree of

freedom for wheel masses which are shown in individual sprungs.

Since such a large number of degrees of freedom complicates

the solution, the model is simplified to a two dimensional where

only heaves and pitching are considered. In addition, the model

is further simplified by neglecting the effect of the tires.

Fig. 2, shows the resulting two-dimensional, two-degree of freedom

model, where the body is replaced by a sprung mass and the

suspension system is represented by massless elements (spring and

dashpot) providing forces between the body and the roadway

directly.

The mathematical model considered is linear and about the

position of static equilibrium and from rest, this includes the

restriction that no separation is allowed between the tire and

the terrain. Linearity assumption is not very severe since many

systems are inherently quite linear over a wide operational range

and certain types of nonl inearit ies such as Coulomb friction are

often undesirable, and should be minimized in any advanced

- 11 -



Fig.l- Equivalent diagram of a vehicle

t J er?^

va ?

>o
1T2 ii
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\

Fig. 2, Two-Dimensional, two degree of freedom

vehicle model.



isolator design.

Now the mathematical representation of the model ii

considered.

The equation of motion of the system shown in Fig. 2 are:

m*x ? ( k ? k ) x ? < c ?c>x*<cb-ca)&*

12 12 2 1

(k b - k a)6 =cx ? ex ? k x ?kx

2 1 11 22 11 22

2 2

J * (c b -

c a)x ? (k b - k a)x ? (c b ? c a )0

2 1 2 1 2 1

2 2

? (k b ? k a > = (c x ? k x >b -

2 1 2 2 2 2

(ex ? k x )(

11 11

(1)

(2)

For non dimensionalization we consider the following non

dimensional design parameters: using t = t*/Wnn:

I
J/mx1

, W
=.J

k /m , A * a/x , B b/x

o nn VI o o

X x/x , X x /x , X x /x

o 1 1 o 2 2 o

X x/x W , X x /x W ,

o nn 1 1 o nn

X - x /x W

2 2 o nn

I .. d
X x/x W , X = x /x W ,

o nn 1 1 o nn

X -x/x

W2

2 2 o nn

K = k /k , 5i = c /2fl,W ' ^2 e c /2mW

2 1
' 1 nn 2 nn

- 12 -
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Where x la a length related to the Input magnitude and W

o

la a natural design frequency.

nn

Taking the Laplace transform of (1) and (2) and using the

nondimenalonallzed quantities, we obtain (See Appendix I):

p
(<r> + 2(5, +5A)4> + K + 1)X + ((2(5zB -

SfAXp + KB -

A)Q +

(25(<*>+
DXj + (2J^+ K)X

(4)

(J<*>2
+

(2/ +

2^2)^ +
KB2

+ Afl)9 +

(2(b^
= (25/r+

K)BX2
- (25,^+

ijAXj

AJ,)< + KB - A)X

Where

(5)

4>
s/Wnn

Combining (4) and (5) in matrix form, we obtain:

CAJ]Y CQ]Y]

Where

CA(4>]

(6)

ClJ> ? 2(5^5^) ? K ? 1 (2B5
- 2AS",) ? KB - A

2 2

<2B?
- 2A^.) ? KB - A I<}> ? 2(B ^*A "5, )

? KB ?A

(6a)

[Q(^>) ]

(2g(d>* 1)

- ( 2J <J> ?DA

(252<|>* K)

(25^* K)B

(6b)

- 13



Y =

6

(6c)

2. 2 Vehicle Disturbance

In actual enviourment, vehicle suspension systems are

subjected to multiple input-disturbances. However, in this

study, emphasis is placed on guideway disturbances resulting from

terrain irregularity. This guideway disturbance is treated as

random and is described by its Power Spectral Density (PSD).

Experimental data shows that, for wide range of surfaces the

spectrum may be well approximated by a hyperbolic displacement

density function [10,113:

SOTJ = k/JX.

(7)

where

A is roughness parameter (m)

and

*/*- is the wave number (rad/m), representing the number of waves

in unit distance [16]

However applying this form of spectrum, it should be kept in

2

mind that there will be some situation in which (A/JL.) would not

fit the real roadway spectrum very well. Also for a very long or

- 14



short wave length (ft/rv ) may represent extrapolation of data,

which may not very well be justified. However, the use of such

form has the great advantage that all roadways
-

smooth or rough

are represented by a single parameter ft, thus rather general

preliminary design studies may be made which should have a wide

appl icat ion.

If a vehicle traverses the surface with a constant forward

velocity V, and if w is the circular frequency in time, the

height of roadway under the vehicle [18D may be described by a

random process in time, i.e.,

-JLV
= w

(8)

The spectral density in spatial domain may be converted to a

spectral density in the time domain C11J :

Sx(/L)d = Sx(w)dw

(9)

From (7) and (8) we obtain :

Sx(w) = AV/w

(9a)

The nondimensional form of (9a) is

Sx (20 = Sx(w)/Sx (Wnn) = l/y2

(9b)

IS"-



where

If = w/W

nn

and

2

S (W ) = AV/W

x nn nn

It might be worth mentioning that by using a similar

expression in (9), it can be shown that for a hyperbolic

displacement, input spectral density is

. E AV/W

nn

(10)

More discussion of the vehicle disturbance is presented in

section 3.

2. 3 Behaviour Variable Representation

Since the input to the vehicle is considered as a random

excitation, the behaviour variables of the response are expected

to be random as well, consequently, the response can only be

described in terms of any of the following statistical parameters

7. Autocorrelation function

7. Vibration spectrum, continuous in frequency, expressed as

spectral density.

% RMS value

7. Amplitude probability distribution, expressed as a

probability density.

16 -



2. 3. 1 Autocorrelation

The autocorrelation function for a random process x(t) is

defined as the average value of the product x(t)x(t+f). The

process is sampled at time t and then again at time t+t, (Fig.

3), and the average value of the product, E[x( t )x( t+t) ] Is

calculated for the ensemble [18], provided that the process is

stationary, the value of E[x(t )x( t+t) ] will be Independent of

absolute time t and will depend only on time seperation so that

we may have :

R ft) = E[x(t)x(tt>3

x

(11)

where

R (TC) is the autocorrelation function far the random process

x

x(t)

If the time lag *X. is brought to zero, then

2

R (o) = E[x (t)]

x

(12)

2. 3. 2 Spectral Density

The autocorrelation function provides information concerning

properties of a random process in the time domain. The spectral

density is the Fourier transform of the autocorrelation function

C163, which means that the spectral density provides information

in the frequency domain. It provides measure of amplitude of the

response over the frequency domain.

17 -



Fig. 3, Schematic representation of a random process x(t)



For stationary ergodic random process, ensemble averages and

sample average are same, Hence from (11), we obtain :

t = T/2

R < *X > " ECx(t)x(t ?T)3 - lim_l\x(t)x(t ?T)3dt

* T I
T-**o J

*t = -T/2

(13)

Taking Fourier transform of R CD, we obtain :

x

oo

iwr

S (w) 1/2TT \R ( T/ )e dT

x | x

(14)

and

iwT

R < X > *

\ S <w)e dw

x | x

(15)

where

S<w) Is the spectral density of the random process x(t) and

For time lag T" 0 relation (15) transform into!

R <0> \S <w)dw

x | x

(16)

Combining (12) and (16), w

.00

e obtain :

E[x (t)3

-OO
J

S <w)dw

x

(17)
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2.3. 3 RMS Value

The mean square value of a random variable provides a measure

of the energy associated with the vibration described by the

variables. The positive square root of the mean square value is

known as the root mean square or RMS.

RMS magnitude may be considered as the most convenient

statistical parameter that can be selected for the behaviour

variable represention, since it is the only statistical

quantitative parameter and also because, generally, all other

statistical parameters can be expressed in terms of the RMS.

However, when the behaviour variable is strongly frequency

dependent, we therefore need to know more about the frequency

distribution, i.e., it would be advisable to study the PSD

together with the RMS value as representatives of the behaviour

variables.

2. 4 Vehicle Performance

The vehicle performance and vibration characteristics

ingeneral, are obtained based on the following evaluation

criteria.

7. Wheel Controllability and Ride Comfort

7. Ride Comfort

7. Allowable Dynamic Excursion

- 19 -



8. 4.1 Wheel Controllability and Ride Comfort

The dynamic variation of the normal force between the tire of

the wheel and the terrain (ground force), in general, determines

the tire terrain contact area during normal operation,

consequently, the vehicle controllability can be indicated by the

tire-terrain normal force.

Also, since the Increase of the variation of the tire-terrain

dynamic force relative to the static force would increase the

change in wheel load, and consequently the possibility of the

wheel to leave the road, thus the ground force variation of the

the static wheel force could be considered as well a good

Indicator of safety.

It should be pointed out that in this study considering the

safety is irrelevant since the tires are neglected.

2.4.2 Ride Comfort

This is one of the basic goal to be provided by vehicle

suspensions, particularly in case of passenger's cars. The use

of Integral square of vehicle body acceleration in case of

deterministic Inputs, such as. Isolated bumps and obstacles, has

the advantage of giving greater weight to the large values

acceleration experienced during the subsequence decay of the

oscillation. In addition, it has been shown that force

- 20 -



transmitted to the human body is, in the case of vertical

vibration, an approximate measure of discomfort. At frequency

upto 5Hz the force transmitted is about the same as if human body

were replaced by a pure mass. In this range, therefore, the

acceleration of the passenger may be taken as proportional to the

force transmission and hence as a measure of discomfort.

However, human vibration sensitivity depends not only on the

amplitude of vibratory acceleration, but also on its frequency.

Consequently, the PSD of the vehicle acceleration would have the

same weight as the RMS value.

2. 4. 3 Dynamic Excursion

This indicates the allowable clearance space between

suspension components. Large clearance space are not only

undesirable from the volume economy point of view, but also

because they often amplify moments arising from multidirectional

forces.

The RMS relative displacement between the suspension

components is chosen as a suitable behaviour variable to

represent the suspension clearance space.

21 -



3. EVALUATION OF VEHICLE RESPONSES.

3. 1 Vehicle Excitation

The road surfaces overrun by a vehicle is always more or less

irregular. Measurements of the surfaces show that its profile

can randomly be described in statistical terms. Measurement from

larger number of roads have been complied in [61. It is found

that irregularities of many roads approximately can be described

by the vertical amplitude mean square spectral density S(n), the

form of S(n) as a function of the spatial frequency variable n (n

> 0) is taken as [4,5,7]:

"P
S(n) ! S<n ) <n/n )

o o

(18)

where

S<n } is the vertical amplitude mean square density
o

(roughness coefficient) at the reference spatial frequency

n (n * 1/2TT cycles/m).

o o

The measurement for typical road surfaces can be classed into

various groups and the parameter values for each groups are given

in Table 1 [6,73. The exponent B has two values, depending on

whether n < n or n > n . It is found that B = 2. 0 and B 1.5

o o

- 22 -
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are reasonable values for many road surfaces as shown in Table 1.

It has been assumed that the random process giving S(n) is

stationary.

When travelling with the speed V on a road described by the

mean square spectral density according to [18], the vehicle input

spectral density will be C5, 6 3

S(f) = S(n)/V

(19)

where

f = Vn (frequency in Hz)

Introducing the angular frequency w = 2rjf one finds that the

vehicle excitation has the two-side mean square spectral density

2

S(w) = S(w )(w /w)

o o

(20)

for fw I ^ w = 2Tf n

o o

(20a)

and

1. 5

S(w) = S(w )(w /w)

o o

(20b)

for |w( w = 2TT n

o o

(20c)

where

- 23 -



S(w ) = S<n )/4 7T V

o o

It should be painted out that, as mentioned before, B is

taken as 2 throughout the entire spectra.

Since the front and rear wheels follows the same track, they

have the same excitation which means

S (w) S (w) S(w)

F R

(21)

When studying responses to multiple excitation, also cross
-

spectral densities S (w), k f 1, are needed. It can be shown

k, 1

that (i j^l )

-iwT*

S <w> * S(w)e

12

(22)

S (w) - S(w)e

21

iwt#
(a)

where

"Xo - L/V

(b)

is the time needed to travel the wheel base distance L

Combining (20) and (22), the excitation of two wheel vehicle

model can be summarized in matrix form as

-iwt;

S(w) 1 e

[S(w)l

lwr.

(23)

24 -



In nondimensional form, we have

[S(T ) 3

t Wo

mfl

(23a)

o = LW /V

nn

where

To =

3. 2 Acceleration Response

When using the technique of input-output relation for

spectral densities, harmonic transfer functions are needed.

These harmonic transfer functions are calculated as follows :

* T

[S(J)3 = CH(0')]CS(Y>1CH (V)3

(24)

where

[H(Y)3 is the nondimensional transfer function matrix between

the output and the input excitation, and is expressed in matrix

forem as :

CH(2T)]

H H

xxl xx2

H H

6x1 6x2

-I

(24a)

25 -



CS(7f)3 is the nondimensional input spectral density,

S ( IS ) S (T )

xx xO

[S(?f)3 =

s ( T ) s (TT >

ex ee

(24b)

and

[H ( 2f ) 3 is the nondimensional conjugate transfer function

matrix of [H(T) 3

Taking (4) into consideration and after some manipulation,

(24) can be expressed as :

*

S H S H + H S H ?HSH ?

xx xxl xx xxl xxl x8 6x1 9x1 Bx xxl

HSH

Gxl 8G Oxl

(24c)

S =HSH ?HSH ?HSH

x6 xxl xx xx2 xxl x8 8x2 8x1 Bx xx2

*

HSH

8x1 88 8x2

(24d)

# * #

S H S H ?HSH ?HSH

x xx2 xx xxl xx2 x8 8x1 6x2 Bx xxl

*

HSH

8x2 88 8x1

(24e)
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?HSH

?HSH*
"A."

Bx2

86 xx2 xx xx2 xx2 x8 8x2 8x2 8x xx2 6x2 88 8x2

(24f )

where

(1 ? 25,7><KB<A*B>
-

IT*

- 125JB(A*B)T >3

H

xxl

D(7r >

(K ? 2J.T><A<A*B>
- ? 125>A(A+B)T>3

H =

Gxl
D(T>

H

xx2

(1 ? 125,T)(K(A*B)
-

A*7"

* i2S^A*B)T)3

D(T>

(K ? i2j27T)(A ? B
- B^ ? 125l<A*B)?r>]

H

8x2
D(7T>

s
- a <2T) .

s = s (7T)

88 x

XX x

-iTTTo

8x x
s = s ( r > ' s.

= sQr><

xQ
x

and

iYTo

4 2
3

+ a ) ? i<A r -A r )

4 2
D<T) - <A.r

" A r

q ^ g

(24h)
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where

A = I

4

2 2

A = 2[S (B + I) ? J (A ? I) 1

3
D* ^1

2 2 2

A = 45iS(A ? B) ? I(K ? 1) ? KB ? A

2
2

2

A =

2[(K5, *Sz){k + B> 3

1

2

A = K(A ? B)

O

(24j)

Once the S , S are determined, the corresponding PSD of

xx 86

the acceleration, S and S , can be directly obtained, for

xx 68

different parameter values, as follows :

s = o s

xx xx

(25)

S =

fl S
ft

w
*

86 66

(26)

3. 3 Rattle Space Response

The rattle space is defined as the relative distance between

the suspension components. For acceptable design, namely space

requirements and mechanical stability, the RMS rattle space
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must be below a certain limit. From (4), we obtain:

Y = [H(2T)3Y

1

and the rattle spaces, X and X are,

rl,xl r2, x2

X = [(X - A8) - X 3

rl,xl 1

X [(X ? B8> - X 3

r2, x2 2

where

X = (H X ? H X )

xxl xl 8x1 2

8 = (H X + H X )

xx2 xl 8x2 2

Combining (27) and (26) in matrix form, we get:

T T

[X X 3 = [H (*)3[X X 3

rl,xl r2, x2 1 2

where

[H (7T )3

H - AH - 1

xxl xx2

H ? BH

xxl xx2

(27)

(28)

(29)

H - AH

6x1 6x2

H ? BH - 1

6x1 8x2

(29a)

To calculate spectral density of the rattle space, similar

procedures to that used for evaluating S and S are adopted :

xx 88
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* *

S=H SH +H SH ? H SH

rxl r, xxl xx r, xxl r, xxl x6 r, 8x1 r, 6x1 8x r, xxl

H S H

r,8xl 88 r, 8x1

(30)

* *

S =H SH ? H SH ? H SH

rx2 r, xx2 xx r, xx2 r, xx2 x8 r, 8x2 r,x2 8x r, xx2

H S H

r,x2 68 r,8x2

(31)

where

H = H - AH - 1

r, xxl xxl xx2

H = H - AH

r, 8x1 0x1 8x2

H = H ? BH

r, xx2 xxl xx2

H = H ? BH - 1

r, 8x2 8x1 8x2

(31a)

From (30) and (31), the PSD of the rattle space, as in the

case of acceleration, can be evaluated for different values of

the design parameters.

3. 4 Numerical Method to Evaluate Vehicle Responses

The previous analysis of evaluating the PSD's can be

completely accomplised numerically. The outline of numerical

procedure are presented in this section :
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From (4). we obtain :

[A( Cp )3Y = [Q( Cf) >3Y

or, in the nondimensional frequency domain ( 2f= iCt

[A( 7f >3Y = [Q( "2T )3Y

1

(32)

The matrix [A(Y)3 as well as matrix [Q(7)3 is complex. In

order to obtain the transfer function matrix CH(T)3, which is

also a complex matrix, determine the inverse of the matrix [Q(^T) 3

-1

using IMSL-Routine LEQTIC. Then multiply [Q(Tf)3 matrix by [A(T)}

)3, to obtain [M3, i.e.,

-1

[Q(2f)] [A(2f)3Y = [M3Y = Y

1 1

(33)

where

-1

[M3 = [Q(Y)3 [A(2T)3

(33a)

Relation (33) represents a system of complex equations.

Solution to these equations gives the transfer function.

In order to find transfer functions, H , H , H , and

xxl 6x1 xx2

H ,
the IMSL Routine LEQTIC is used once again to solve the

6x2

system of complex equations (33). This routine is used twice to
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get four transfer functions :

T

(1) with Y = [1,03 to get H and H

xxl Qxl

and

T

(2) with Y = (0,1) to get H and H

xx2 8x2

This technique is very effective, since it reduces much of

the tedious analytical work, and can be extended to solve systems

with higher degrees of freedom. The computer program is given in

Appendix.

- 32 -



4 RESULTS AND DISCUSSION

Following are the system parameters which are use in this paper

for a calculation of spectral density:

Generalised mass m = 1000 Kg.

Spring Stiffness kl k = 50,000 N/rn

Damper Stiffness cl = c = c = 000 N s/m, 4000 N s/m ,6000 N

s/m

Distances a = l. m

b = 1.3 m

L = . 5 m

Forward Vehicle Velocity V = 0 m/Sec.

The power spectral density (PSD) of the acceleration Sxx, for

different values of damping factor, C, are obtained, plotted vs f

and shown in Fig. 4. Ingeneral, the PSD is consisting of two

parts :

<1>
"
Bell Shaped ", for T (3.0, and

<> a fluctuating part ( demonstrated in Fig. 5 ). The bell

shaped portion of the plot is due to the characteristic of the

selected two degree of freedom vehicle model, and the fluctuating
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characteristic is due to the delay time between the two

correlated inputs. From Fig. 3, it is clear that increasing C

flattens out the first peaks at the vicinity of the resonant

frequency, but increases the peaks of fluctuation at higher modes

of frequency. Fig. 6, depicts the two peaks of the corresponding

resonant frequency. These two peaks are not distinguished in

Fig. 3, because of higher values of C.

The PSD of the rattle space S and S , are shown in

rl,xl r2, x2

Fig. 7 and Fig. 8 respectively. It is clear that increasing C,

decreases the peaks at the vicinity of the resonant frequency.

Ingeneral, increasing C, reduces the rattle space requirement at

the vicinity of the resonant frequency. However, over the whole

spectrum of frequencies, another criterion such as the Root Mean

square (RMS) is needed to find out the effect of C.
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CONCLUSION

The PSD of the acceleration exhibits a fluctuating portion at

higher frequencies, which becomes more pronounced with increasing

the damping factor C. This fluctuation is due to the delay time

between the two correlating inputs at the front and the rear

wheel. This phenomenon does not occur in real vehicle vibration,

because of the filtering effect of tires. The presence of tires,

ingeneral, damps out the amplitude of vibration at higher

frequencies.

Also, from the results of the PSD of both acceleration,

excluding the fluctuating part, and the rattle space, it is clear

that increasing the damping factor C, decreases the peak at the

vicinity of the natural frequencies. However, over the whole

spectrum (e.g. the area under the curve), increasing C, does not

necessarily decreases the acceleration and or rattle space.

Ingeneral, there is an optimum value for C, which will result in

the best performance, i.e., minimum acceleration and rattle space

over the entire spectrum.

Two approaches are presented in this study : Analytical and

Numerical. The analytical approach is accurate and requires a

thorough understanding of all the details of the problems.

However, when dealing with higher degrees of freedom model, the

analytical approach is formidable and one has to adopt the

- 35 -



numerical technique.

Finally, this study can be extended to more sophisticated

models including the effect of tires, inputs and constraints such

as higher order systems, nonlinear systems and advanced

suspension configuration, e. g. , dynamics absorber, an active

suspension together with a damped absorber. Also this study can

be implemented by optimization, in order to obtain the optimum

value of C, for the best performance.
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Appendix I

Laplace Transform of a function f(t) is

F(s) = le~stf(t)dt

o

(A)

Replacing t by t /Wnfl,
~

BHS of (A) becomes,

oo

RHS

7T- Jf\

f(t /wnn)dt

"nnnn

(B)

where <Zf>= s/W
* nn

From (A) and (B), we obtain

O

je"^f(t*/Wnn)dt*
= WnnF(^,) (C)

From (1) we have,

mx + (c1+c2)x +
(k1

+ k2)x + (c2b-c1a)9 t (kgb-l^a)^ c^+c^+k^+k^

Using X =

x/xQ
and t = t /w"nn, we obtain the following

non dimensional ized parameters,

X= x/x^^, Xx
= ^/x^n , X2

=

x2/xQWnn , X =

x/x^

Using above non dimensional ized parameters, equation (1) becomes



mxoWnn* + (C1 +

c2>\>Wnn*/ <ki
+ k2>x0X + (c2b " cia)Wnn0^+

(kjb -

kxa)9 =

(c1X1
+

c2X2)xoWnn
+

(k^
+

k2X2)xQ (la)

Taking Laplace Transform of (la), we obtain

K0
= (mxoW^Ct)2+

(C]L
+
c2)xoWnn0

+

(kl
+ k2)xo)X +

(i^

((c2b -

Cla)(
+
.(k2b

- kxa))0= (CJW0+ k1)xQX1 + (c2W<+ k )xQX2

From (lc) and (C), we obtain,

Je"^t'f(t*/Wn )dt * wnnHf) (Id)

O

where F(<>) is given by (lc)

Dividing (Id) by mx0Wjjn ,
we obtain

(<p2

+ 2(5+,<)<^> + K + J)X + (2(5 B -JA)
+ KB - A)B

(2S,</>+ DX1
+ [25lp*

K)X2

where

ki/m

J2 ^
nn

j\ ?*
a/XQ ,

B =

b/xQ ,
K =

k2/k2 , Wnn
= Jkp

5}=
c1/2mWnn .

Similarly Laplace Transform of

J& + (c2b - cxa)x + (kb - kjajx +
(c2b2

+ c^2)^ +
(k2b2

+ k^2)^

=

(c2x2
+ k2x2)b -

{c1kl + klXl)a is

(J<f>2

+
2(J2B2

+J,A2)</> +
KB2

+ A8) +
(2(B5Z

- Af)^> + KB - A)X

{Z$Ap+ K)BX2
- (25,<^+

l)AXj



****AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA**a?

c

C PROGRAM : SPECTRAL DENSITY
C

C PROGRAMMER : SHABBIR LOKHANDWALA
C

C DATE WRITTEN : MAY/ 15/ 1985
C

C OBJECTIVE :

C TO FIND THE ROOTS OF COMPLEX EQUATION USING

C LEQTIC ROUTINE AND THEN FIND THE SPECTRAL

C DENSITY OF ACCELERATION OF RANDOM IN-PUT FUNCTION

C

C DESCRIPTION OF VARIABLES :

C AA(N,N) - MASS MATRIX OF COMPLEX VARIABLES

C CA(N,N) - FORCE MATRIX

C C(N,N) - TRANSFER FUNCTION MATRIX

C H(N,N) COMPLEX CONJUGATE OF C(N,N)

C X(N) - COLUMN VECTOR

C B(N) - SOLUTION VECTOR OBTAINED FROM LEQTIC

C N ORDER OF MATRIX

C

C

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*AAA*AAAAAAAAAAAAAAAAAAAAAAAA!

C

INTEGERA4 N,IA,M,IB,IJOB,IER

COMPLEX A<2,2) ,B(2) ,C<2,2> ,BA(2) ,Q3< 2,2) ,H(2,2) ,AA(2,2)

COMPLEX H1(2,2),S(2,2),Q(2,2),Q2(2,2),CA(2,2),BB(2,2)

REALM WA(2) ,P(8) ,P1(8) ,V,AM,AK1 ,AK2 ,AK,AI ,C1 ( 4 ) ,C2(4)

REALA4 ZK4) ,Z2(4) ,WNN,X0 ,R,RO,Al ,B1 ,B2 ,A2,AL,D,F,G

N =2

IA = N

IB = N

WRITE(6,100)

100 F0RMAT(1H1////10X, 'PROGRAM FOR FINDING '//

& 1OX, 'THE VALUES OF VARIABLE X1,X2,X3 & X4 '//

& 10X,'BY QUASI LINEAR METHOD'///)

C

V = 20.

AM = 1000.

Cl(l) = 200.

Cl(2) = 2000

CK3) = 4000

CK4) = 6000

DO 5736 I = 1,4

5736 C2(I) = CKI)

AK1 = 50000.

AK2 = AK1

Al =1.3

Bl =1.2

WNN = (AK1/AM)**.5

AK = AK2/AK1

DO 7465 I = 1,4

ZKI) = C1(I)/(2.*AM*WNN)

7465 Z2(I) = ZKI)

XO = (V/WNN)*AC5

A2 = A1/X0

B2 = B1/X0

AL = 2.5

RO = WNN*AL/V



C

AI = 2000./(AM*X0**2)

R = 1.0

WRITE(6,110)WNN,(Z1(I) ,1=1,4) ,X0 ,A2 ,B2 ,R0,AI

110 FORMAT(10X,'WNN'2X,'ZKI)'2X,'X0'2X,'A'2X,'B'2X,

& 'RO'2X,'AI'//10X,10F15.8//)

DO 7245 II = 1,4

AA(1,2) = CMPLX(B2*AK-A2,2.*(B2*Z2(II)-A2*Z1(II) )*R>

AA(1,1) = CMPLX(1.+AK-R*R,2.*(Z1(II)+Z2(II))*R)

AA(2,1) = AA(1,2)

AA(2,2) = CMPLX(AK*B2*B2H^2*A2-AI*R*R,2.*(Z2(II)*B2*B2+Z1(II)

& *A2*A2)*R>

PRINT*,((AA(I,J) ,J=1,N),I=1,N)

WRITE(6,A)
'AA'

--

WRITE(6,8000)((AA(I,J) ,J=1,N) ,I=1,N)

8000 FORMAT(/10X,4F15.8/)

CA(1,1) = CMPLXU. ,2.*Z1(II)*R)

CA(1,2) = CMPLX(AK,2.*Z2(II)*R)

CA(2,1) = -A2*CA(1,1)

CA(2,2) = B2*CA(1,2)

PRINT*, ( (CA(I,J) ,J=1,N) ,I=1,N)

WRITE(6,*)
'CA'

WRITE<6,8001)( (CA(I,J) ,J=1,N) ,I=1,N)

8001 F0RMAT(/10X,4F15.8/)

C

C

C

M = N

DO 8002 I = 1,M

DO 8002 J = 1,M

8002 BB(I,J) = 0.0

BB(1,1) = CMPLX(1.0,0.0)

BB(2,2) = BB(1,1)

PRINT*,((BB(I,J) ,J=1,N) ,I=1,N)

WRITE(6,*)
'BB'

WRITE(6,8004X(BB(I,J),J=1,N),I =1,N)

8004 FORMAT(/10X,4F15.8/)

IJOB = 0

CALL LEQT1C(CA,N,IA,BB,M,IB,IJ0B,WA,IER)

PRINT*, ( (BB(I,J) ,J=1,N) ,I=1,N)

WRITE(6,*)
'BB'

WRITE (6, 8005 )( (BBC I, J) ,J=1,N) ,I =1,N)

8005 FORMATC /10X,4F15. 8/ )

C

DO 10 I = 1,N

DO 10 J = 1,N

10

Q3(I,J) = 0.0

A(I,J) = 0.0

DO 8006 I = 1,N

DO 8006 K = 1,N

DO 8006 J = 1,N

A(I,K) = A(I,K) + BB(I,J)*AA(J,K)

8006

6

1

Q3(I,K) = A(I,K)

WRITEC6,6)

WRITE(6,1)((A(I,J),J=1,N),I=1,N)

F0RMAT(///10X,'JACOBIAN MATRIX
A'

, /10X,17( 1H-) / )

F0RMATU0X,4D12.5/)

M = 1

B(2) = (1.0,0.0)



c

c

B(l) = (0.0,0.0)

PRINT*, ( (A(I,J) ,J=1,N) ,I=1,N) ,N,IA,IB,M

IJOB =0.0

CALL LEQT1C(A,W,IA,B,M,IB,IJ0B,WA,IER)
WRITE(6,101)IER

101 FORMAT(/10X,'B'/10X,'IER ='

12//)

C(l,2) = CMPLX(Bd) )

C(2,2) = CMPLX(B(2) )

PRINT*,C(2,2),C(2,1)

M = 1

BA(I) = (1.0,0.0)

BA(2) = (0.0,0.0)

PRINT*,Q3( 1,1) ,Q3(1,2),Q3(2,1) ,Q3( 2 ,2 ) ,N,IA,IB,M

I JOB =0.0

CALL LEQTiC(Q3,N,IA,BA,M,IB,IJOB,WA,IER)
C(l,l) = CMPLX(BAd) )

C(2,l) = CMPLX(BA(2) )

PRINT*,C(l,l) ,C(1,2)

WRITE(6,234)

234 F0RMAT( //10X,'C //)

WRITE(6,*) ( (C(I,J) ,J=1,2) ,1=1,2)

P(l) - REAL(C(1,D)

P(2) =
-AIMAG(C(1,1) )

P(3) = REAL(C(1,2))

P(4) =
-AIMAG(C(1,2) )

P ( 5 ) = REAL ( C ( 2 , 1 ) )

P(6) =
-AIMAG(C(2,1) )

P(7) = REAL(C(2,2))

P(8) =
-AIMAG(C(2,2) )

WRITE(6,*)
'P'

WRITE(6,600) (P(I),I = 1,8)

600 F0RMAT(/10X,8F15.8//)

PRINT*, (P(I) ,1 = 1,8)

Hl(l,l) = CMPLX(Pd) ,P(2) )

Hid, 2) = CMPLX(P(3) ,P(4) )

Hl(2,l) = CMPLX(P(5) ,P(6) >

HI (2,2) = CMPLX(P(7) ,P(8) )

PRINT*, ((H1(I,J),J=1,N) ,I=1,N)

WRITE(6,*)
'HI'

WRITE( 6,602) ( (HI (I, J) ,J=1,N) ,I=1,N)

602 F0RMAT(/10X,4F15.8/)

DO 2001 I = 1,4

DO 2001 J = 1,4

2001 H(J,I) = Hid, J)

PRINT*, ( (H(I,J) ,J=1,N) ,I=1,N)

WRITE(6,*)
'H'

WRITE(6,603)((H(I,J) ,J=1,N) ,1=1,N)

603 F0RMAT(/10X,4F15.8/)

S(l,l) = CMPLX(1.0,0.0)

S(l,2) = CMPLX(C0S(R*R0) ,-SIN(R*R0) )

S(2,l) = CMPLX(C0S(R*R0),SIN(R*R0) )

S(2,2) = S(l,l)

PRINT*, ( (S(I,J) ,J=1,N) ,I=1,N)

WRITE(6,*)
'S'

C



C

WRITE(6,605)((S(I,J),J=1,N),I=1,N)
605 F0RMAT(/10X,4F15.8/)

DO 1005 I = 1,N

DO 1005 J = 1,N

1005 Q(I,J) = 0.0

DO 1008 I = 1,N

DO 1008 K = 1,N

DO 1008 J = 1,N

1008 Q(I,K) = Q(I,K) + S(I,J)*H(J,K)

PRINT*,((Q(I,J),J=1,N),I=1,N)
WRITE(6,*)

'Q'

WRITE(6,606)((Qd,J),a = i,iJ),l = l,W)

606 F0RMAT(/10X,4F15.8/)

DO 1110 I = 1,N

DO 1110 J = 1,N

1110 Q2(I,J) = 0.0

DO 1111 I = 1,N

DO 1111 K = 1,N

DO 1111 J = 1,N

1111 Q2(I,K) = Q2(I,K) + C(I,J)*Q(J,K)

WRITE(6,*)
'Q2'

WRITE(6,608)( (Q2(I,J) , J=l ,2) , 1=1,2 )

608 FORMAT(/10X,4F15.8/)

PRINT*,((Q2(I,J) ,J=1,2) ,1=1,2)

7245 CONTINUE

STOP

END

C
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