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Finite ElementModeling of

AMoving Boundary Problem

Abstract: The analysis and calculation of the finite element modeling of a

moving boundary between immiscible fluids in a porous medium is

presented. One fluid is introduced under prescribed inlet boundary

conditions and the motion of the resulting interface boundary studied and

calculated. The aforementioned scenario is calculated using a finite element

program based on the software, MATLAB. Analytical solutions developed

in one dimension illustrate the moving boundary movement and benchmark

for numerical solutions. The aim of computer aided calculation is to develop

and predict amodel applicable to a real situation, yet flexible enough for

future adaptation to other problems with little modification.
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Chapter 1

INTRODUCTION

1.1 Background

Moving boundary problems are characteristically found in

geo-engineering systems that consist of fluid masses in a porous medium.

The moving boundary of a system relates to how the system moves and

allows one to predict the extent of the system at a certain time. With respect

to fluid mechanics and soil mechanics, moving boundary problems are

encountered in many applications. For example, groundwater pollution will

be delayed or can be stopped ifwe can predict the movement of the moving

boundary with proper calculation.

For years there have beenmany different studies of contamination.

No matter what source of contamination one studies, there will always be a

some type of interface present [ 16 ]. This is shown in Figure A.



Figure A

The invading fluid in some cases does not mix with the resident

stagnant fluid. This is known as immiscibility. In this case, a sharp interface

is present. The investigation of sharp fronts present in immiscible fluid

approximations becomes the focus system simulation. Concentration levels

can then be studied for intensity. Location of this front enables one to

identify where things are occurring and how to focus efforts of rectification.

When immiscible fluids flow through a porous medium, there is a

boundary of interaction ofone substance with another. Figure B shows a

routine form of this boundary interaction procedure.
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This boundary is termed as the front or frontal boundary [ 2 ]. This

boundary has two main important meanings. The first importance is due to

the fact that it reflects the initial fluid interaction. This initial interaction

will contain the bulk of the important flow information. By using this flow

front information, solutions or alternative modes of action can be

formulated in response to a given situation. Being able to forecast the

reaction of infiltration ofporous media will aid in the monitoring of

contamination, clean-up operations, oil reservoir reserves, dam seepage and

help predict a useful means ofmanagement for an effective plan of action.

A flow is created starting from a location ofhigh potential energy and

passing to a low potential energy. This energy is in the form ofpressure or



piezometric head, or pressure differential, h=AP. Another dominant factor

that entails frontal movement is the process ofwater injection for a

secondary recovery of trapped oil in existing reservoirs. Water is forced

into a secondary well and pushes the oil to the producing well. In a

petroleum reservoir formulation, there is almost always a water-oil interface

[ 1 1 J. The type of reservoir is one without a natural drive mechanism. This

type of reservoir requires an input of energy supplied usually by the

injection ofa fluid. Injected water is introduced and permeates into the oil

reservoir, forcing the oil out of the strata. These operations are termed

pressure maintenance.

The aforementioned examples occurs in a low
Reynolds'

number

situation (Re < 10), well within the range ofvalidity ofDarcy's Law [ 4 ].

Contamination of groundwater and secondary oil recovery are examples of

general problems involving the tracking of amoving boundary.

In practical situations, the uncertainty ofwhat is actually going on

below the surface of the earth is still ambiguous and amajor concern. Many

breakthroughs have beenmade in the study ofpollution using soil

mechanics and fluid mechanics. Engineers are beginning to understand the



importance of environmental monitoring and management. Nevertheless

the ability to precisely model the subsurface layers ofearth is quite difficult

because there are many types of earth strata. Soil properties are always

nonhomogeneous unless a location to be studied is small and well defined.

All of the popular programs developed today create a database of

information or simulate a local occurrence of concentration. However, most

are just incapable ofhandling displacement and concentration of a

contaminant over a given time period. The most useful programs to date

that are capable of analyzing the scenario addressed in this investigation

employ Finite Element Methods. These programs rely on information

obtained by monitoring wells and predict the fate of the contamination

concentration. By using the frontal boundary approximation, models

constructed will more closely resemble what is actually occurring below the

surface and help understand the pollution process [ 15 ].

The focus of this work is the development ofa one-dimensional

model that will be capable of studying the flow of two fluids with an abrupt

interface and examining hydrodynamic dispersion.



1.2 Objectives

The primary objective of this investigation is to model and calculate

the motion of a moving boundary of two immiscible Newtonian fluids in a

porous medium using the Finite Element Method. Modeling will

incorporate finite element analysis to track the location of the moving

boundary front. The porous medium will be considered stationary,

homogeneous and saturated. The flow is considered isothermal and

isotropic [ 13 ].

The main focus of this investigation is the quantification ofpressure

along the time at the boundary interaction of one fluid substance with

another. This study is motivated by a concern relating to pollution of

groundwater, dam seepage and the importance of secondary petroleum

recovery. Such problems are inherently difficult since the solution of the

field equations is coupled with the determination of the location of an

unknown moving boundary between the immiscible fluids.

Certain analytical solutions of the partial differential equations

governing one-dimensional flow will first be developed. These will be

served as a reliability check before attempting analysis in higher



dimensions. Coupled differential equations governing the movement of the

boundary will be solved using theMATLAB based on the finite element

method. Finite element analysis will be applied and used to a given

situation as formulated in the following chapters.

The first step inmodeling is to start with a conceptual model. The

selection ofa relevant domain and correct assumptions is crucial.

Geometric boundaries, selection ofporous material, fluid type, boundary

conditions and initial conditions are all important. Before proceeding

further, the description of the relevant physical concepts will be identified

and addressed.



C h ap ter 2

THE THEORY OF FLUID FLOW IN A POROUS MEDIA

2.1 Introduction

The theory of fluid flow in a porous medium has found applications

in various fields ofengineering. It describes the movement ofground water

in soil and porous rock, the seepage ofwater through earth fills and concrete

dams and of fluids in filters, and the movement ofoil and gas in oil fields. A

fluid is a substance that will deform continuously under the presence of

applied shear stresses [ 2 ]. The underlying physics within this investigation

involves the motion of aNewtonian fluid. This represents a continuum in

which shear stress is directly proportional to the rate ofdeformation. In a

different case, gas is dissolved in the oil and is released where the pressure

drops below the saturation value [ 13 ]. However, such two-phase fluids

will not be treated here.

The mechanics of fluid flow depends on the pressure distribution in a

fluid and its pressure gradient. The pressure gradient in a continuum results

from surface forces per unit volume due to an applied pressure. Flow



occurs in the direction ofhigh pressure to low pressure. In establishing the

analytical model of the underlying physics, a few fundamental equations

describing fluid transport phenomena in a porous medium must be

developed.

2.2 Fluids

The continuum that will be considered in this investigation is a

homogeneous, immiscible fluid. The resulting flow through a porous

material depends on basic fluid properties. The first property is the absolute

viscosity, p, , of the fluid. Absolute viscosity ofa fluid is best explained by

comparing how the fluid acts when a shear stress is applied on its surface in

a plane parallel to the direction ofmotion [ 1 1 J. Viscosity is the measure of

the resistance of a fluid to shear deformation. Its magnitude is specified

with respect to the viscosity ofwater [ 1 1 J. The second property is the

fluid's density, p. The definition of fluid density is the mass of the fluid

per unit volume [11]. For an incompressible fluid, the density is constant.

A compressible fluid, however, has a density that varies with pressure, p,

and temperature, T, as described by the following equation of state [ 12 ]:

p
=
p(P,T) (2.1)



also for a compressible liquid, we may set

P
=
/***-*

(2.2)

For most liquids, the compressibility /? is a very small quantity of the order

of
lO^psi"1

Hence, it is often possible to expand equation ( 2.2 ) in a Taylor

series and to drop the higher terms [ 12 ]:

p
= p0[l + /3(P-PQ)} (2.3)

For a gas, we write

P-Ptypj (2-4)

where m determines the thermodynamic character of the gas expansion :

m\ corresponds to an isothermal expansion; m
-

y
=

Cp/Cv to an

adiabatic expansion [ 4 J.

2.3 Porous Medium

A porous medium, such as sand or foam rubber, contains innumerable

voids ofvarying sizes and shapes. These pores may be isolated from each

other, or they may be interconnected to form a network of channels through

which a fluid may flow. We are concerned only with the interconnected

10



part of the pore system, the effective pore space. Here is Figure C which

shows typical porous medium saturated in the flow.

NO FLOW ,

UNSATURATED SATURATED

BH WATER IN-> * VATER OUT

EMPTY VOID SPACE \nl indad
rc^

\
SOLID PARTICLES SATURATED VOID SPACE

Figure C

Porous media naturally exist inmany forms, for instance: sand soil,

ceramics, foam rubber, cloth, bread and organic tissue, as well as other

substances that contain innumerable void ofvarying size and shapes. These

voids are interconnected, forming channels within the solid matrix of the

porous domain. The ratio of the interconnected pore space to that of the

total volume of the medium is the porosity, </> [4, 12 ]:

V V -V

^ =
Ll = ^_J1 (2.5)
K K

Here Vv ,Vb
and Vs are material void space, material bulk space and volume

of solid, respectively. The porosity of a given material directly dictates how

a resulting flow will develop.

11



Permeability, k ,
is a property that expresses a given fluid's

macroscopic effects due to the microscopic solid-fluid interaction within a

porous medium[ 4 ]. This internal hydrological property is independent of

the fluid's viscosity. Permeability is simply ameasure of the ability of a

porous medium to transmit fluid through it. Another quantity that is

important to a porous medium is its tortuosity, Tt . Tortuosity is the ratio of

the average distance traveled by the fluid particle, Le , to the direct path

through the medium bed, L. Figure D shows a schematic definition of

tortuosity.

Figure D

Tortuosity is defined by the equation below [ 14 J:

T = (2.6)

12



The tortuosity value is greater than one, where the value one implies a

direct path.

Porosity, permeability, and tortuosity are material dependent. Most

often these values can be determined by experimental methods, if they are

not already tabulated. These values are extremely difficult to establish for

computation purposes for two main reasons. One reason being the difficulty

in simulating realistic material properties. The second reason is the

complexity inherent to deriving models based on the governing partial

differential equations.

An important feature of a porous matrix is its variation ofproperties

with respect to direction. Isotropic materials display no variation in

properties with respect to direction, whereas anisotropic materials do. Yet,

another important feature of the matrix includes temperature effects.

Isothermal processes assume no temperature effects [ 19 J.

Briefly considering the microscopic realm of immiscible fluids in a

porous matrix, there is a peculiar local phenomenon at the interface. This

phenomen, known as
'

fingering ', occurs when a viscous fluid, such as in

13



oil and water [5, 18 ]. Fingering occurs when the fluid interface is unstable

and disturbances elongate with wave-like motions. Fingering is depicted in

Figure E.

ten c*

flow

Figure E

The mode in this investigation assumes the frontal boundary as a

macroscopic, homogeneous interface. If this macroscopic wall were broken

into sub-sections and studied, fingering could be identified. Due to the

macroscopic point ofview taken in this investigation, this phenomenon will

be neglected.

2.4 Governing Equations

The equations governing the physics take the form ofpartial

differential equations. Neglecting inertial terms, the incompressible-flow

14



Navier-Stokes equation ofa liquid continuum in a gravitational field is

alongwith the continuity equation div(V) = 0 [ 10, 17 ].

V(P + pgz)
= pN2V (2.7)

Of the equation ( 2.7 ), z, g and v are the height of the fluid, gravitational

constant and the velocity of the fluid, respectively. These equations

quantitatively describe the dynamic and kinematic relationships between the

fluid, the flowmedium, and the flow parameters at any given location.

Low flow rate situations are termed laminar creeping flows. In these

types of flows, theNavier-stokes equation is [ 1 1 ]

p^
= pg-VP + MV2v (2.9)

Fluids in a porous medium that display a laminar character can be modeled

usingDarcy's law [ 4 ]. The rate of fluid flow at the moving boundary

interface is also assumed to satisfy Darcy's law, which relates the flow rate

to the pressure gradient. For the case of aNewtonian fluid, this relationship

is linear. Thus, the motion of the moving boundary is governed by the

pressure distribution within the reservoir. The existing fluid in the reservoir

is assumed to be of finite extent, containing a slightly compressible

Newtonian fluid. The incoming fluid and the reservoir fluid are assumed to

15



be immiscible, resulting in a piston-like displacement of the two fluids [ 3 ].

The location of the moving fluid-fluid interface, because unknown, as well

as the rate at which it advances can be tracked after exact calculation of

pressure distribution.

For the above governing relationship to be applicable, two conditions

must be satisfied. The first condition requires that the porosity must be

small in comparison with the other characteristic dimensions of the flow.

The second condition requires that the
Reynolds'

number must be within the

laminar regime. The
Reynolds'

number is defined as the dimensionless

grouping.

R.-&- (2.10)
M

As long as the
Reynolds'

number is within the range of 1 to 10, Darcy's law

is also valid [ 4 ]. Flows in geological formations inherently have low

Reynolds'

numbers. The diameter of the pore space, d, is defined in many

different ways. It can be expressed in terms ofpermeability and porosity as

[9];

</*,/-

(2.11)

16



if a good approximation ofboth permeability and porosity exist. It can also

be expressed as [ 9 ];

d*4k (2.12)

ifone has a good approximation ofpermeability, only.

Thus substitution into equation ( 2.10 ) results in [ 9 ];

R,^
(2.13)

M

or

k

pv\U
R*1?-

(2.14)
M

Depending on which approximation is used for d ,
that choice will dictate

which Re to use. Equation ( 2.14 ) was used in the
Reynolds'

number

calculation for the analysis. Using the continuum approach, neglecting

internal fluid friction and inertial effects, the average momentum balance to

a linear equation is known as Darcy's law [ 4 ]. For an isotropic medium

containing a homogeneous, incompressible fluid, Darcy's law is stated as

[9];

17



_ T
_ dh

,
_

,
_

.

^
= -K (2.15)

os

where q ,
/z and s are the specific discharge, the piezometric head and the

distance traveled in the field by the fluid, respectively. Here hydraulic

conductivity, K, is defined by [ 13 ]

K =^ =
f**

(2.16)
ju ju

In a two-dimensional flow, the fluid velocities in the x and y directions are

K=-^~ (2.17)
3c

v
=-K (2.18)

Inmany instances, flow through a porous medium is linearly proportional to

the applied pressure gradient and inversely proportional to the viscosity of

the fluid. This is expressed for one-dimensional flow as :

kfdp]
v =

-

\dxJ

where v represents the fluid velocity.

Another equation we consider is related to the piston-like

displacement of compressible Newtonian fluids in porous media. The law

18



of conservation ofmass and theNavier Stokes equations of classical fluid

mechanics in general govern the motion of a viscous fluid [ 2 J.

The continuity equation for unsteady flow ofa fluid with density p through

a medium with porosity </) , based on material balance, is

V.(pv) +^ = 0 (2.20)

where the superficial velocity v is defined as the volume rate of flow per

unit cross-sectional area of the solid plus fluid [ 4 ]. For the flow of a

viscous fluid through a porous medium, the Navier Stokes Equations are

replaced byDarcy's law, which for the case of aNewtonian fluid

penetrating an isotropic porous medium has the form :

v =

--(^p-pg) (2.21)

where k is the permeability of the invaded medium, p and Vp are the

viscosity and pressure gradients of the flow field and g is the

gravitational acceleration vector [ 1 1 J. Substitution of the Darcy relation

into the equation ofcontinuity ( 2.20 ) results in :

V &
(2.22)

19



The pressure and density are assumed to be related by the

conventional equation of state [ 2 ]:

p
=

p0 exp(cp) ( 2.23 )

which for the case of constant compressibility, c ,
leads to

Vj5 = c V
p p ( 2.24 )

Inmost petroleum reservoir applications, effects ofgravity are ignored, as

well as variations in the permeability of the surrounding medium and

viscosity of the penetrating fluid. Consequently, equations ( 2.22 ) and

( 2.24 ) can be shown to give the governing differential equations for the

pressure distribution

V> =

<f>pz dp

k dt
( 2.25 )

for a slightly compressible fluid ; that is, when

Vp V2p ( 2.26 )

when the fluid is incompressible, the diffusion equation ( 2.25 ) reduces to

Laplace's equation [ 4 ]

V2p = 0 ( 2.27 )

20



Chapter 3

FINITE ENEMENTMODELING THEORY

3.1 Basic Finite Element theory

The finite-element method is an approximation procedure for solving

a differential equation ofboundary and/or initial-value type in engineering

and mathematical physics. The procedure employs the subdivision of the

solution domain into many smaller regions of convenient shapes, such as

triangles and quadrangles, and uses approximation theory to estimate the

solution on each finite element. Suitably disposed coordinates are specified

for each element, and the solution of the differential equation is

approximately replaced using values of the dependent variables at these

nodes.

Using a variation principle, or a weighted-residual method, the

governing differential equations are then transformed into finite-element

equations governing the ( each ) isolated element. These local equations are

collected together to form a global system ofordinary differential or

algebraic equations including proper accounting ofboundary conditions.

21



The nodal values of the dependent variables are determined from the

solution of this matrix equation system. We will look at a general idea of

the finite element method ; then, with a couple of examples, we can find

how the theory applies to real cases.

Finite element methods are based on the local application of

variational principles. In a variational framework, a generalized solution to

an operator equation is found by minimizing a giving functional. The

advantage afforded by a variational formulation is that differentiability

properties of solutions are relaxed. This is advantageous for solutions that

are only piecewise smooth.

The term
"

variational formulation
"

is used contextually to mean the

weak formulation, in which weak refers to the fact that a function satisfies a

boundary value problem in a certain averaged sense [ 7, 8 ]. The differential

equation is recast in an equivalent integral form by trading differentiation

between a test function and the dependent variable. When the differential

operator is symmetric, the weak formulation can be further posed as a

minimization problem for a given functional, / ( u ) [ 7 ]. From the calculus

ofvariations, the minimizing function is the true solution of the differential

22



equation. An approximate solution will be expressed by a linear

combination of appropriately chosen functions [ 15 ].

M
= c/D. (3.1)

The parameter C; is determined such that the function u minimizes the

function I(u), i.e. u satisfies the weak formulation [ 7, 15 J.

In addition to satisfying a governing equation, the solution to a

boundary value problem must admit specified values on the boundary of the

domain. On the other hand, if the solution or its derivatives are specified

initially ( i.e. at a set time t.), then it is referred to as an initial-value

problem which is a combination of the above.

In order to appreciate the fundamental principles of the finite element

method, one must understand the concepts of functional and variational

operators. Consider the integral expression [ 15 J:

I(u)= ^F(x,u,u')dx (3.2)

where the integrand F (x, u, u ') is a given function of the three arguments

x, u, and du/dx. The value of the integral depends primarily upon w, hence /

( u ) is appropriate. The integral in Eq. ( 3.2 ) represents a scalar for any

23



given function u(x). / ( w ) is called a functional since it is a value defined

by integrals whose arguments themselves are functions. Mathematically, a

functional is an operator mapping u into a scalar I(u).

A functional / ( u ) is said to be linear in u if and only if the relation

l(au + p\)
=
al (u) + pl (v)

holds for all scalars a, /?and functions u and v [ 7, 17 J. A functional of

two arguments, B (u, v), is said to be bilinear if it is linear in each of its

arguments u and v.

The integrand, F =F (x, u, u'), depends on the independent variable

x and dependent variables u and u'. An infinitesimal change in u is called a

variation in u and is denoted by 8w. The operator 5 will be referred to as the

variational operator. The variation, 8w of a function u, represents an

admissible infinitesimal change in the function u ( x ). If u is specified on

some portion of the boundary, its variation there must be zero since the

specified value cannot be varied. The homogeneous form of the boundary

conditions on u must be satisfied by any variation of the function u. The

variation hu is arbitrary elsewhere on the boundary [ 7 ].

24



Boundary conditions play an import role in the derivation of the

approximation function. The variational formulation facilitates

classification ofboundary conditions into essential and natural boundary

conditions. For details, see Reddy [ 7 ] Section 2.2.

In the following, the three basic steps in the variational formulation of

boundary value problems are outlined. Consider the following differential

equation in two dimensions, defined on some domain Q. It is hypothesized

thatF( x, u, ux,uy ) is differentiable, so that

*:_(*!)_ ^(*:) = 0 withinQ (3.3)
du dx dux dy duy

along with given boundary conditions [ 7 J.

cF dF p.

nx +-T-nv =Q on ri
dux duy

u =
u'

on T2 ( 3.3 )

That is, flux is specified on part of the boundary denoted T, and the value of

the function is specified on the remaining T2 . The following Figure F

shows the boundaries denoted T. and T, .

25



Figure F

The first step is to multiply Eq. (3.3 ) by a test function, v, and

integrate the product over the domain Q. That test function can be thought

of as a variation in u ( Su), which satisfies the homogeneous form of the

boundary conditions on T2 . Kmay otherwise be an arbitrary continuous

function.

Since Eq. ( 3.3 ) is satisfied pointwise, one can integrate both sides

over the domain to arrive at the weaker form Eq. ( 3.3 ),

r rdF 8 ,8F . 8
.dF.,

. . . .

0 = \nv[ - () - ()] dxdy ( 3.4 )
ou ox oux oy uy

Note that the integral form still contains the same order ofdifferentiation.

The second step involves the transfer of the differentiation from the

dependent variable u to the test function v. It is desirable to transfer the

partial derivatives with respect to x and j; ( ux & uy ) to v so that only first

26



order differentiation is required ofboth u and v. This results in an

equalization of smoothness for both u and v, and thus is a weaker continuity

requirement on the solution u to the variation problem. In the process of

transferring the differentiation, i.e. integration by parts, we obtain the

natural boundary conditions. Eq. ( 3.4 ) is now expressed as

t xvcF dv dF dv dF , dF dF
0 =

Jn [ V + + ] dxdy -AV{ nx + ) ds
du dx dux dy duy

*"

dux duY

(3.5)

The coefficients of v in the second integral represent the natural boundary

conditions [ 7 ].

The third step in the formulation consists of simplifying the boundary

terms in Eq. ( 3.5 ) by applying the specified natural boundary conditions in

the two boundary integrals over the subsets Yx and T2 .

0 =

,
r
irdFdv dF dv dF ..

,
, ... dF cF

,
, f _ ,

du dK dur dy duv * dur duv *
x * y x y

(3.6)
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The first boundary integral vanishes since v is specified ( du
= 0 ) on T2.

The variational formulation thus results in a reduction oforder as well as an

automatic imposition of the natural boundary conditions [7, 17 ].

The weak form, Eq. ( 3.4 ), finally reduces to

r r Tr
dF dv dF dv dF

, , , r T_ 1
0=

L[Vi^ +
i^ir

+
irir

\dxdy~\Vqds (3.7)
^

du ox dux dy du
*2

The function u is said to be aweak solution ofEq. ( 3.3 ), if u satisfies Eq.

( 3.7 ) for all appropriate test functions v. Eq. ( 3.7 ) can be more

compactly stated in terms ofbilinear functional b( u , v) and a linear

functional / (v) as

B(v,u)=l(v)

for all admissible test functions v.

InEq. (3.7),

trcF dv dF dv dF _

, ,

B(v,u)
=l\V

+
- + }dxdy

*l
du ox dux dy ouy

and ( 3.8 )

/ ( v )
= f vdxdy + [ vqds
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If the bilinear form B (v
, u) is symmetric ,

i.e. B (v
, u)

= B (u , v) ,
then

the quadratic functional associated with the variational formulation is

deduced as

I(u)
=
-B(u,u)-l(u). (3.9)

Satisfying Eq. ( 3 .9 ) is equivalent to minimizing I (u). When the

functional I (u)is in this form
,
approximatemethod [ 5 ] may be used to

minimize the functional.

An appropriate method for solution of the weak form, Eq. ( 3.7 ),

is known as the Galerkin method. The solution u takes on the form

M = VcO.
N L-i ] 1

y=i

in which <D
,
the approximating basis functions, must satisfy the following

conditions :

1 ) They must be well defined and nonzero as well as sufficiently

differentiable as required by the bilinear form B ( , )

2 ) Any set { O, } ( i
=

1, N ) must be linearly independent

3 ) { O, } ( i
= 1, oo ) must be complete.
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These conditions guarantee convergence to the solution. When defining the

test function, knowledge of the anticipated solution as well as satisfaction of

any essential or natural boundary conditions should be taken into account.

The Galerkin approximation is expressed as [ 7 ]

N=flcJ<X>jiX) (3.10)

and the test function is correspondingly written as

m

V =

TdbiOi (3.11)
i=i

If the approximate solution Eq. ( 3.10 ) and the test function Eq. (3.11) is

introduced into Eq. ( 3.8 ) and the test function Eq. ( 3.8 ), the problem is

then reduced to find Cj ,
such that

N M M

Xc/D,(X), Vm=^b^(X)) =

F(
J=\ i=l ;'=l

(^=2>,<D,(X), Km=I>,0,.(X))
=

F(5>/Dy) (3.12)

for arbitrary constants \>} .

IfB( , ) and F( ) are linear, an equivalent formulation is

5>,5(<D,, $,)
=

F{<S>() for/ = 1 n (3.13)
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Eq. ( 3.13 ) represents a linear system ofequation in the unknown

coefficients c .

j

Alternatively, one can set

\n(Au-f)vOJ(x)dQ + B.C.'sTerms = 0

where A is a linear operator defining

Au = f

on the domain Q.

3.2 Derivation ofFinite Element Equation

In the Finite ElementMethod, for the one-dimensional problem we

separate the given domain. Figure G,H shows the discretization

Q, Q2 Q3 Q4

Af-I jK/ty "\ 4 *\

Figure G

OnQ
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n.

JC, X
e+1

Figure H

The governing differential equation for the pressure distribution is

equation ( 2.25 ) of chapter 2

V> =
^*

(3.2a)
k dt

and, this can be rewritten as

dP
_

k d*p

dt tfipc
dx2

( 3.2b )

k
Ifwe substitute as a

,
the resulting equation for the pressure

<j)pC

distribution will be

dP d*P
, ,

= a
-

(3.2c)
dt dx

Based on variational principles, we construct the weak form of the

differential equation
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r(-
d*P cP\ , .

a^-
+ I v(x)dx = 0

dx2

dt.

Integrate by parts :

v(x) is a testfunction.

( 3.2d )

Set :

Therefore,

r+1 ( dP dv \
-,, dP ,

x

dP
a v

dx

dP
+ a v

dx

a

= 0

(3.2e)

Q. = q: =
-

a

a. = Ql= a

dP

dx

dx

(3.2f)

dP dv
, ,tl dP

dx+

dx dx * a

=

Qe+^v(xe+x) + Qe.v(Xe)

ra*^:#xA+r^-vw^

(3.2g)

This is the weak form for each element, Q .
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For the second step, we assume the form of the approximate solution

over a typical finite element. Now, on each element, set

y=i

xj are shapefunctions

u (t) are unknown coordinatefunctions

then,

( 3.2h )

= > M.(n -

dx %
A)

dx

dp

Ot }=\

Substitute

Previous equation can be changed as follow

( 3.2i )

P =

Pe

v(x)
= /(*), i = l,2, n

( 3.2j )

* dx dx ^ a
,K J

ybr i = 1,2, ,n

(3.2k)
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Further,

( 3.21 )

Re-write as

or

where

( 3.2m )

7=1 7=1

^br i = 1,2,....,

(3.2n)

( 3.2o )

Now, it could be changed into matrix form
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[*]

'<
"<"

ue2

+M
2

=

X. _*:_

(3.2p)

We will choose T/ (x) such that

,*(*.)
= 1 ofy z/z = 1, otherwise ,'(*,)

=

,'(*,)
= 1 ow(y ifi

= 1, oftewfce Tfc-i)
=

(3.2q)

For the equation ( 2-2p ) we use the matrices ofReddy's Finite

element [ 7 ]

d

iKH

m4

1 -1

1 1

2 1

1 2

( 3.2r )

Before we go further, we will apply those matrices of the equation

( 3.2r ) to an example of three element and four nodes. Figure I shows that

the domain and nodes.
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Q, Q Q,

x,

Figure I

Using the equation ( 3.2q ), we can set the matrices for the equation

of the problem of three elements and four nodes.

L yJ h

[m;}=

ax

0 0

ax

+
a2

0

0
a2

-a

0 0
a3

2 1 0 0

1 4 1 0

0 1 4 0

0 0 1 2

(3.2t)

Furthermore, we can also make the equation in the form of

[M]{u} + [K]{} = {F}

which is

a1

-a} 0

ax +a2

0

0 0

a2 +a3

0

0

a3

u.

w

w,

u.4 J

+
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2 1 0 0

1 4 1 0

0 1 4 0

0 0 1 2

<

Ql+Qt

.
Ql

ft ~\

ux

u2

u,

LM4j

(3.2u)

This equation follows from the Flow Continuity so

Ql +Qr = o

for all internal nodes. Thus, the equation ( 3.2u ) will be

a

0

0

0

ax +a2

.2

-a

0

a2 +a3

a

0

0

a3

u,

u^

M

U
4 J

+

2

1

0

0

1

4

1

0

0 0

1 0

4 0

1 2

f ,

w

w,

uA

Q\

0

0

Ql

(3.2v)
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In this investigation, the pressure distribution is the dependent

variable. Therefore, we make the association

ux =pf(t)

iix =pf(t)

( 3.2w )

and subsequently solve for m2 ,w3,w4, the pressures at the remaining nodes.
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C h ap t er 4

MODEL VALIDATION

4.1 Moving Boundary Problems

The formulation of a problem involving amoving boundary requires

setting up a mesh that is capable ofdeforming. Constructing a mesh with

nodes located on amoving boundary, thus introducing degrees of freedom,

does this. A furthermodification of the problem entails the necessity to

introduce additional boundary conditions to allow the determination of the

moving boundary. There are many types of cases that can be constructed.

The cases that are of interest in this investigation involve either a free

surface boundary or an interface between two fluids. Figure J shows

typical type of two immiscible fluids movement

No Velocity

Fluid 1 Fliri4 2

Ho Velocity

Figure J
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The free surface condition occurs when a liquid comes into contact with a

gas, such as air. However, the problems that are involve a free surface

interface are not easily tractable, so approximate solutions are needed.

Reliable numerical predictions for a contaminationmovement can be found

using the finite element codes based on knowledge acquired earlier, by the

database or existing monitoring data list.

4.2 Finite Element Analysis Outline

The finite element method entails the use of approximating

interpolation functions associated with the partial differential equation. The

variational method is applied piecewise over the domain to obtain a

solution. Boundary conditions in the form ofnatural or essential are applied

directly in the variational form.

As we mentioned in chapter three, the variational form is simply the

weak formulation of the problem in which a quadratic functional / ( u ) is to

be minimized. This minimization yields Euler equations by invoking of

solving the partial
differential equation, the minimization problem leads to a

system of equations which is solved directly.
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The basic outline of this entire process is ;

1 . Select the correct Partial Differential Equation expressing the

field variable.

2. Put the PDE into variational form.

3. Divide the physical domain into elements.

4. Apply the Boundary Conditions.

5. Solve in terms of the assumed basis functions.

6. Set up local matrices.

7. Assemble globally.

8. Solve for unknowns.

4.3 Background onMatlab

Computer aided analysis can play a significant role in understanding a

physical situation. Focusing on the boundary movement monitoring of two

different fluids, computer analysis allows the engineer to approximate the

location of the interface and parametric studies to determine the operating

characteristics for prescribed situations involving two immiscible fluids.

The overall benefit being prediction and preparation of the groundwater

process or contamination progress, parameter variation sensitivities and an
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understanding of the system's response in a given situation before prototype

construction.

The use ofMATLAB was selected due to the program's ability to

deal with a large matrix calculation for the final finite element equations for

the moving boundary problem in a porous medium. MATL/AB, a well-

known program in many engineering fields, will be used to implement. The

finite element method to calculate the location of a boundary between two

incompressible fluid flows as a function of time.

In the finite element method the flow region is subdivided into a

number of small regions called elements. The partial differential equations

that govern the flow region as a whole region are replaced element-wise by

ordinary differential equations. The original partial differential equations of

a fluid flow are derived from the basic physical principles of conservation of

mass, linearmomentum, energy and species [ 4, 6 ] . These general

equations are shown below [ 1 1 J;

CONTINUITYEQUATON

dp
a=fiui)
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LINEAR MOMENTUM EQUATION

dui 1
- + uu. . =g . . . + of
a

' ,J ,JJ '

ENERGY EQATION

a(pcp\ + pc^.T;
= [keT)j +P0 + Q,

The system of the generated differential equation is then solved by

implemented numerical techniques such as Runge-Kutta. The results of

location of the boundary movement and time for each interface are easily

accessible through post-processing.

Simple steps are followed to generate aworking file inMATL/AB.

These steps, as well as the above equations, are discussed in detail in the

MATLAB manual [ 19 ]. A simple program outline to calculate this

moving boundary problem is shown below ;

1 . Put the incoming pressure and differential value.

2. Input physical properties.

3. Generate mesh and put the size of the mesh.
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4. Run the Runge method program.

5 . Solution of algebraic equations .

6. Graphical output ofderived output quantities.

In the above outline, sections 1 thru 3 are done within an input data

calculated by the user ( pre-processing ). Sections 4 thru 6 are done

internally by theMATLAB software.

The sequence of the program used in this research, Figure K, is below ;

Main Program

KMmatrix.m

ABmatrix.m

Runge.m

Output Data

Vec.m

Figure K
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4.4 Re-scale Problem

To actual calculation, we recast the equations ( 3.2a ) and ( 3.2b ).

From the equation ( 3.2a )

V2

p
k a

d*p
_

<ppc cfr

~dtf~~k~a

For the dimensionless distance, we can change

cPp
_

(j>pc (%)

~d?~~k~~a

Figure L shows this

Figure L

and we let

therefore

(4.1)

f=0 <f=L

far away

X
=

y
(4.2)

Z=LX (4.3)
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d
T
d

= L (4.4)

d 1 d

the equation (4.1) can be rewritten as

d^p
_ L2<j>pcdp

~dtf~

k ~a

(4.5)

or

4?
_

k d^p

a

~

L2<f>pc
a2 (4.6)

k
Ifwe substitute as a

,
the resulting equation for the pressure

L <f>pc

distribution will be

* =

a^f (4.7)
a a

For the actual calculation of a ,
we use the values given below :

/c = 100/^/ = 100-
(10-

m2)

=
1013m2

c- 10

Kg

3 Kg

m-s

47



and

k k J_
L2(j)pc

L2<j)-WX2

se^

IP"13

m

L2tf> sec

10"1
m2

(j>L2

sec

then

sec =
1
m

60

1 60

sec min

Therefore

k 6
2

L20px: L20 min

360
m2

\}(/) hr

and withX103m

k
_

360 J_
L2(f)pc

~

W hr

_

0.00036 J_
6 hr

so, we have
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ifwe consider the variation of the value of ^, we will have typical values of

a in the range :

0.0001 < ax,a2
< 0.001 (l/hr)

Another constant of the main program in theMATLAB that we need to

know is B . From the literature[ 16 ], we found

B =

0M(m2

-hr/kg)

4.5 Tests and Results

4.5-1 Case One

We set the number of the elements and points as five and six for every

each case. For case one, we choose the constants below

P,
= 100(Pa)

Vfdot = 0

B =
0M(m2

-hr/kg)

ax
= 0.0003(1 / hr)

a2
= 0.0006(1 / hr)

where

P/ is Incomingfluidpressure

P , dot is differential value ofPr

P is constant ofS

S is the location ofboundary or interface

ax is constant ofincomingfluid

a2 is constant ofsecondfluid
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and the result is given in Plot 1

CASE1

1.5 2 2.5

TIME(hour)

3.5

Plotl
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4.5-2 Case Two

Case two has the constants below

P7
= 100(Pa)

Vdot = 0

/? =
0.01(m2

hr/kg)

ax
= 0.0009(1 / hr)

a2= 0.0001(1 /hr)

and the result is shown in Plot 2

CASE 2

0.5 1.5 2 2.5

TIME(hour)

3.5

Plot 2
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4.5-3 Case Three

Case three choose the constants below

P,
= 100(Pa)

Vdot = 0

B =
0M(m2

hr/kg)

ax
= 0.0001(1 /hr)

a2= 0.001(1 /hr)

and the result is given in Plot 3

CASE 3

1.8

1.6--

1.4

?

1.2
<
Q

S 1

m

LL

0.8
z

o

<0.6

o

0.4

0.2

0
0.5 1.5 2 2.5

TIME(hour)

3.5

Plot 3
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4.5-4 Case Four

Case four choose the constants below

P,
= 100(Pa)

Pdot = 0

B =
0m(m2

hr/ kg)

ax
= 0.0005(1 / hr)

a2
= 0.0005(1 / hr)

and the result is given in Plot 4

CASE 4

0.5 1.5 2 2.5

TIME(hour)

3 3.5 4

Plot 4
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C h ap t er 5

RESULTS AND CONCLUSION

A one-dimensional moving boundary problem has been

mathematically formulated. These types ofproblems occur in freeze-thaw

situations and primarily in geo-engineering. The motivation for this

investigation is based on the mechanics of two immiscible fluids in a porous

medium. An invading fluid is pumped into a formation with the objective

of increasing the pressure gradient in the resident fluid. The ultimate

concern is enhanced oil recovery.

The geological formation was modeled as a finite one-dimensional

continuum. It was assumed to be homogeneous. The domain of the

problem was discretized into linear finite elements. The governing

equations were established locally, on each element. Thereby, the

properties of two different fluids could be incorporated on an element-by-

element basis.

54



Since the fluids were assumed to be immiscible, a well-defined

boundary between the two fluids was postulated. The fluid properties on

each side of the boundary were different. The primary unknowns in the

problem are the pressure distributions in the fluids. The solution of the

problem necessitates knowing the location of the boundary at any given

intent of time. However, displacement of the boundary depends on the

pressure distribution of the fluids.

The boundary motion was assumed to be governed by Darcy's law.

At each time step, the governing diffusion equations were solved

simultaneously with differential equation for the boundary. Based on a

finite element formulation, the partial differential equations were put in

semi-discrete form, maintaining a continuous time variable.

For convenience, ten elements were used, leading to unknown

pressures at ten nodes. Recall that the boundary pressure is specified. The

time advance equations resulted in a coupled system often ordinary

differential equations. These were numerically integrated using a
forth-

order Runge-Kuttamethod incorporated in the program.
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At each time step, a check is made to determine which element

contains the boundary at any given time. This is needed to calculate the

element matrices, which depend on the local fluid properties. Hence the

pressure distributions and boundary location are updated at each time step.

The program is completely automated, prompting the user for all

information.

In the numerical simulations, the parameters chosen were based on

typical geo-engineering fluids and soil formations. Ten elements were used

to keep computation times moderate. Although the program in principle

will allow any number of elements, the properties of the porous medium

were not varied. Simulations were run using different combinations of fluid

properties. The significant variable being fluid viscosity. The pressure at

the boundary node was held constant. The program, however, can handle

variable input pressure.

The results look quite reasonable. The graphs ofboundary location

versus time invariably end up as monotone increasing, with decreasing

slope. These agree with experimental evidence and results based on more
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sophisticated modeling. Some of the curves are not smooth. These

irregularities occur because of errors in inverting large matrices

The objective of this investigation has been met. Namely, to

formulate the moving boundary problem and to show the feasibility of

constructing a simple, but practical finite element model. A high-level

language such asMATLAB allows one to write more efficient and shorter

programs, than if one were to use FORTRAN. Simple numerical models

lead to better insight and understanding of the fundamental aspects of

complicated problems. Basic models can also be used to help calibrate and

debugmuch more sophisticated programs.

As recommendation for further work, perhaps the individual

subroutines of the main program could be modified. Any changes should

incorporate more accurate numerical techniques. In addition, better stability

would be achieved if the mesh were to be refined near the moving

boundary. This would result in a deforming mesh, with a denser

distribution ofnodes moving with the boundary. Such refinements would

yield smoother and more accurate
results.
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APPENDIX

1 . MATLtAB Program 1 : ABmatrix Program.

% PROGRAM ab.m

%

% This Program calculates the global A and B coefficientmatrices

%

% Remove the first row and columns

%

A=BigK(2 :Numpts,2 :Numpts);

B=BigM(2 :Numpts,2 :Numpts);

%

%

% Compute the inverse ofmatrix B :

%

invB=inv(B);

C=invB*A;

%
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2. MATLAB Program 2 : KMmatrix Program.

% PROGRAM km.m

%

% This Program calculates the global K andM matrices

%

%

%

vecl=alf2*ones(l
,Numelts);

vec2=-alf2*ones( 1 ,Numelts);

%%

kk=l;

while kk < count

vecl(kk+l)=alfl;

vecl(kk)=alfl;

vec2(kk)=-alfl;

kk=kk+l;

end

%

vec3=zeros( 1 ,Numpts);

%

vec3(l)=vecl(l);

forjj=2:Numelts

vec3GJ)=veclGJ)-vec2GJ);

end

vec3(Numpts)=alf2 ;

%%

% Calculate the matrix K

BigK=diag(vec3,0)+diag(vec2, l)+diag(vec2,1)';

%

wv=ones( 1 ,Numelts);

dg=2* [vw,0]+2* [0,wv];

%

% Calculate the matrixM

BigM=diag(dg,0)+diag(wv, 1 )+diag(vw, 1 )';

%
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3. MATLAB Program 3 : Main Program.

% PROGRAM main.m

% This Program execute all sub-program including calculation and

% graphing

%

%
Numelts=input('

Type the number of elements :
'

)
Numpts=Numelts+1

h=l/Numelts

h2=h*h;

% DEFINE THE CONSTANTS

%
alfl=input('

Please type the value of alpha one :
'

)
alf2=input('

Please type the value of alpha two :
*

)

%

t=0.

Tfinal=input('

Select final the time value tf :
'

)
deltaT=input('

Select the time step delta t :
'

)
tvals=fix(Tfinal/deltaT)+l

%

% INITIALIZE THE VALUES

%

count=l;

u0=zeros( 1 ;

p=[pf,uOT;

u=uO;

n=l;

s=zeros(l,tvals);

%

while t <= Tfinal

%

%

KMmtrx

%

Abmtrx

%

VEC

%

% INTEGRATE
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t=t+deltaT;

range

P=[pf,uT;

%

% CALCULATE BOUNDARY LOCATION

s(n+ 1 )=s(n)-deltaT*beta* ((p(count+ 1 )-p(count))/h);
count=fix(s(n+ 1 ))+ 1 ;

n=n+l;

%

%

end

%

% Plot out s(t) with respect to t

%

number=max([n,tvals]);

times=deltaT*( (l:(number))
-

ones(l,number) )

%

plot(times,s)
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4. MATLAB Program 4 : Runge-Kutta Program.

% PROGRAM Runge.m

%

% h2is "h
squared"

%

kl=deltaT*(-(6*C*u)/Ti2+invB*VECT);

k2=deltaT*(-(6*C*(u+kl/2))/h2+invB*VECT);

k3=deltaT*(-(6*C*(u+k2/2))/h2+invB*VECT);

k4=deltaT*(-(6*C*(u+k3))/h2+invB*VECT);

%

u=u+(kl+2*k2+2*k3+k4)/6;

%
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5. MATLAB Program 5 : Vector Program.

% PROGRAM Vec.m

%

% This Program calculates the Right Hand Side Vector

%

% pf and pfdot must be given ! !

%

VECT=
[ (6*alfl*pf)/h2 -

pfdot, zeros(l,Numelts-l) ]';
%

%
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