
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

7-1-1995

A Numerical optimization technique for the design of airfoils in A Numerical optimization technique for the design of airfoils in

viscous flows viscous flows

Robert MacNeill

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
MacNeill, Robert, "A Numerical optimization technique for the design of airfoils in viscous flows" (1995).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F1294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/1294?utm_source=repository.rit.edu%2Ftheses%2F1294&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Approved by:

"A Numerical Optimization Technique

for the

Design of Airfoils in Viscous Flows"

by

Robert MacNeill

A Thesis Submitted
In

Partial Fulfillment
of the

Requirements for the

MASTER OF SCIENCE

in

Mechanical Engineering

Dr. P. VcnketarunaD
Thesis AAIvisor

Dr. Kevin Kochcnba'ga'

Dr. Aliogut

Dr. Charles Haines
Departrncm Head

DEPARTMENT OF MECHANICAL ENGINEERING

COLLEGE OF ENGINEERING

ROCHESTER INSTITUTE OF TECHNOLOGY

JULY 1995

PERMISSION TO REPRODUCE:

Thesis Title: "A Numerical Optimization Technique for the Design ofAirfoils

in Viscous
Flows"

I, Robert MacNeill, hereby grant permission to the Wallace Memorial Library, of the

Rochester Institute of Technology to reproduce my thesis in whole or part. Any

reproduction can not be used for commercial use or profit.

July 3, 1995

ACKNOWLEDGMENTS:

I would like to express my appreciation and thanks to the following people:

Dr. Venkataraman, the Dean's Office, and the Graduate Studies Office for helping me get

support for this project, Dr Ogut for letting me use his lab, Ali for her patience over the

past couple years, my dog, Max, for being my best friend, and my mother for being my

inspiration to persevere through the past five years, especially the last few months.

This work is dedicated to the memory ofmy late step-father, Henry Ernst Kertgens, Jr

ABSTRACT

The present work involves the implementation of an efficient optimization

procedure for the design of airfoils in viscous flows The scope of the work is limited to

low Reynolds number, incompressible, and unstalled fluid flow. Cubic Bezier curves with

corresponding polygons are employed to define the airfoil, the vertices of which are used

as design variables in the optimization process. Inviscid conditions about the airfoil are

determined using a traditional Hess-Smith-Douglas panel method. Boundary layer

calculations are subsequently made based on the inviscid results and the solution is

updated, thereby accounting for viscous effects. A hybrid Generalized Reduced

Gradient/Sequential Quadratic Programming method is used in conjunction with the

aerodynamic model, to optimize the airfoils. Results were obtained for maximum lift and

minimum drag problems with and without constraints. The results of the optimization

were validated using CFD

TABLE OF CONTENTS

List ofFigures iii

Nomenclature v

1 Introduction 1

2. Design Optimization 7

2.1 Problem Statement 7

2.2 Optimization Procedure 8

2.3 Existence and Uniqueness of an Optimum Solution 9

2.3.1 Unconstrained Problems 9

2.3.2 Constrained Problems and the Kuhn-Tucker Conditions 10

2.4 Direct Optimization Methods 15

3 . Airfoil Design 26

3.1 Design Variables 26

3.2 Optimizer: OptdesX 32

3.3 Mathematical Model 36

3.3.1 Inviscid Flow Model: The Hess-Smith-Douglas Panel Method 36

3.3.2 Viscous Flow Model 47

4. Program Development 56

4.1 Discussion ofProgram 56

4.2 Code Verification 65

5. CFD Modeling OfOptimized Solutions 72

5 1 Geometry and Grid Generation 73

5.2 The Fluent Solver 78

5 . 3 Fluent Model Validation With the NACA 00 1 2 Airfoil 80

6. Optimization Results 92

6. 1 Problems Considered 92

6 2 Problem Results 95

7. Conclusions and Recommendations 145

List ofReferences 148

Appendices 150

I FORTRAN Files ofAnalysis Model 1 50

II. Sample Calculation ofAerodynamic Coefficients 179

m. Start Point and Variable Limit Data 1 8 1

LIST OF FIGURES:

2 1 Description ofUsable-Feasible Sector

2 2 Description of a Convex Curve

2.3 Update Algorithm for the GRG Method

2 4 Overall Algorithm for the GRG Method

3 . 1 Typical Airfoil Using Bezier Curves

3 . 2a Example ofBezier Curves

3 2b Example ofBezier Curves

3 3 Typical Airfoil Defined by Scheme 2

3 . 4 Illustration ofOptdesX/Analysis Model Interaction

3 5 Nomenclature for Panel Method

3 6 An Airfoil Described by Panels

3 7 The
i*

Panel

3.8 Local Coordinate System for Panel Method

3 9 Geometrical Interpretation ofEq. (3.20)

4. 1 Subroutine Flow Diagram

4.2 Sloped Line Definition

4.3 Algorithm for Treatment ofLaminar Separation

4 4 Coefficient Comparison Plots for NACA 0012

4.5 Coefficient Comparison Plots for NACA 44 12

4.6 Coefficient Comparison Plots for NACA 23021

in

5.1 Geometry Strategy

5 2 Grid Mapping Strategy

5.3a Sample Geometry

5.3b Close-up of Sample Geometry

5 4a Weighted Grid for Sample Geometry

5 4b Close-up ofWeighted Grid for Sample Geometry

5 5 Grid in Vicinity ofLeading Edge

5.6a Geometry for Cambered Airfoil

5 6b Close-up ofGeometry for Cambered Airfoil

5 . 7 Grid Mapping Coordinates for Cambered Airfoil

6.1-34 Optimized Airfoil Plots

IV

NOMENCLATURE

0 the null vector

A (m+1) x (n-1) matrix of equality constraint gradients with respect to Z

panel method coefficient matrix

Aj the (i,
j)*

component of the coefficients matrix

ai quadratic function coefficients, i
=

1, 2, 3

B (m+1) x (m+1) matrix of equality constraint gradients with respect to Y

b;
i*

element of b vector

b(y) binomial distribution as a function ofy

Cd drag coefficient

Cl lift coefficient

Cm moment coefficient

c panel method freestream velocity vector

Cf skin friction coefficient

Cp pressure coefficient

E entrainment velocity

F(X) objective function

f; arbitrary
i*

function

Gr the generalized reduced gradient

gj(X)
j*

inequality constraint

H Hessian matrix

H shape factor 6*/9

Hi shape function parameter

hk(X)
k*

equality constraint

I the identity matrix

J3,i
3rd

order Bernstein basis

m slope

n number ofdesign variables

A

n unit normal vector

L Lagrangian

/ number of equality constraints,

parameter for Cf independent ofReynolds number

/; length of impanel

m number of inequality constraints

N number of nodes describing the airfoil panels

n order ofbinomial distribution

P (x,y) pair for the coordinate of the Bezier curve

Pi ^product of 8*iVe,i

Q (m+1) x (n+m) matrix of all equality constraints

Q volume flow rate

q source strength per unit length

R,. x Reynolds number with respect to x

Re, 9 Reynolds number with respect to G

VI

r polar length coordinate

S search direction

s curvilinear distance

A

t unit tangent vector

t dummy variable for the distance along a panel

u x velocity component

V velocity

v y velocity component

X design variable vector

X*

optimal solution

X;
i*

design variable

x x-coordinate

Xj
j*

variable of function f

x,
i*

panel midpoint x-coordinate

Y dependent variable vector of size m + 1

Y derivative matrix ofmatrix Y with respect to a

Yi
i*

dependent design variable

y index for binomial distribution, 0, 1,2, ..., n,

y-coordinate

yt
i*

panel midpoint y-coordinate

Z independent variable vector of size n - /

VII

Z;
i*

independent design variable

a step size parameter,

angle of attack

optimal step size parameter

5j scalar parameter for
j"1

inequality constraint

5*

displacement thickness

s gradient perturbation parameter

<|> flow potential

y vortex strength per unit length

X Lagrange multiplier,

dimensionless pressure gradient parameter

Xj Lagrange multiplier for a corresponding
f*

inequality constraint

.vk+m
Lagrange multiplier for a corresponding

(m+k)*

equality constraint

u viscosity

v parameter for determining airfoil coordinates, P(x,y)

0 angular polar coordinate,

momentum thickness

0; inclination of
i*

panel

x shear stress

V gradient

VIII

Subscripts

i index for design variables, 1,2, ..., n,

Bezier vertex index,

arbitrary function index,

panel index; 1, 2, ...,N

j index for inequality constraints, 1, 2, ..., m,

arbitrary variable index,

panel index, 1, 2, ..., N

k index for equality constraints, 1,2,...,/

n normal direction

S indicates source singularity

t tangential direction

V indicates vortex singularity

w wall (y
=

0)

Y indicates gradient with respect to Y

Z indicates gradient with respect to Z

oo freestream conditions

Superscripts

-1 inverse ofmatrix

I Bezier vertex index

/ lower limit

IX

n order ofbinomial distribution

o
0th

iteration

q iteration number

T vector transpose

u upper limit

y binomial distribution index

*
optimum

local coordinates

1. INTRODUCTION

Since the beginning of powered flight there has been intense interest in the area of

airfoil design. In the early stages of aerodynamics, mostly ad hoc methods were employed

to determine suitable wing sections. Over time, however, the design process has become

more sophisticated.

In the past, direct analysis methods were widely used where a designer would

define a geometry and then analyze the flow about the airfoil. Generally, panel methods

were employed for these analyses. The original design would have to be modified based on

the output and the process would be iterated until satisfactory aerodynamic performance

was achieved. As one would expect, this can be a time consuming process that does not

lend itselfwell to systematic updating.

Analyzing the flow conditions for a specified airfoil shape is the most direct

approach but is by no means the most efficient method for optimization. For this reason,

there has been considerable study into the inverse design problem. The inverse design

problem may be defined as a technique that yields an airfoil shape as output while the

pressure/velocity around the airfoil is specified. The inverse problem can be a very useful

approach to airfoil design.

Conformal mapping techniques are mostly used in typical applications of inverse

design problems. The famous Eppler method (Reference 1) employs a conformal mapping

technique which requires a user specified velocity distribution. Based on this, an airfoil

geometry is calculated. Incidentally, the Eppler code may also be used for direct design

since it also uses a panel method with an integral boundary layer solver These solution

schemes can be much quicker than direct methods because no guessing has to be done to

achieve desired conditions. However, being restricted to a specified distribution can limit a

solution from being potentially optimum. It would be ideal to use a method with

optimization capabilities which could search the design space, updating based on previous

solutions, to find optimum shapes. For this reason, the present work proposes an

optimization method involving an objective function of maximum lift coefficient (cl) or

minimum drag coefficient (cd) which takes into account pressure and velocity

distributions. Unlike traditional inverse design problems, the present method is not

restricted by initial flow conditions and lends itself to finding unconventional shapes.

Design optimization in general is extremely attractive and has been receiving a lot

of attention lately. With the advancements in computers and optimization algorithms, once

almost unsolvable problems are now very modest in run times. By virtue of their iterative

nature, optimization procedures usually take longer than straightforward design

techniques, but the end result is almost always superior. In response to the recent interest

for design optimization, there are currently many easy to use software packages that make

the optimization process much less burdensome. Some finite element packages even have

optimization modules and it is foreseeable that CFD will soon incorporate similar ones.

Until then, however, it is still desirable to have a method for the optimization of airfoils.

Over the past years, many methods for optimizing aerodynamic shapes have been

developed. For example, Vanderplaats, Hicks, and Murman (Reference 2) advanced a

method that optimizes airfoil shapes based on conjugate directions for locally

unconstrained problems and feasible directions for locally constrained problems The

airfoil geometry is defined by a polynomial approximation for different segments of the

shape For this geometry description method, the design variables become the segment

endpoint coordinates and the polynomial coefficients. Problems for minimum drag,

minimum pitching moment, and maximum lift were addressed with some success Most of

the solutions were, however, limited by local optima.

Another method developed by Vanderplaats and Hicks (Reference 3) allows the

designer's intuition to play a role in the optimization. This is atypical ofmost optimization

techniques. The method starts with many different shapes, each with desirable

characteristics to the user. The approach is to define the airfoil as a linear combination of

the shapes. The optimization problem becomes one of determining the influence of each

shapes on the optimal solution. This method seemed more successful than the first but a

major disadvantage is that solutions are limited by the initially defined shapes.

Liebeck and Ormsbee proposed yet another method that was very successful

(Reference 4). For the technique, boundary layer theory and the calculus of variations

were employed to determine the pressure distribution which provides the maximum lift

without separation. This solution scheme produced the very well known Liebeck high lift

profiles which were reported to have lift coefficients as high as 2.8 for Reynolds numbers

between five and ten million. Drag coefficients for the corresponding airfoils were kept as

low as 0.01. A single element airfoil definition was used to define the shape. The analysis

is split into two subproblems which consists of first determining the pressure distribution

for maximum lift without separation, and then determining an airfoil shape to determine

the specified pressure distribution (inverse problem) The first step employs a Stratford

distribution to model separation Besides the no-separation requirement, constraints are

placed on the leading edge and trailing edge to assure design feasibility. Also, the

satisfaction of the Kutta condition is required. The second step is accomplished by

utilizing conformal mapping methods.

Low drag airfoils and fuselages are of special interest in the field of gliders. For

this reason, Coiro and Nicolosi (Reference 5) developed a technique to determine low

drag airfoils, high lift and low drag multi-component airfoils, and extended laminar region

fuselages. A constrained-rmnimization method is used as the design optimizer An integral

boundary layer method is also used for the aerodynamic analysis.

Chang, et. al. (Reference 6) proposed a method for the optimization ofwing-body

configurations through the solution of the Euler equations for the flow surrounding the

airfoil. A feasible direction method for constrained optimization is used as the optimizer.

Unlike the other methods described, the geometry is controlled and analyzed through the

use of a flow field grid generator and a set of shape functions for the definition of the

shapes

Although these optimization methods vary widely in their scope and solution

strategy, they share some common characteristics. In the optimization process, there are

three distinct components: (1) the design variables, (2) the optimizer, and (3) the

mathematical model Each component should be efficient individually to effectively

streamline the optimization procedure.

To determine appropriate design variables for the problem, an efficient way to

define an airfoil which would lend itself to design perturbation is necessary There are

many ways to describe airfoil geometries but the present work uses a Bezier polygon

definition scheme which is outlined in Reference 7. This method provides an extremely

efficient description technique that handles perturbation very nicely.

Again, it is very important that the optimizer be very efficient to solve the problem.

Ideally, the optimization technique should determine search directions solely from gradient

information. There are many efficient methods available. The class of optimization

techniques referred to as direct methods are by far superior to others in dealing with

problems with many design variables and constraints. The optimization procedure used for

the present work is a hybrid method which combines the best characteristics of the

Generalized Reduced Gradient method and Sequential Quadratic Programming. This

algorithm is implemented through a software package called OptdesX (Reference 8)

Finally, an efficient method for calculating the conditions about the airfoil should

be employed to solve the problem. An inviscid flow panel method is used with an integral

method for the boundary layer effects because of the economy of its solution, This method

may be somewhat primitive and, hence, less accurate compared to other more time

consuming flow analyzing techniques but it is very important that the mathematical model

be as efficient as possible in an already time consuming iterative process. Also, it could be

advantageous to sacrifice some accuracy in the solution because if the objective is

satisfactorily improved while the constraints are satisfied, then the optimization process

may be considered successful, regardless of the precision of the results. Furthermore,

sophisticated CFD codes can be used to more accurately determine the flow conditions

about the airfoil that is determined to be optimal. The present work first reviews

optimization theory followed by an in depth discussion of the Generalized Reduced

Gradient method. Then an airfoil design section is dedicated to the discussion of the three

main components of optimization: the design variables, the optimizer, and the

mathematical model. Program development is then discussed followed by CFD modeling

of the solutions. For the current work, the NACA 0012 and the NACA 4412 airfoils were

both used as starting points for the optimization. Also, two different Bezier definition

schemes were used to describe the airfoils. Finally, six optimization cases were considered

and are listed as follows:

A. Max Cl, unconstrained cD and Cm

B. Max Cl, Cd < 0.007, unconstrained cm

C. Max cL, Cd < 0.007, cM < -0.15

D. Min Cd, unconstrained Cl and cm

E. Min Cd, cl ^ 0.7, unconstrained cM

F. M_ncD, cL>07, cM<-0.15

Considering the two starting points, the two definition schemes, and the six cases, a total

of twenty four optimization problems were considered. The presentation of the results is

followed by a discussion and conclusions.

6

2. DESIGN OPTIMIZATION

2.1 Problem Statement

Design optimization is a systematic approach meant to improve upon existing

designs. Many optimization algorithms have been developed but almost all of them share

some common features For example, most methods are meant to optimize a design by

improving upon an objective function while satisfying some design constraints, where the

objective and constraints are functions of the design variables relevant to the problem The

general statement of an optimization problem is as follows:

Minimize: F(X) X = [X_, X2> ...,XJ (2.1a)

Subject to: gj(X)
< 0 j * 1, m (2. lb)

hk(X)
= 0 k=l,/ (2.1c)

X1'<X1<X1U

i=l,n (2. Id)

Where F(X) is the objective function of the design variables, X, gj(X) are the inequality

constraints, and ht(X) are the equality constraints. Side constraints used to limit the design

to the feasible, or realistic, domain are shown in Eq. (2. Id). The functions F(X), gj(X), and

hk(X) may be linear or nonlinear in X, and may be evaluated by any analytical or numerical

technique. Also, for most optimization techniques, the objective function and constraints

have to be continuous and have continuous first derivatives (for gradient calculations).

2.2 Optimization Procedure

A fundamental similarity between different optimization techniques is the basic

update and search method Most methods require an initial set of design variables, X. It is

advantageous if the initial guess was in reasonable proximity to a realistic design This is

not always necessary for convergence, but it could expedite the design process.

From the start point the design is updated iteratively until an optimum is found

The common form of the update is

Xq -
Xq_1

+ Sq

(2.2)

where q is the iteration number, S is the vector search direction, and is the optimal step

size in direction S As can be seen in Eq. (2.2), previous iterations are updated with the

term <x*Sq. This update is a one-dimensional search which converts a multiple variable

problem (n) into a one variable problem in a. The two main stages of the update consists

of finding a suitable search direction, S, and determining the scalar The search

direction would be found such that it improves the objective while maintaining the

constraints. The scalar is found to be the optimal step size in direction S. For a method

to be successful, the update should be determined efficiently and reliably.

8

2.3 Existence and Uniqueness of an Optimal Solution

Because of the inherent nonlinearity ofmost optimization problems, it is difficult to

ensure that an optimal solution is global For nonlinear problems, there is a strong

tendency to settle into local optima (also called relative optima). This means that there will

assuredly be multiple solutions and it will be necessary to attack the problem from

different starting points to try to find a global optimum If the same solution is converged

upon from different points, it is reasonable to say that the solution is a global optimum Of

course, this leads to an increase in design time to an already time consuming iterative

process.

2 3.1 Unconstrained Problems

For unconstrained problems, there is a set of well defined criteria for determining

whether a solution is a relative optimum. Also, though it is difficult to do, these conditions

may be used to determine whether a solution is a global optimum. The first condition is

that the gradient with respect to all variables (i = 1, n) be the null vector:

VF(X) =

'<_F(X)/<2,

= 0 (2.3)

&(X)/cXn

Furthermore, for a rninimum, the second derivative matrix (Hessian) must be positive

definite. Likewise, for a maximum, the Hessian must be negative definite. These are

necessary, but not sufficient, conditions to prove that the solution is a relative minimum.

To ensure that a solution is definitely a relative rninimum, the Hessian of the objective

function must be positive definite for the solution

X*

A Hessian matrix of a function is

defined as the matrix of the second partial derivatives with respect to all variables The

Hessian of the objective function is

H

<?F(X) c2F(X) c?F(X)

dX\ aX,eXl dXxcXn

c?F(X) o2F(X) cfF{X)

3XxdXx
aX2

6X2dXn

c?F(X) o2F(X) <?F(X)

cKn8Kx cKndX2 ax2n

(2.4)

For a matrix to be positive definite, all its eigenvalues must be positive in sign. If both of

the previously defined conditions are satisfied, then the solution X is at least a relative

minimum. The only way to ensure that a design is a global minimum is if the condition

defined by Eq. (2.3) is satisfied and the Hessian is found to be positive definite for all

possible values of X. Obviously, this can be difficult, if not unrealistic, especially for a

design with many design variables. The best way to achieve a level of confidence that an

optimum is global is to solve the same problem from many different starting points.

2.3 2 Constrained Problems and the Kuhn-Tucker Conditions

Unfortunately, determining whether a solution is a global optimum or even a

relative optimum becomes more difficult with the addition of constraints to the

optimization problem. Unlike the unconstrained problem, the gradient of the objective

does not have to equal the null vector at the optimum. This can be the case if at least one

constraint is active. An active constraint may be defined as one whose value is close to

zero (from, g(X) < 0).

10

F(X) = constant

Optimum

Figure 2.1:

Description ofUsable-Feasible Sector

Figure 2. 1 (from Reference 9) may be used to intuitively establish the necessary

conditions for a constrained problem. For the optimum, point B, both the gradients of the

constraints and the objective are perfectly opposite in direction. This means that, at the

optimum, the search direction would have to be perpendicular to both VF(X) and Vg(X).

This is an important conclusion in that it establishes a necessary condition for a solution to

be optimal, but, unfortunately, this is not a sufficient condition. This and two other

11

conditions make up what is known as the Kuhn-Tucker necessary conditions for

constrained optimality. IfX is an optimal solution, it must satisfy the following:

1.
X"

is feasible (2.5)

2. A,gj(X)
= 0 j

=

l,m, X,Z0 (2.6)

3. VF(X*) + fjAVgi(X') + fdAk+mVhk(X*) = 0 (2.7)
*=i

>4>0 (2.8)

.vm+k unrestricted in sign (2.9)

The first condition is obvious in that a design must be feasible (satisfy all constraints) to be

optimal. Equation (2.6) states that if gj(X) < 0, and, hence, not active, then the Lagrange

multiplier Xj must be zero. The last set of equations is the mathematical statement that, at

the optimum, the only possible direction vector S would be tangent to both the active

constraint boundary and the line of constant objective function and would be

perpendicular to both gradients. Also, Eq. (2.7) is called the Lagrangian L(x,X). At off

optimal designs, the Lagrangian is defined as

L(X,A)^ F(X) + fdAjgj(X) + fdAm+thk(^) (210)

Where the Lagrange multipliers Xj and A^+t act as scalar multipliers to gj(X) and hk(X).

While necessary and sufficient for the determination of local optima, satisfaction of

the Kuhn-Tucker conditions is not necessarily sufficient to ensure a global optimum. A

solution

X*

can, however, be said to be a global optimum if it satisfies the Kuhn-Tucker

conditions and the surfaces of the problem's objective and constraints are convex A

convex surface can be defined as one where, if any point on the surface was connected to

12

the optimum, then the entire line connecting them would lie within the feasible region and

the surface defined by g(X) = 0 is convex. This implies that if the Kuhn-Tucker conditions

were satisfied, then the solution would be a global optimum, as is the case with point B in

Fig 2.1. An example of a non-convex surface may be seen by referring to Fig 2.2 (from

Reference 9). While the line connecting points B and D lies within the feasible region, the

lines connecting points A and C, and points A and D would be outside of the constraint

bounds for some portion of the line. Therefore, the surface defined by g(X)
= 0 in Fig. 2.2

is non-convex and the Kuhn-Tucker conditions could not be used to determine a global

optimum.

x2

!
.(X)

= 0

F(X) = constant

Figure 2.2:

Description of a Convex Curve

13

As previously mentioned, it is very difficult to determine whether the sufficiency

requirements have been met for a particular problem. Therefore, it is again suggested that

the problem be started from multiple points to ensure a global optimum.

14

2.4 Direct Optimization Methods

For the present work, a hybrid Generalized Reduced Gradient (GRG)/Sequential

Quadratic Programming (SQP) method was used as the optimizing procedure The

algorithm was made available through the software package OptdesX Since the

procedure was not programmed by the author, its description is not included (see

Reference 10). However, as an example of a typical optimization method, the GRG

method and its implementation is described in detail.

This method belongs to the family of techniques known as direct methods. They

are named as such since they all deal with constraints in a direct manner. This is opposed

to former, less sophisticated methods that rely on constraint penalty functions to convert

constrained into unconstrained optimization problems. The direct methods are typically

very efficient and are in almost exclusive use with respect to optimization problems with

multiple variables and constraints

The Generalized Reduced Gradient method determines optimal solutions by relying

heavily on active constraints. An active constraint is one which is at its bounds, hence,

potentially limiting the solution. For the method, a search direction is found to keep any

active constraints exactly active for small movements in that direction. If, for any reason

such as nonlinearity, the currently active constraints become inactive upon movement in

the search direction, then the constraint would be forced to its bounds by using Newton's

method.

The present method solves equality constrained problems only by adding a slack

variable to each inequality constraint. Subsequently, the general form of a GRG problem is

15

Minimize: F(X) (2.11)

Subject to: gj(X) + XJ+n = 0 j=l,m (2.12)

hk(X) = 0 k=l,/ (2.13)

Xi/<Xi<Xiu

i=l,n (2.14)

X^>0 j=l,m (2.15)

Due to the requirement of slack variables in Eq (2.12), the number of design

variables increases to n + m. The extra design variables could make the problem difficult

to solve because of extra storage requirements, however, this problem could be alleviated

through careful storage of gradient information.

The basic idea behind the GRG method is that the total number of design variables

may be reduced by defining one dependent design variable for each equality constraint.

Considering the problem stated in Eqs. (2.11-2.15), the X vector contains the

original n design variables as well as the m slack variables. For clarity and convenience, X

can be split into its components and written as follows:

X={ZY}T

(2.16)

Where Z represents n - / independent variables, and Y represents m + / dependent

variables. For this definition, no restrictions are assigned regarding which variables are to

be contained in Z and Y. As will be discussed later, the dependent variables will be chosen

from the original n variables as well as the m slack variables such that the problem is

balanced. Because all constraints are now equal, it is convenient to combine Eqs. (2.12)

and (2 13) into a single constraint definition:

hj(X)
= 0 j

= l,m + / (2.17)

16

and combine Eqs. (2. 14) and (2 1 5), yielding

X/<Xi<X;u

i=l,n + m (2.18)

where the upper bounds on the slack variables are allowed to be very large

Now the optimization problem has been reduced to

Minimize: F(X) = F(Z, Y) (2 19)

Subject to: hj(X) = 0 j
= l,m + / (2.20)

X/s-Xi-.X,"

i=l,n + m (2.21)

Differentiating the objective and the constraint function yields

dF(X) = VZF(X) dZ + VYF(X) dY (2 . 22)

dhj(X) = Vzhj(X) dZ + VYhj(X) dY (3
.23)

where j
= 1

,
m + /

The subscripts Z and Y indicate gradients with respect to the independent and dependent

variables, respectfully.

For feasibility, the equality constraint must remain satisfied (assuming they are

satisfied initially) for any change in the independent variables. This means that dhj(X)
=

0,

j
=

1, m + / in Eq. (2.23). Since Y contains m + / dependent variables and since Eq. (2.23)

is actually a system ofm + / equations, they can be written as

dh(X) =

'

vJmx) vjh,(X)

Vjh2(X)
dZ +

Vjh2(X)

_Vfhm+/(X). .V[hm+/(X)

tfY (2.24)

or

dh(X)
= A dZ + B dY (2.25)

17

where the dimensions ofA and B are (m + /) x (n - /) and (m + /) x (m + I), respectively

Since it was established that dh(X)
=

0, for any change of the independent variables dZ,

Eq. (2.25) can be solved for the corresponding changes dY in the dependent variables to

maintain feasibility:

dY =
-B-'AdZ (2.26)

Now substituting Eq. (2.26) into Eq. (2.22) yields

dF =

VZF(X) dZ -

VYF(X)T [B"1

A]dZ

=

{VZTF(X) -

VYF(X)T [B"1

A]} dZ (2.27)

So

Gr = dF(X)/dZ =

VZF(X) -

[B"1 A]T

VYF(X) (2.28)

Equation (2.28) defines the generalized reduced gradient Gr, and can be viewed as an

unconstrained function. A search direction S can be found using Gr for use in the

following equation:

Xq =
Xq-1

+ a*Sq

(2.29)

Also, the dependent variables Y are updated using Eq. (2.26) for every proposed step a. It

must be remembered, however, that Eq. (2.26) is a linear approximation to a nonlinear

problem. This means that when the constraints are evaluated for an a, they may not be

exactly zero. In other words, the vector dh(X) from Eq. (2.25) may not be the null vector.

In order to correct this, holding Z fixed, a new dY must be found to drive h(X) to zero

So

hj(X) + dhj(X)
= 0 j=l,m + / (2.30)

and dY must be found so that

18

dhj(X)
=

-hj(X) j
= l,m + / (231)

Substituting Eq. (2 31) into Eq. (2.25) yields a new estimate for dY:

dY =
B1

(-h(X) - A dZ} (2.32)

Next, dY is added to the most recent vector Y of dependent variables and the constraints

are evaluated again. This is repeated until hj(X)
=

0, j
=

1, m + /, within a specified

tolerance

Start

' i

Given: X, S, J, a0, .

'

a-a0

*> X-X + aS

Update the dependent

variables using

Eq. (6-95)

Yes

Interpolate

for
a*

Figure 2.3:

Update Algorithm for the GRGMethod

In summary, a reduced gradient is created from previously chosen dependent

variables. The reduced gradient is then used to determine a search direction in the

independent variables. While marching in this direction for each proposed a, the

19

dependent variable vector Y is updated as previously discussed This updating method is

quite similar to Newton's method for solving simultaneous linear equations for dY

However, the present method assumes the gradient information in A and B to be constant.

After finding the minimum in the search direction, and, hence, a*, the process is repeated

until the convergence criteria is satisfied. Figure 2.3 (from Reference 9) shows the

algorithm for this updating scheme.

The last requirement is to choose the dependent variables, Y, (1) such that the B

matrix is not singular and (2) so that the solution can move some distance in a search

direction without violating the side constraints. The second requirement is satisfied by

picking dependent variables which are a sufficient distance from the limits of their

respective side constraints. The first requirement, however, is a little less obvious, it is met

by starting with the matrix ofgradients:

Vrh,(X)

Vrh2(X)

Lvrhm+/(X)i

(2.33)

(m+l)x(n+m)

To this point, the independent and dependent variables have not been divided. Since there

are more columns than rows in matrix Q, it is desirable to find a nonsingular submatrix

that would correspond to B, hence, defining the dependent variables. This can be done by

employing Gaussian elimination with pivoting on matrix Q. To find the dependent

variables, start with the following matrix equation:

QX = I (2.34)

20

Where I is a (m + I) x (m + I) identity matrix The first step is to search row one ofQ for

the element of largest magnitude, omitting those that are at the side constraint limits

Next, the matrix is then pivoted on that element and regular Gaussian elimination

operations are performed. This process is repeated for the remaining rows. After this

procedure is complete, the right hand side of the equation contains B'\ The remaining

columns ofQ will contain the product
B"1

A from Eq. (2 28).

Start

Given: X, F, (g,j=l, m),(h.. /. = !,/)
j *

Add slack variables

to inequality constraints

Calculate the gradients of

the objective and all constraints

Calculate the reduced gradient

Determine the search

direction S

Perform the one-dimensional

search with respect to the

independent variables

XVx'-'+a'S'

/ / /

Update the dependent

variables using

Newton's method
x-x

+
.xD

Figure 2.4:

Overall Algorithm for the GRG Method

21

The method just described for determining the dependent variables will satisfy the

requirements of a nonsingular B matrix corresponding to variables that are not at their

constraints. However, several potentially hazardous situations are not accounted for and

need to be addressed separately For instance, the method does not guarantee that a side

constraint will not be violated during a one-dimensional search. If this was to occur, a

smaller step size a would need to be chosen such that the constraint was not violated

Another situation that may arise is when a row or a column of Q contains all zeros. This

could either mean that a redundant constraint exists which may be temporarily deleted

from the set (temporarily because the constraint may become independent later in the

optimization process) and the number of dependent variables reduced by one, or it could

mean that no constraint is a function of the design variable. The latter is a degenerate case

where no dependent variable should be used for the design variable in question. A final

situation may occur where the only nonzero pivot element is at one of its side constraint

limits. In this case, there is no choice but to include this variable in the dependent variable

set. After calculating dY it may be found that the variable moves away from its limit.

However, if the variable moves in a manner such that it violates its constraint, that variable

is set to its limiting value. This could prevent Newton's method from converging which

would indicate that the step size a should be reduced. Figure 2.4 shows the overall

algorithm for the GRG method.

The simplest way of finding the search direction S is to take the negative of the

generalized reduced gradient:

S = -Gr (2.35)

22

For subsequent iterations, other more sophisticated methods such as a conjugate direction

or a variable metric method may be used See Reference (9) for a more in depth discussion

of those methods. Also, a first estimate for a may be found as the distance to the nearest

side constraint. For independent variables:

dZ,/da = S, (2.36)

and for the dependent variables (using Eq. (2.32)):

dY
~

,

= Y =
-B_1AS (2.37)

da

To find the a which will drive the
i*

independent variable to its bound:

dZj i

Z,- +a
-r-*-

= Z, + aSj = Zj or Zf (238)

yielding

Zl

-Z

a =

' '

if S; < 0 (2.39a)
&i

Zu
- Z

a=
' '

if Si > 0 (2.39b)
J/

Based on the above linear approximation, the a which drives an independent variable to

either its upper or lower bound is the minimum a for all independent variables Z;, i
=

1, n -

/. Similarly, for the dependent variables (using Eq. (2.37)):

Yi+aYi=Y/orY/'

(2.40)

yielding

Yl

-Y
a=-JrL

if Y; < 0 (2.41a)

y,

23

Yu
- Y

a=^-z-L

if Yi > 0 (2.41b)

y,

Again, the a which drives a dependent variable to its bound is the minimum a for all

dependent variables Y, i = 1, m + / The minimum of the values of a determined by Eqs

(2 39) and (2 41) is then taken as the step size for the one-dimensional search

This one-dimensional search method is actually very efficient with quadratic

polynomial interpolation usually being sufficient. Also, to hasten convergence, quadratic

approximations can be used on the components of dY while using Newton's method on

Eq. (2.32).

Up to this point, it has been assumed that the initial design was feasible.

Sometimes, however, it is unavoidable to start from an infeasible design If the initial

design is not feasible, the first step is to obtain a feasible point from which feasibility can

be maintained. This is given top priority because the GRG method is based on the

requirement that the constraints are satisfied exactly and remain so throughout the

optimization process. There are a few different methods for finding a feasible start point

such as employing Newton's method, minimizing the sum of constraint violations, or

minimizing the objective while heavily penalizing the sum of the constraint violations. See

Reference (9) for a more detailed discussion of these methods as they apply to initially

infeasible start points.

In general, the GRG method is a very efficient direct method. Its application is

especially worthwhile if function and gradient evaluations are costly. However, the

method does have difficulties in some areas. For instance, if the problem is highly

24

nonlinear, the use ofNewton's method to maintain feasibility during the one dimensional

search may become ill-conditioned and may not converge, requiring very small steps for

convergence Also, if there are many inequality constraints, storage requirements may

become large as does the solution of the dependent variable subproblem. Furthermore, the

method by which the GRG algorithm returns infeasible solutions to the constraint

boundary (Newton's method) is not as efficient as some other algorithms but, on the other

hand, a feasible solution is guaranteed at the end of every iteration, which has its virtues

Despite the mentioned problems, the Generalized Reduced Gradient method is an efficient

direct method for solving constrained optimization problems.

25

3. AIRFOIL DESIGN

There are three main parts involved in the optimization process: (1) the design

variables, (2) the optimizer, and (3) the mathematical model. It is very important that all of

these components be robust to facilitate an efficient solution to an optimization problem

In the following sections, the individual facets to the process are discussed in detail

3.1 Design Variables

In design optimization problems, it is highly important that design variables be

chosen judiciously to facilitate a streamlined analysis. For the airfoil optimization problem,

an efficient method for describing the airfoil shape is required. Trying to control individual

points along the airfoil surface would become too cumbersome in the analysis because too

many points would need to be used to achieve any degree of surface resolution.

To minimize the number of design variables, a Bezier parameterization scheme, as

outlined in Reference 7, was used to define the airfoil. This method of definition can be

easily used to describe airfoils, traditional or contemporary. In general, airfoil definition

using Bezier curves lends itself extremely well to the optimization process.

Airfoil construction involves a total of four Bezier curves, two for the top surface

and two for the bottom surface Each parametric curve is completely defined by a Bezier

polygon consisting of four vertices The order of a Bezier curve is defined as the number

of vertices minus one, hence, the curves are cubic. Adjacent curves share endpoints or

polygon vertices. A typical airfoil as defined by Bezier parameterization may be seen in

Fig. 3.1.

26

008

-0 02

-0 04

-0.06

-0 08

Figure 3.1:

Typical Airfoil Using Bezier Curves

As previously mentioned, Bezier parameterization lends itself very well to airfoil

definition and several features of the description method enhance its usefulness. The

Bernstein basis functions are used for the Bezier parameterization. Referring to Figs. 3.2a

and 3.2b (from Reference 7), the following useful properties have been used to aid in

defining design variables for the airfoil geometry: (1) the basis functions are real, (2) as

previously mentioned, the order
of the Bezier curve is defined as one less than the number

of vertices of its corresponding polygon, (3) the first and last points of a Bezier curve

share common points with the first and last points of its polygon, (4) at the endpoints, the

27

slopes of the polygon and the curve are equal, and (5) the curve is confined within the

convex hull of the polygon.

0.12

0.08 -

0.00

0.00 0.10 0.20 0.30 0.40

(a)

Figures 3.2a and 3.2b:

Examples ofBezier Curves

(b)

A cubic curve has four corresponding polygon vertices: B0, Bi, B2, and B3, where

each B; represents a point in two-dimensional, x-y space. A parameter v, lying between

one and zero, is used to characterize any point P(x,y) on the curve which may be found by

the equation

P(v) = (*,>) =5, J3,(v)
1=0

where J3,i is the Bernstein basis, or blending function, and is defined as

fi\

JiM)=
.

v'(l-v)Jj 11 ...
3-i

with

f-i\

\U

3!

.1(3-01

(3.1)

(3.2)

(3-3)

28

Notice that this is nothing more than the probability density function of the binomial

distribution where parameters n and p equal 3 and v, respectfully The binomial

distribution is defined as

g(y)=
f{\-pTy

y
= 0,l,2,...,n (3.3)

A more in depth discussion of the usefulness and applicability of Bezier parameterization

of airfoils, as developed by Venkataraman, is considered in Reference (7). Also see

Reference (1 1) for a more in depth discussion of the theory behind Bezier curves.

To construct an airfoil from four Bezier curves, some constraints need to be

defined. First, the leading edge of the airfoil is shared by the leftmost top and bottom

curves (refer to Fig. 3.1). To ensure a continuous and properly defined leading edge, the

three vertices closest to it should be required to make a vertical line. This will make the

leading edge the leftmost point. Similarly, the rear two segments share the trailing edge

but no constraint is placed on the adjacent vertices. Next, a continuity restriction must be

imposed on the shared vertices between the left and right segments for both the top and

bottom surfaces. The three vertices in the vicinity of the shared vertex should all lie on a

straight line to guarantee slope continuity For the optimization problem at hand, two

different definition schemes were used. Both used a horizontal line constraint for the upper

surface but one used a horizontal line constraint for the lower surface while the other used

an unrestricted sloped line. For convenience, the horizontal line definition is called scheme

1 and the sloped line definition is called scheme 2. The different schemes were used to

investigate the effect of different definition methods on final solutions. Scheme 1 would

normally lend itself to traditional airfoil definition while scheme 2 would normally be

29

better for more contemporary airfoils with high camber Figure 3.1 shows a typical airfoil

shape as defined by scheme 1 and Fig. 3.3 shows a typical airfoil shape as defined by

scheme 2.

0.15

0.1

B12

0.05

B43

-0.05

Bl.l
m

B14(B21) B22

/

B32
B23

-B11(B44)
B33 J

B24(B31.

Generated Airfoil

Bezier Polygons

*7m4(B41)

0 0.1 B42 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I/C

Figure 3.3:

Typical Airfoil Defined by Scheme 2

The actual design variables are described by some of the polygon vertices Because

of the definition constraints just outlined, it is unnecessary to use all of the vertices as

design variables. Therefore, the constraints also help to reduce the number of design

variables. Also, the leading edge coordinates as well as the trailing edge coordinates need

not be design variables since their locations are fixed at (0,0) and (1,0), respectfully.

Scheme 1, referring to Fig. 3.1, requires the determination of both the abscissa and

30

ordinate values for Bu, BZ3, B3._, and B3,3, the abscissa values for BI4, B2.2, B34, and B42,

and the ordinate values for Bu, and B4,3 (the first number in the subscript refers to the

segment number and the second number refers to the vertex number). Scheme 2, referring

to Fig 3 3 requires the determination of both the abscissa and ordinate values for Bu,

Bz3, B3,2, B3,3 and B3,4, the abscissa values for Bi,4, Bz2, and B42, and the ordinate values

for Bi>2, and B43. This makes fourteen total design variables for scheme 1 and fifteen total

design variables for scheme 2.

In addition to slope continuity constraints, some limitations are placed on vertices

such that only realistic airfoils are allowed. This is done by constraining the magnitude of

the abscissas and by constraining the distance between adjacent ordinates. For example,

the difference between the locations of Bi,3 and Bi2 may be constrained to be less than

30% of the chord. Likewise, the abscissa value of B23 may be constrained to be less than

10% of the chord. These are simple linear constraints which are easy to analyze. There are

18 of these constraints for scheme 1 and 20 for scheme 2. Also, maximum and minimum

values were set for all of the design variables (side constraints) such that the design was

constrained to be realistic.

31

3.2 Optimizer: OptdesX

To run the optimization of the design variables, an interactive software package

called OptdesX was used. This software allows a user created analysis model to be linked

to it via program subroutines which are used to define the design variables, the constraints,

and the mathematical model in general. OptdesX is extremely flexible in the way it allows

adjustment of the design variables and design functions. This flexibility allows for quick

redefinition of problems, making it easier to investigate the effect of different parameters

on the optimal solution. Another major advantage of the software is that it allows the user

to efficiently save intermediate results which could be quickly recalled for further study.

OptdesX works by updating design variables based on a user specified

optimization algorithm and gradient calculation method. These updated variable values are

then sent to the user supplied analysis model where the mathematical model for the

problem is executed. After the calculations are completed, function values are relayed

back to OptdesX. This process, illustrated in Fig 3.4, is repeated until a search direction is

found. Then the chosen optimization algorithm determines a suitable step length, iterates

the solution, and repeats the process until convergence is satisfied.

OptdesX has two optimization methods for continuous variables available within

the software. The first is a hybrid GRG-SQP method (which is called GRG in OptdesX)

and the second is a traditional SQP method. The first is said to be a more robust method

than the plain SQP in that it is said to be able to solve a wider variety of problems This

may be due to the fact that, although solutions may go slightly infeasible during an

iteration, feasible solutions are guaranteed by the GRG method at the end of each

32

iteration. For these and other reasons, the GRG method is suggested as the first method to

try On the other hand, the SQP method included in OptdesX is potentially the fastest and

most efficient algorithm of the two However, during iterations, the solution may go

highly infeasible which may cause trouble in many analysis models This ill conditioning

can be expected in highly nonlinear mathematical models which is the case for the airfoil

problem at hand. For this reason, the GRG method was used exclusively for the airfoil

optimization problem.

As previously mentioned, the GRG method used in OptdesX is actually a GRG-

SQP hybrid. This method was developed by the creators of OptdesX. For a more

complete description of the method, see Reference 10. Some major points of the algorithm

are addressed here. The algorithm is said to be robust and efficient as would be expected

from a hybrid of two efficient and commonly used direct optimization methods. An

iteration of the GRG algorithm has two parts: (1) a search direction is determined
,
and

(2) a step size is then determined for the search direction. Gradients are calculated once

for each iteration and the analysis model may be called and evaluated many times during

an iteration. The first step in the algorithm (search direction determination) is borrowed

from the common SQP method (see Reference 9). The step size determination is

borrowed from the traditional GRG method which is described in section 2.5. The hybrid

algorithm takes the best features from the respective methods and combines them into an

efficient, robust optimization technique

There are two methods of gradient calculation available in OptdesX: (1) the central

difference method, and (2) the forward difference method. Gradient calculations,

33

whichever method is used, are required and are very important for a successful execution

of the optimization algorithms. For a generic function of n variables, ffX), the gradient

vector is expressed as

IT

Vf(x)
5/5/ dj

_

cbci dx2 dxnX _

Central difference derivatives of a function are calculated by the formula

djj i(*b *2> > xj + E> , xn)~Ji[x\> x2> > xj ~8> > xn)

dXj
~

2e

and forward difference derivatives are calculated using the formula

dj Ji\x\i x2> > xj
+ 8> > xn)~)i\x\> x2> > xj> > xn)

dx} 8

(3.4)

(3.5)

(3.6)

Where e is the derivative perturbation. This perturbation parameter may be set by the user

in OptdesX.

Choosing an appropriate gradient method and perturbation can significantly

influence the success of an optimization. When considering numerical derivatives, there

are trade-offs between round-off error and truncation error. If the functions being

evaluated are fairly smooth, the round-off error is usually negligible and a forward

difference method may be used with a small perturbation to minimize truncation error But

for highly nonlinear functions, round-off error may become significant. To reduce this, a

larger perturbation may be used but this tends to increase truncation error. To keep both

round-off and truncation error to a rninimum, a central difference method with an

increased perturbation may be used since it has a smaller order of truncation error than the

34

forward difference method However, the central difference method requires twice the

number of analysis calls for the calculation of function gradients Since, for the airfoil

optimization problem, was by far the most time consuming part of iterating, the forward

difference gradient calculator was chosen with a modest perturbation (e = 0 .001). It was

also believed that since double position arithmetic was used in the analysis model, the

gradient calculation error would be minimized.

It has been the author's experience that OptdesX is an extremely efficient

optimizer In fact, when running other, nonrelated analysis model that were less

complicated, optimization times were as low as five seconds. In general, OptdesX served

as a robust tool which aided in the success of the current work.

OptdesX

Updated Variables

Analysis

Model

Updated Functions

Figure 3.4:

Illustration ofOptdesX/Analysis Model Interaction

35

3.3 Mathematical Model

For the optimization problem, an aerodynamic analysis model needed to be

developed. The model was required to perform two main tasks: first, the model needed to

calculate airfoil coordinates based on the Bezier vertices specified as design variables, and,

second, the model needed to calculate the flow conditions and aerodynamic coefficients

for the defined airfoil. The airfoil coordinates are generated by employing Eqs (3.1) and

(3 2) for the four Bezier segments necessary to define an airfoil From this operation the,

vertices are then converted into (x,y) coordinates for use in the aerodynamic section. To

analyze the flow about an airfoil, the basic but adequate Hess-Smith-Douglas panel

method is employed to determine inviscid conditions which are then used in an integral

boundary layer method to approximate viscous effects. The development of both of these

models are described in detail here.

3.3.1 Inviscid Flow Model: The Hess-Smith-Douglas Panel Method

Panel methods have been successfully utilized for many years for use in many

different problems and are still used today despite the advances in CFD. These methods

are appropriately named since the body surface is approximated as a collection of panels.

There are many different panel methods where different types of singularities are used.

These range from the very sophisticated with combinations of sources and doublets

oriented normal to the surface, to the basic which makes use of a vortex acting at the

trailing edge with sources distributed along the body surface. For the present model, the

latter is used. It is a basic but efficient panel method which helps in reducing optimization

36

time Recalling potential flow theory, the law of superposition allows the contribution of

the individual singularities to be broken up into their respective components:

$ = 4>. + 4>s + <k (3.8a)

Where <|>ao represents the potential of the uniform flow, <J>S represents the potential of the

source distribution, and <j>v represents the potential of the vortex distribution. These

potentials are expressed as

<|>ac
= Vao(x cos a + y sin a)

Inrds
.s

=

?v =-J

271

2tc
Qds

(3.8b)

(38c)

(3.8d)

where for <J>S and <Jv. the integration is performed over the body surface Figure 3 5 (from

Reference 12) shows that s is the distance along the surface and (r,0) are polar coordinates

for a point (x, y) in the flow field. The source potential <|)s has a strength per unit length of

q(s). Likewise, the vortex potential has a strength per unit length ofy(s).

Figure 3.5:

Nomenclature for Panel Method

37

By virtue of the superposition principle, Eqs. (3 8) automatically satisfies the

Laplace equation and the boundary conditions far from the body (infinity) However, for

Eq (3.8) to model the flow in the vicinity of the body, the boundary conditions of flow

tangency and the Kutta condition must be satisfied. For inviscid flow, it is expected that

flow be perfectly tangent to a body since there is no boundary layer showing the flow

Also, the Kutta condition must be satisfied which is stated as: the flow from a sharp-tailed

airfoil must leave the trailing edge smoothly; that is, the velocity at the trailing edge must

be finite. Some corollaries may be drawn form the Kutta condition and are as follows:

1 . The trailing edge serves as a stagnation point from which a streamline emanates.

2. The stagnation streamline from a trailing edge follows the bisector of the trailing

edge angle.

3. The flow velocities on the top and bottom surfaces are equal at equal distances

near the trailing edge, hence, ensuring total pressure recovery.

Therefore, the problem becomes one to determine the source and vortex strengths such

that these conditions are satisfied. The source strength may be thought of as governed by

the flow tangency condition and, similarly, the vortex strength by the Kutta condition. This

simplifies the problem in that a single, constant vortex strength may be applied over the

whole airfoil while source strengths are allowed to vary to satisfy flow tangency. A single

vortex strength may be used since the Kutta condition only applies the trailing edge

Solution of Eq. (3.8) to determine the strengths, even with the established

simplification, can be very difficult because of the complexity of the airfoil surface. For

this reason, the surface is simplified by breaking it up into straight line segments called

38

panels, connected by the endpoints which are called nodes. These lines make evaluation of

the integrals in Eqs (3.8c) and (3 8d) much easier Also, the airfoil coordinates generated

by the Bezier definition can be used as the node locations. The described surface

simplification is illustrated in Fig. 3 6 (from Reference 12). Distributing the sources and

vortices along the panels makes Eq. (3 8) become

iV r
a(

\

y "j
<|> = Kx, (x cos a +.ysinc.) +Z J I

^^ In r -

~9 ds (3.9)
,_i ._ ,L 27t 2tc J
J -i j panel

Equation (3.9) can be used to closely approximate the exact solution with the accuracy of

the solution increasing with the number of panels used (to a certain limit).

Panel

Nodes

Figure 3.6:

An Airfoil Described by Panels

To further simplify the problem, the source distribution is approximated with

constant strengths at each panel while, from panel to panel, the strengths are allowed to

vary: q(s)
=

qi on panel i, i = 1, 2, ...,
N. Again, the accuracy of the approximation

increases with the number ofpanel used to model the airfoil surface.

Now, the parameters to determine are the N source strengths q; and the vortex

strength y. These parameters must still be found such that they satisfy the flow tangency

39

condition and the Kutta condition. This may be done by imposing the Kutta condition and

flow tangency at N control points. The midpoints of the panels are selected as the control

points, since, as may be seen later, the velocity at the panel endpoints becomes infinite.

Flow tangency will be imposed by requiring that the normal velocity at each
i*

panel be

zero. Also, the Kutta condition may be satisfied by equating the velocity components

tangential to the first and last panels, as defined by Fig. 3.6.

1+ i

Figure 3.7:

The
i*

Panel

For this method, the
Ith

panel is defined as the panel between the
i*

and
(i+l)*

nodes and its inclination with the x-axis is 9;, as shown in Fig. 3.7 (from Reference 12).

So,

sin 0i = (yi+, -

y,)Ai (3.11a)

cos 9. = (Xj+i -

Xi)/li (3.11b)

where li is the length of the
i*

panel. It follows that the normal to the
i4

panel is

A A A

n, =-sinG, i + cosG, j (3.12)

40

Following the numbering scheme of Fig 3 6, the normal vector should point outward from

the body Similarly, a unit vector tangent to the
i*

panel may be defined such that it is

directed from node i to node i+1:

AAA

t, = cos 0, i + sin0, j (3.13)

The control point coordinates may be defined as

>>^^-

(3.14b)

Where the velocity components at these points are defined as

wr-=aU-. yt\ (3.15a)

vi = \^i, i. (3.15b)

Now the flow tangency condition may be written as

0 = -m,
sin0,+ v, cos0,

fori=
1,2, ...,N (3.16)

and the Kutta condition may be expressed as

u\ cos 0i + vi sin 0i = -wN cos 0n -

vm sin 0n (3 17)

The velocity components u, and v; are made up of contributions from the onset

flow, the sources on each panel, and the vortices on each panel. The velocities induced on

a panel from all the sources and vortices are proportional to the strengths of the source

and vortex on that panel. It follows that

A'
N

w,
=V cos a + Z?y uso +rll "Vij (3 18a)

41

N N

v,
,= Fw sin a +?. v^+^Zv

Vjf (3.18b)

Where, for example, vVy is the y-component ofvelocity at the midpoint of the
Ith

panel due

to the vortex distribution from the
j*

panel.

Figure 3.8:

Local Coordinate System

Now it becomes more convenient to work in local coordinate (x
,y) for the

evaluation of sij, vsij, Wvij, and Wij This coordinate system is defined in Fig 3.8 (from

Reference 12). Subsequently, after determining (u ,v), the global velocity components can

be evaluated from

From this, it can be shown that

u
=

u cos 6j - v sin 0,

v
=
u sin 0, - cos 6]

1 (7|7 x -t

2*-J(/-,)2+/
MSg

~

o _ Jn .

*
..2

*2

2/r

2 ,

*2

In (x -/)'+><
"

1/2
/=/,

f=0

(3.19a)

(3.19b)

(3.20a)

42

1 a

%
J'' >

2*1

(x -0+3'

-1 y

<*

1
tan

2/r x -.

(3.20b)

.=0

Where t is a dummy variable for the distance along the panel. Also, (x*,y) are the local

coordinates corresponding to (xj,y;). Figure 3 9 (from Reference 12) may be seen for a

geometrical interpretation of these results:

Figure 3.9:

Geometrical Interpretation ofEq. (3
.20)

Now the velocity components can be written as

-1 rij+\

vs
=

Vl
-

VQ fiij

(3.21a)

(3.21b)
2n 2k

Where, as shown in Fig. 3.9, ry is the distance from the midpoint of the
Ith

panel to the
j*

node, rij+i is the distance from the midpoint of the
i*

panel to the
Q+lf1

node, and frj is the

43

angle defined by these lines. It can be shown, using a convenient FORTRAN expression,

that (5,j is

Pij = 7. ifi=j
(3 22a)

= ATAN 2 (yt
- >J+l-

)(x,
-

x})
- (x,

-

x
+1)(>>,

-

>y),

(*,
~

, +1X,:
"

*7)
~

0-i
~

^ +1Xtt
~

>.)

(3.22b)

if i * j

Similarly, the local velocity components due to the vortex distribution may
be found as

dt =
-pL (3.23a)

U^
=

2Joix*-tf+}*ldt-2x

If/. x -t

1-.
1

,
riJ+\

Vvv=2x3o(x*-tf+/ldt=2xln

ri}

Now the flow tangency condition may be written as

N

E4. ?, +AiN+\r=bi
/=i

Where

A,=
-uSij

sin Oj+vsjj cos 0t

-u^
(cos 6

,
sin 9

,

- sin 6
,
cos Bt)

v*Sij
(sin 6

,
sin
0t- cos 6

,
cos 0y)

So,

ir+i

2;rAy
= sin(0, -6>.) In

-J

+ cos (0, -0;)#j

(3.23b)

(3.24a)

(3.24b)

(3.25)

44

Similarly,

N
r

2^A,A.+1 = cos(0,-0,)ln -

smtfi-OPPij
(3 26)

,=1 'Vi

and

b, = V* sin(0, -

a)

Also, the Kutta condition from Eq (3.17) can be rewritten as

.v

2L,AN+lj q. + AN+XN+Xy -bN+l

and, in similar fashion to Eqs (3.25) through (3 27), we find

(3.27)

(328)

2*Ajv+1</ = Zsin(^ -9.)fy
-

cos (0b -$) ln
-^

(3.29)
;=1 rk

N N

2ttA-
n+i,n+i

= ZZsin(^ -0j)]n -^+ cos (0to -0,)^ (3.30)
j.=ij=i 'V

Z>at+; = - F, cos(0i -

a)
- F* cos(^j -

a) (3 31)

Now, the source strengths q*, i
=

1, 2, ..., N, and the vortex strength y can be

found by solving the N+l system of equations defined in Eqs. (3 24a) and (3.28). After

this, the tangential velocity at each control point can be calculated. Manipulating Eqs.

(3. 13), (3. 18), (3.19), (3.21), and (3.23) yields

Vti=VMcos(9i-a)

N

ij+i

2k

sin(0,
-

0j)f3ij
-

cos {0t -9j)\n
rij

sin(0,
- 0.) ln + cos (0,

-

0,)/#,>

(3.32)

and since Vn,i = 0, the pressure coefficient can be calculated by

45

V,2

cP(xi, >,)
= 1-777

Finally, the inviscid aerodynamic coefficients may be calculated from

_=H ZsA
N rs

cosa +

LM = l y
T.cPldy,
w=i

N \ f ,v A

cosa+[2-V&,
M=l /

cM
= lLcP\dxixpdyiyi

1=1
v

sina

sina

(333)

(334a)

(3 34b)

(3.34c)

Where dx, =x,+] -x, and dy, =

>,+; -y{ .

This concludes the steps required to analyze the inviscid flow condition about an

airfoil. The Hess-Smith-Douglas panel method presented is very efficient and cheap to

calculate. The next step is to determine a suitable model for the viscous flow effects.

46

3 3 2 Viscous Flow Model

After the results are obtained form the previously described panel method, they can

be used to help calculate a viscous correction to the inviscid solution. The correction for

the present method has two forms: (1) skin friction is calculated as a correction to the

updated cd, and (2) the normal velocity at each panel is calculated and used to recalculate

the pressure distribution, hence, updating Cd for form drag effects. In order to update the

inviscid solution, an integral boundary layer calculator was employed. The viscous flow

model utilized separate methods to calculate both the laminar and the turbulent flow

regions. Also, two different transition criteria models were applied to the boundary layer

approximator. Discussion of the specifics of the boundary layer model is preceded by a

short review of the relevant theory.

As implied above, skin friction is an important parameter in the solution of the

boundary layer The calculation of the skin friction is based on shear stresses within the

boundary layer:

du
x =
u

(3.35)
dy

At the surface, or wall, of a body, the shear stress is

du

Tw
=
U-r-

(336)

This wall shear stress, xw, may be expressed in dimensionless terms:

C'-T&
<337)

47

Cf is called the skin friction coefficient and, as will be seen later, it becomes important in

correcting the drag coefficient, cD, for skin friction effects

The boundary layer displacement thickness is an important parameter for

correcting the pressure distribution for the presence of a boundary layer To do this, the

normal component of the velocity needs to be calculated

V\ = Jimv(x,>0 (3.38)

To calculate the right hand side of Eq (3.38), the continuity equation (div V
=

0) may be

used to get

fvdv

v(xp)=)o\ip(x>y 'W

(339)

This can be written as

v(*,>)
= ^r\}0 [Ve{x) - -y

dip
dx

For large compared to 8, u(x,y*) Ve(x) (u -> Ve as y/8 - oo). Therefore,

(340)

(3.41)

Where

i'W-f
1-
(x,y)

Ve{x) J
v> (3.42)

48

Equation 3.42 defines the displacement thickness which represents the distance the

external flow streamlines are displaced by the boundary layer That is, for a height h in the

free stream, a height
h+8*

is required to allow the same volume rate of flow

By evaluating Eq. (3.41) at y
=

0, we get

4.--o=^/> <343>

This formula may be used as a correction to the right hand side of the system of equations

described in Eq. (3 24a). Reevaluation of the system with the update would yield a

pressure distribution which accounted for boundary layer effects

Also, before proceeding with the discussion of the boundary layer model, a few

more things should be introduced. The momentum thickness is another method for

quantifying the boundary layer thickness. It plays a role in some empirical formulas for

drag calculations. The momentum thickness 0 is stated as

0 = 1,d 1-77 f* (3.44)
'0 Ve\ Ve

The momentum thickness and the displacement thickness may be related through a shape

factor H:

H = S/0 (3.45)

All of these major outputs of a boundary layer analysis (8*, 0, Cf) are all connected by the

Karmen momentum integral equation:

dO Q dVe 1

49

A derivation ofEq 3 46 may be seen in Reference 12 Unfortunately, there are too many

unknowns in the equation to make it useful by itself However, other equations may be

used in conjunction with it to solve the boundary layer problem This is the focus ofmany

integral methods

To solve the laminar region of the boundary layer, Thwaites method is employed

This method makes use of the momentum integral equation without having to make any

assumptions about the form of the velocity profile. This is one of the virtues of the method

since velocity profile fitting is usually an inefficient and often unreliable approach to

boundary layer calculation

The basic idea behind the method is to supplement Eq. (3.46) with equations

involving the unknowns 0, H, and Cf. First, to make things easier, 0 and x are made

dimensionless by forming

,9=M

(3.47a)

*_,=

<347b>

H and Cf are already dimensionless but Cf is a strong function of Reynolds number To

alleviate this, a parameter which is independent ofReynolds number is introduced.

l = (R,,0c,)i2 (3.48)

Next, the momentum integral equation is multiplied by Re,e, yielding

pVJdM
p02

dVe ,)L-S-
+ -^-(2 +

-

= / (3.49)
[i dx [i dx

Also, a dimensionless pressure gradient parameter X is defined as:

50

p02

dV.
X = -^

(3.50)
\i dx

The two previous equations can be combined and written as

pve
de2

r ,

^-JL-
= 2[l-(2 + H)X] (351)

H dx
'

From Thwaites, the right hand side can be accurately approximated by a linear equation:

2[l-(2+H)A]* 0.45 -6/1 (3.52)

This and the definition of A, may be substituted into Eq (3 51), yielding

oVe
dQ2 6p02

dVe^-L-~
=
0.45-

rr (353)
(i dx [i dx

After multiplying by
Ve5

and some rearrangement, the equation becomes

K._+9.s,._*J._(^)_a4^ (3,54)

This equation, with any given Ve(x) and an initial value of 0, can be solved for 0(x) All

that is required is the integration of a first order ordinary differential equation (ODE).

Once 0 is known, X can be calculated from Eq. (3.50), and using the empirical Thwaites

correlation formulas suggested in Reference (12),](X) and H(x) can be calculated:

/(?.) = 0.22 +
1.57X-1.8A2

for0<>.<0.1 (3.55a)

0.0 18X
= 0.22 + 1.402X+

- -

X+ 0.107
for -0.1 <X<0 (3.55b)

/_"(/.) = 2.61-3.75.. + 5.24
A2

for 0 < X < 0 1 (3.56a)

0.0731
= 2.088+ for -0. 1 < X < 0 (3.56b)

The initial condition for the solution of the ODE is 0 at the stagnation point:

51

6(0)= M2 (3,57)

Which is determined by solving Eq (3.54) at the initial conditions (Ve(0) * V0x). Then

Eq. (3.54) may be solved for 0(x) analytically

For the present method, two different transition criteria are used. While evaluating

the upper surface, Michel's criteria is used but while evaluating the lower surface, the

point ofminimum pressure is taken as the transition point.

Transition starts at a critical value ofReynolds number For example, for a smooth

flat plate, ReCr__c_i 2.8 x
IO6

(Reference 12). Transition Reynolds number is a function of

many different parameters. Most important are the imposed pressure gradients from the

ideal solution and surface roughness. The critical Reynolds number is lowered for

increased surface roughness and a positive value ofdP/dx.

Michel's method predicts that transition should be expected when

(22,400^ 046

i?e)e>1.174il +-^J*Jf (3.58)

This method accounts for the effect of pressure gradients since 0 grows more rapidly in

positive pressure gradients. It does not, however, account for surface roughness but this

method should still be good for airfoil analysis since published data doesn't show a strong

dependency on surface roughness (see Reference (13)).

Michel's method is used for the top surface calculations but, due to instabilities in

the method, transition is fixed to a point based on the point of minimum pressure for the

lower surface.

52

These methods are used to fix transition to a specific point which isn't what

actually occurs. As a matter of fact, transitional flow occurs over a segment of the airfoil

not at a specific point. Within this region of transition, the flow oscillates between laminar

and turbulent Skin friction is typically high in this region and since the present method

approximates transition as occurring at a point, the increased drag is not accounted for

The transition method for the boundary layer boundary layer program is basically used to

toggle flow calculations from laminar to turbulent. Despite the deficiencies of the

transition model, it is used since there are no other integral methods for the prediction of

transition.

Finally, Head's method is used to predict the turbulent flow region of the boundary

layer. The method is based on the concept of an entrainment velocity. The volume

flowrate within the boundary layer at x is

Q(x) = ^X)Udy (3.59)

Where 8(x) is the boundary layer thickness. The rate at which Q increases with x is known

as the entrainment velocity, E:

dQ
E =

-f-

(3 60)
ax

The displacement thickness may be written as

o'=d-Q-

(3.61)
e

Which leads to

=JVe(8-8*) (3.62)

53

Which can be written as

E=~(VeQHp (3 63)

Where

Ht.^f
(3 64)

It was assumed that a dimensionless entrainment velocity E/Ve was only dependent on Hi

which, in turn, is dependent on H Curves have been fitted to many sets of experimental

data, the equations ofwhich were reported in Reference (12), and are as follows:

tyj$)Hx) = 0.0306(7/! (3.65)
'
e
"X

_71=3.3+
0.8234(//-l.ir~1287

for H < 1 6 (3.66a)

= 3.3 +
1.5501(_7-0.6778)~3064

forH>1.6 (3.66b)

Head's method employs another empirical equation known as the Ludwieg-Tillman skin

friction law:

Cj
= 0.246 x

10"678//tf;jp68

(3.67)

These three equations along with the momentum integral equation comprise the four

equations required to solve for the four unknowns 0, H, Hi, and Cf.

The boundary layer method also handles flow separation, albeit primitive. The

discussion of separation criteria and the model's reaction to separated flow is addressed in

Section 4.1.

54

Both
Thwaites'

and Head's method produce the required data to perform the

aforementioned inviscid solution update. The implementation of the analysis methods

described here is discussed in depth in chapter 4.

55

4. PROGRAM DEVELOPMENT

The Bezier definition theory described in Section 3.1 and the mathematical model

for the aerodynamic analysis needed to be encoded to interface with OptdesX This

chapter describes the main aspects of the developed program. Also, the code was

validated by comparing the obtained results against published data for some well known

airfoil sections.

4.1 Discussion ofProgram

As mentioned in Chapter 3, a program needed to be developed to execute an

aerodynamic analysis model. FORTRAN was the programming language used to

accomplish this and a copy of the source code may be seen in Appendix I. As seen in Fig.

4. 1 (end of chapter), there were many subroutines used to execute the analysis. Following

the numbering shown in Fig. 4.1, the main steps in the program may be described as

follows:

(1) Updated variables are sent from OptdesX to subroutine anafun. Anafun serves

as the main program for the model even though it is just a subroutine of OptdesX

OptdesX communicates with the analysis model through variable and function subroutine

calls (avdsca and afdsca, respectively). Then from anafun, most of the other subroutines

are called.

(2) Subroutine coord is then called from anafun. This subroutine serves one of the

main functions of the analysis model - airfoil definition. The function of this subroutine is

56

to determine the airfoil coordinates based on the Bezier vertices which are specified as the

design variables received from OptdesX. Based on the parameter 'npoints',
'nact'

nodes

and
'npanels'

panels are defined where npanels = nact - 1. (3) Also, subroutine amult is

called from coord to perform repetitive multiplications involved in calculating the airfoil

coordinates.

(4) Next, subroutine ambient is called from anafun and is basically used to

calculate sin a and cos a. The subroutine used to have the function of setting ambient

conditions, but this has since been directly incorporated into the user interface of

OptdesX

(5) Psslope is the next subroutine called by anafun. the function of this routine is to

calculate the slopes of the individual panels. Also, the actual panel lengths are calculated

and stored.

(6) One of the other main analysis subroutines, coeffht, is called next. It is in

coeffiit that the inviscid panel method problem is set up. Coeffht sets up the system of

equations as described by Eqs. (3.24a) and (3.28). The coefficient matrix is stored in a

'nact x
nact'

matrix a(i, j), and the freestream velocity vector of length
'nact'

is stored in

c(i). Also, for reasons explained later, a copy of c(i) is stored in the vector tempo(i).

(7) Next, for the solution of the inviscid problem, [A] x
=

c, subroutine solsys is

called. The method of solution is Gaussian elimination with partial pivoting. In order to

reduce space requirements, the solution is stored and returned in the vector c(i).

Unfortunately the original vector is needed for the viscous update, hence, the vector is

stored in tempo before it is sent to solsys. It should be mentioned that the present work is

57

based from an existing program that calculated optimum airfoils subjected to ideal flow

(see References (14) and (12)), so the storage of c was not required

(8) After returning from solsys, subroutine veldist is called. What started originally

as a subroutine to calculate the inviscid pressure and velocity distributions turned into a

gateway and setup subroutine for the boundary layer calculator As can be seen in Fig 4 1

veldist is very active in calling other subroutines. The major functions ofveldist are: it still

calculates velocity and pressure distribution for both the inviscid and viscous solutions; (9)

it calls clcdcm for the inviscid flow coefficients which are calculated according to Eqs

(3 34a) to (3.34c), it determines the stagnation point for the airfoil and subsequently splits

up the airfoil panels to define upper and lower surfaces; it finds the transition point for the

minimum pressure transition model which is used for the lower surface, (10) it calls intgrl

twice for the viscous solutions of both the upper and lower surfaces; it updates the c

vector (or more appropriately, the tempo vector) with a normal velocity correction

obtained from information calculated in intgrl, and (17) it calls solsys for the reevaluation

of the [AJ x
= c problem with the incorporated viscous effects. Some of these features are

addressed in more detail later.

In the description of veldist, steps 11 through 16 were skipped. Intgrl, too, has

many routines which it calls. Subroutine thwats is used to calculate Eqs. (3.55) and (3
.56)

for the laminar region predicted by
Thwaites'

method. The rest of the functions and

subroutines (12 through 16) are used to analyze the turbulent boundary layer region

predicted by Head's method. The subroutine runge2 is used to perform a second-order

58

Runge-Kutta method on the system of two first-order ODE's defined by Eqs (3.49) and

(3.65).

Lastly, clcdcm is called again from anafun for the calculation of the aerodynamic

coefficients which are corrected for the presence of a boundary layer

Since much of the program was done by others, discussion of the specific aspects

are limited to that which the author contributed. The discussion of these features are

presented in the order that they are executed in the program.

x., y.

xio, yio

Figure 4.2:

Sloped Line Definition

First, a slight modification in the optimization constraints was made to

accommodate a sloped line definition for the three Bezier vertices B8, B9> and Bi0. This

definition method was referred to as scheme 2 in Section 3.1. Before modification,

constraints were placed on y9, and y_0 such that they were forced to be equal to y8, thus

ensuring a horizontal line definition
scheme (scheme 1) for the bottom surface To allow a

free slope of the line defined by the points B8, B9, and Bio, y. was made to be a design

59

variable. Then y10 was constrained to lie on the line defined by y8 and y9. Referring to Fig

4.2, the slope of the line may be found as

m= >!___>__ (4 i)
x8 x9

and knowing the equation of a line to be

y-yx =m{x-xx) (4.2)

Where (xi, yO is a reference point. IfB8 is taken as the reference point, then the constraint

on yio may be expressed as

>,o
=

"*(*.. -*.) + >. (4.3)

This constraint allows the line to be sloped (positive or negative) while maintaining the

three points on the same line.

The next feature developed was the method for determination of the stagnation

point. Because of the convention by which the tangent vector is defined
(1th

to
(i+1)"1

node,

starting from the trailing edge in a clockwise direction), the velocity on the bottom surface

is negative. This makes determination of the stagnation point simple The program looks

through the velocity data starting at the trailing edge until it finds a non-negative number.

After finding the first non-negative velocity, say at the
i*

panel, the panels may be split

into an upper and a lower surface To calculate the velocity gradient for the first panel

after the stagnation point (this is required for the boundary layer calculation), the adjacent

panel on the other side of the stagnation point is included in that surface and is made to be

the first panel. After calculations are made, however, the data from that first panel is

discarded. This is done because the data would be redundant with the data found by

analyzing the same panel but on the other surface. Once the
panels are split into sides, they

60

are renumbered such that the first panel is at the stagnation point, not the trailing edge

This is done because the boundary layer model calculates starting from the stagnation

point

Another feature developed for the program was the minimum pressure criteria to

fix transition. The point ofminimum pressure is found in similar fashion to the stagnation

point. The pressure data is scanned starting at the trailing edge in a clockwise direction

The program looks for a value of pressure that is greater than the previous, and in

satisfying this criteria, the point ofminimum pressure is found. Recall that this method for

fixing transition is only used for the lower surface.

To calculate the normal velocity correction as stated in equation (3 43), the

displacement thickness needs to be calculated. This is straightforward because the

momentum thickness 0 and the shape factor H are already calculated in the solution of

both Thwaites and Head's method. Recall these parameters are related by the equation H

= 6*19. So, to calculate the correction for each
i*

panel, 8*; needs to be multiplied with its

respective Ve,;. After doing this for every panel, the gradient for each product 8*iVe,i needs

to be computed. Before doing this, the data should be rearranged such that it starts at the

trailing edge and is numbered in a clockwise fashion. The gradients for each panel are then

calculated by a forward difference method which employs a three point quadratic

approximation of the function. If the products are denoted as P;, i = 1, npanels, then the

function is

P, (x)
=

a0 + ax x, + a2
x,2

i = 1, 2, 3

Given (x, , P,) (4 4)

61

Where x, is the surface length for the panel So the derivative of Pi is

dx

~IL =

ax+2a2xx (4.5)

and it can be shown for a quadratic equation with three known points that the coefficients

ai and &2 are

P - P

a,
=-2

l--a2(xx+x2) (4.6)

fp-p^

* *-! / \ --2 *1x,
-

x, ;
(4.7)

p._

(P2-P1Xx3-x1) (^-/^Xx.-x,)

X2 X1 X3 X,

cfr x3 x2

Substituting Eqs. (4.6) and (4.7) into Eq. (4.5) and after some manipulation it may be

shown that

(P2-PxXx3-xx) (^-/^(x.-x,)

(48)

Then, after finding the gradients, every
i*

component can be added to the respective

component of the vector tempo(i), with the sum being renamed as c(i):

c(i)
= tempo(i) + ^-(VeiS:) (4.9)

dx

This updated vector is all that is needed to reevaluate the [A] x
=
c problem because the

coefficient matrix A will not change with viscous effects.

Skin fnction is also calculated for both the upper and lower surfaces by the

program and is done so that it could be added to the form drag found from the viscous

update just outlined. It was established from Eq. (3 37) that

62

and drag can be defined as

c ==

J

\pvl

\rvds
_

D.J
-

\^s
(410)

Rearranging yields

^-Wtp^-W^ >

This can be approximated as

nx

I.C, S
M

nx

_>

<__ "^ (4.12)D.J JBC_

...

=1

Where nx is the number of points on a surface and Sj is the length of the
j*

panel. The skin

friction drag coefficients from both surfaces are added together and then the sum is added

to the form drag, yielding a total drag coefficient:

CD
~

CD, form + CD, skinfrktion 13)

Lastly, subroutine intgrl has the ability to handle flow separation in a very limited

capacity. For Thwaites method, laminar separation is predicted to occur when \{X) from

Eq. (3.55) vanishes since the parameter is proportional to the wall shear stress (wall shear

stress equals zero at separation). By the correlation formulas, \{X) is predicted to vanish

when X =
-0.0842. Once a laminar boundary layer separates, it usually reattaches in the

form of a turbulent boundary layer. This is known as the phenomenon of laminar

separation bubbles. The code simulates this to a degree in that if the critical X is reached

63

then it skips over the transition criteria and immediately starts to calculate the boundary

layer according to Head's method. The algorithm may be seen in Figure 4.3.

Thwaites'

Method

yes
yr

X < -0.0842

no

transition

point

reached ?

no

i

yes

t

Head's

Method

Figure 4.3:

Laminar Separation Algorithm

The treatment of turbulent separation, on the other hand, has no basis. In general,

turbulent separation is predicted when H = 2.4 (Reference 12). If this criteria is met, then

the conditions from the last, non-separated panel are imposed on the remainder and skin

friction calculations are stopped for those separated panels. This, of course, is a very crude

method for handling separation. However, while executing the program it was very rarely

found that turbulent separation was achieved.

64

4.2 Code Verification

Regardless of the sophistication, or lack thereof, of any numerical model, there

must be some way to test the output before any confidence in the method's validity is

warranted In fact, it would be ideal if there were multiple approaches to verify results

For this reason, some considerable time was spent refining the code.

At one point during the programming, it was thought that the code was at a

sufficient level of accuracy because the aerodynamic coefficients were matching fairly

closely with published data. However, after close scrutiny, it was found that some bogus

assumptions were made with respect to flow conditions. One indicator that the solution

was incorrect was the fact that the calculated ideal (inviscid) and real (viscous) lift

coefficients were extremely close in magnitude. Contrary to what might be expected, as

illustrated in Reference (12), the ideal and real lift coefficients should be substantially

different. This is because the viscous update to the inviscid solution has a tendency to

corrupt the lift calculations. This is a inherent disadvantage to the method being used.

However, the ideal lift, if the method is being executed correctly, should give a very good

approximation to the real lift. As it turned out, the drag coefficients were fairly close the

published data because the skin friction drag dominated over the form drag since the cases

being studied were of fairly low thickness. This example just proves that it was necessary

to meticulously examine initial results before accepting the model as valid.

After resolving the mentioned problems and after refining other aspects of the

code, the program was executed for three different NACA series airfoils: (1) the NACA

0012 symmetric airfoil, (2) the NACA 4412 cambered airfoil, and (3) the NACA 23021

65

cambered airfoil Both the 0012 and the 4412 were analyzed because they were used as

start points in the optimization analysis and the 23021 was chosen arbitrarily

Aerodynamic coefficients were obtained for all the test cases for angles of a attack

between -10 and 10 degrees, where the analyses were executed in 2 degree increments

Also the Reynolds number for all the runs was six million. The results of the analyses are

shown on coefficient plots in Figures 4.4 through 4.6 for the respective airfoils (data plots

from Reference 13). Ideal lift coefficients were used for reasons described above, and the

corresponding total real drag coefficients were also plotted. Moment coefficients are not

shown since they are calculated about the leading edge, not the aerodynamic center.

For the most part, the 0012 data looks decent. The lift curve matches very nicely

with the published data. A trend for low drag values in the negative a region is exhibited

on the drag coefficient curve. This was not a big concern since the present work only

investigates an angle of attack of four degrees. However, this is a definite area that could

use improvement. Besides the negative side of the curve, the data is in very close

proximity to the published values.

The NACA 4412 analysis was not as successful as the 0012 but the data follows

the general trend of the curves. Also, unlike the 0012 analysis, the program seemed to

handle the negative side of the curves better than the positive for the 4412. Again decent

results were obtained in the vicinity ofa
= 4.

The last analysis that was performed showed more tendencies toward poor results

at the extremes of the cc's investigated. Despite this, the results are believed to show an

adequate level of accuracy for the problem at hand. The poor results at the high and low

66

angle of attacks could be due to the lack of sophistication of the separation model, thus,

not capturing the decrease in lift and increase in drag expected from poor pressure

recovery. Nevertheless, It is believed that the model has a sufficient level of sophistication

for the project scope. Improvement of the separation model could be the focus of later

studies. It should also be added that, By virtue of the solution method, the results

shouldn't be expected to have a high level of accuracy. The focus of the project was to

create an efficient solution method for the optimization process and this was satisfied since

the calculation of panel methods with an integral boundary layer model is very cheap,

computationally speaking. If the coefficients are being improved during the optimization

process while satisfying the constraints, then the optimization may be thought to be

successful. Indeed, the key consideration is that the analysis model has to be valid but not

necessarily precise because other more accurate modeling techniques may be used

afterward to better determine flow characteristics. This leads into the next chapter which

discusses the CFD modeling of the optimized solutions.

67

1

oo S

o
o

On

00

G\

>

co

1

VO

VO

e
3

O

H

VI

' '

o
_=

m

8J
"to
co

t CO
-* >
c
<U

T3
h u.

oi
U

CN

.ST c

O
i

3

(-0

CO

O
CO

rs m

68

J.

a
o

C4

o

o (0

o o

o o o o o

o

I

n

d
I

po 'joapijjaco 8bjp uotpag
'-'Olii

3 '}03t_yjJCO JUJOJOJV

(N

O
O

<

u
<

z
U

^ o

" S
s s
3 O

J.g
Q.

S
o

U

1
CJ

ES

o

U

'j 'jaatajjjaoo yn aoijoag

I I

69

> <o <M
cm ^ -^

<5 CJ Q

P7 'fUD!JJdOO 6o~/p UCIJD3$

'? liU^ID'JJ3O0 lU^LUOW

CM

<

<
z

_^

1 1 1
_l

1

w cf c <#f
j$L/

V"

.
JP |

Jn p
Jr 5

^JjT f ! 3_C r 1

k Vv >l %
*_ _-f^^yi _ ?

-.

C^&.!_ _
1

V
j___j.i__L_ J

'
__

j
SJ Jl^k ~^ 1 '

f
< 1 ta. J. \

-i ,wVn i
fc J L

i | "c*~.hf "*Wi } .

'
r

j_ > j _i P
'

i ^^.
_. <i *

i ., i ,

i
i ~v 2 L ^

^g^ ^-___

,

j

r

t

2
". o
"* S

3

J. .a

Q.

E
o

O
-

c
u

'5

E

o

U

to c

h 'juatoi})oo-> f/'i uo//>as

'__. i

t~

m

/\
/ \
/
/

1

\ /
\ /

<H
<o

*> fUOIOtJjaoo tuaujory

<o cm cd > <s

'j '{UJ/JIJJ30J ll U0IJ.03S

<5>

"3 'i.U3p!JJOOO I.U81UOH

CN

o
m

CN

<

<

z
_.

c2

vo 2

3 O
M co

E '5
a.

E
o

U

c
u

'5

U

o

U

71

5. CFD MODELING OF OPTIMIZED SOLUTIONS

It was addressed last chapter that a more sophisticated solver could be used to

further verify the optimization results and to better determine the aerodynamic

coefficients for the airfoils. The purpose of this chapter is to describe the process involved

in modeling an airfoil using Computational Fluid Dynamics (CFD) for a specific software

package - Fluent. The results of the actual runs are presented with the optimization results

in Chapter 6.

The software used to model the airfoils was Fluent version 4 23 and was run off of

a server with an Ultrix version 4.3 operating system.

Modeling an airfoil in Fluent was not a trivial task. In fact, it took numerous

modeling iterations to determine the appropriate conditions for the problem. Most of the

modeling time was spent modifying the geometry and grid to acquire reasonable results.

Unfortunately, CFD is not yet at a level of sophistication where a user can simply enter a

geometry, set the fluid conditions, and run the model. Instead, careful consideration must

be given to the each specific step of the problem.

Similar to finite elements, the main steps in CFD modeling are geometry

generation, grid generation, and boundary condition setting. Once these steps are

performed, a model may be analyzed by the CFD solver. The process by which these steps

were executed is presented in the following sections. Also, a NACA 0012 was analyzed to

determine the validity of the modeling assumptions. The results of this analysis are also

included.

72

5.1 Geometry and Grid Generation

Before beginning the modeling process, a geometry and a corresponding grid need

to be created. This is by far the most difficult part of CFD modeling and should be given

careful consideration before starting.

Fluent has a preprocessor called PreBFC where both the geometry and grid are

created. It is a CAD-like program that allows a geometry to be created through the use of

points, lines, curves, and so on. The grid generator has the option of creating a Cartesian,

an axisymmetric, or a body fitted grid. Being most appropriate, a body fitted grid was used

for the airfoil problem.

It is a good idea to first sketch out a geometry before it is actually generated.

Careful consideration should be given to how the grid will be mapped to this geometry.

The strategy determined for the airfoil problem may be seen in Fig. 5.1. The drawing

shows an airfoil centered in a circle (the circle is not to scale) with a cyclic boundary

connecting the two entities. Actually, there are two cyclic boundaries, CYC and CYCP,

overlapping each other. The geometry was created as shown to accommodate an O-type

grid which can be thought of as a rectangular grid that is wrapped around the airfoil such

that the two opposing sides become overlapped. These opposing sides of the grid are the

cyclic boundaries which impose the flow conditions from one face onto the other That is,

flow property continuity is imposed across the faces. The geometry's corresponding

rectangular computational grid mapping sketch may be seen in Fig 5 2. It is important to

make these two sketches at the same time because the creation of one depends on the

73

other. In both figures, the dashed lines indicate that the corresponding endponits are to be

mapped at the same
Ith

grid index.

With that being said, the geometry may be created as shown in Fig. 5.1. The airfoil

surface was created by connecting data points generated from the optimization program

with a spline (actually, a cubic Bezier spline similar to those used in the original geometry

definition). After creation, the surface was broken into eight subsections with each

subsection being assigned a different zone number. Zone numbers are used by Fluent to

keep track of data for the respective sections of interest. As will be shown later, the

segments were given different zone numbers so that wall force data could be obtained for

each subsection. The wall force data can then be used to calculate the aerodynamic

coefficients. Just one zone number could have been used for the airfoil surface but this

would have resulted in wall forces being calculated for the whole skin at once. This is

undesirable because the accuracy of the wall force calculation would suffer; that is, the

wall forces would be more accurate ifmany smaller sections were used. After varying the

number of subsections, it was determined that having eight segments yielded good results

Also, the outer bound was broken into subsections that correspond to the individual airfoil

segments. These boundary segments, in turn, served to define the flow inlets and outlets.

Since only an angle of attack of four degrees was investigated, the inlets may be defined as

subcurves L3 through L7, and the outlets defined as L8, LI, and L2.

One aspect of the geometry that affected the accuracy of the solution was the

outer boundary radius. If the boundary radius is too small, then it could have an adverse

affect on the flow conditions in the vicinity of the airfoil, hence, rendering a solution to be

74

invalid One indicator that a solution had been influenced by the boundary was that, when

looking at pressure contours for the solved model, many erratic isobars could be seen

emanating from the airfoil to the boundary. To prevent this from happening, it was

necessary to make many initial runs, increasing the boundary radius until it was found that

the pressure contours looked normal. It was decided that a radius of fifteen times the

chord length (which was equal to one) was sufficient to prevent the boundary from

affecting the solution.

The final geometry for a sample airfoil (NACA 0012) may be seen in Figs. 5 3a

and 5.3b where Fig. 5.3a shows the whole geometry and Fig. 5 3b shows a close-up view

of the airfoil

The next step after the geometry had been created was to map the grid. A 220 x 70

cell grid was used for the airfoil problem. These dimensions were arrived at by, again,

making multiple iterations to test the affect of different grid sizes on the solution. The

mapping was performed according to the drawing shown in Fig 5.2.

Since the flow field is so large compared to the size of the airfoil, it is desirable

that the grid be weighted so that there would be a higher grid density towards the airfoil

surface Otherwise, for the grid size chosen, there would not be enough resolution in the

vicinity of the airfoil surface to provide any degree of accuracy Therefore, grid weighting

for this problem serves two purposes: (1) it provides grid resolution near the airfoil

surface, and (2) it lessens the grid size requirements. The grid weighting parameters were

adjusted through multiple trials and it was found that specifying a weighting factor of 70

on the endpoints PI and PIP of curves CYC and CYCP, respectfully, yielded the best

75

results. This weighting factor is higher than what would typically be used but it seemed

reasonable in light of the large boundary size. The weighted grid may be seen in Figs 5.4a

and 5 4b

Weighting was also performed for curves Bl and Tl at the endpoint P5 This

turned out to be very important for the solution of the problem If the weighting was not

performed then the grid aspect ratios were too high near the stagnation point Aspect

ratios are recommended to be as close to one as possible in regions of high gradients and

should not exceed five in any case. As is the case for the present model, high aspect ratios

can not always be avoided but they should be minimized. So, since the gradients in the

vicinity of the leading edge can be very high, the grid needed to be weighted to minimize

the aspect ratios of the surrounding cells. A close-up view of the grid around the leading

edge may be seen in Fig. 5.5. Cell aspect ratios were definitely lessened to a large degree

as a result of the weighting procedure. However, it would have been better if the aspect

ratio could have been reduced for all the cells around the airfoil. This could have

potentially been done by increasing the grid density but the results obtained from this setup

were fairly accurate.

One other problem that needed to be resolved was that for cambered airfoils with

downward sloping trailing edges, there were problems with the grid validity. The problem

was that the grid would map incorrectly at the intersection of the trailing edge and the

cyclic boundaries. To correct the problem, the cyclic boundary needed to be angled such

that it extended from the trailing edge at a slope that bisected the angle defined by the top

and bottom surfaces near the trailing edge. This is illustrated by Figs. 5.6a and 5.6b.

76

Subsequently, the grid mapping coordinates needed to be modified and are shown in Fig

5.7 Incidentally, having the cyclic boundary as shown helps the solver satisfy the Kutta

condition at the trailing edge since it has difficulties with grids that are oriented at

awkward angles with respect to the flow streamlines.

77

5.2 The Fluent Solver

After the grid has been completed it can be brought into the Fluent solver where

boundary conditions are specified Flow parameters such as density and viscosity are

specified as well. Also, if special models need to be utilized, they are turned on in the

solver module of Fluent Since the analysis model for the optimization used dimensionless

variables, it became necessary to quantify a suitable flow speed. This can be done easily

since the Reynolds number was held constant at six million throughout the optimization

runs. Reynolds number is defined as

,=^__
(51)

M

Choosing ambient conditions for density (p
= 1.225 kg/m3) and viscosity

(n= 1 79 x
IO'5

Ns/m2) ,
and choosing a unit chord (c

= 1 m) yields

A,(1.79_l<r'AWX6_l<.)

pc (1225kg /m3)(\m)

A renormalized group theory (RNG) turbulence model was used in all the problem

solutions. It was recommended in the Fluent manual (Reference 15) that the RNG

turbulence model be used for airfoil problems where separation may be encountered.

Although the RNG model was used for all models, a trial run was made with the default k-

s turbulence model and there was negligible difference. This was probably due to the fact

that the problem being considered did not have any flow separation

Default underrelaxation parameters were used after trying to solve the same

problem from many different combinations.
Either the solutions tended toward divergence

for increased values or iterations progressed too slowly. Therefore it was decided to use

78

the default values Typically, the underrelaxation parameters can be increased to expedite

the convergence of a solution For the solution of the first airfoil problem, a run time of

about 12 hours was required to reach convergence. However, for subsequent models,

solution from previous models could be used as analysis starting points This drastically

reduced the run time to about 1.5 hours.

A validation case was run using the described modeling and is presented in the

following section

79

5.3 Fluent Model Validation With the NACA 0012 Airfoil

As was the case with the analysis model, the CFD model was run for a well known

airfoil for which there is published data. This should be done for all types of CFD models

since the solutions can be thrown off dramatically for small changes in modeling setup So,

the NACA 0012 was chosen as a test case and was modeled as described above After

solution, wall force data was acquired through postprocessing and is as follows:

WALL FORCES BY ZONE :

UNITS = NEWTONS

WALL NORMAL FORCES

ZONE X-DIR. Y-DIR.

SHEAR FORCES

X-DIR. Y-DIR.

Wl 0..000E+00 0 .OOOE+00 0 .OOOE+00 0..000E+00

W3 2..526E+01 1 .879E+02 1 .308E+00 -1..625E-01

W4 4 .193E+01 4 .985E+02 2 .316E+00 -1 .882E-01

W5 1..704E+01 8 .506E+02 3 .321E+00 -6 .906E-02

W6 -3 .848E+02 1 .145E+03 7 .093E+00 1..549E+00

W7 1 .109E+02 1 .259E+02 4 .306E+00 -4..093E-01

W8 5 .093E+00 -2 .227E+02 4 .589E+00 1..025E-01

W9 1..753E+01 -2 .335E+02 3 .919E+00 3 ..225E-01

WA 1 .625E+01 -1 .668E+02 3 .219E+00 4 .061E-01

Table 5.1

Wall Force Data

The total forces in the respective directions may be added and then the sums may be

resolved onto the L and D axis defined by the four degree angle of attack After finding

the total drag and lift forces, their respective coefficients can be calculated (see Appendix

II for sample calculations of Cd and cl) The following table compares the Fluent results

with published data for the NACA 0012 (Reference (13)):

80

Fluent Published % Difference

Ct. 0.457 0.44 3.9

Cp 0.00669 0 0067 0.14

Table 5.2

Comparison ofValidation Results

Both values of the aerodynamic coefficients are in good agreement to the

published data. It can, therefore, be concluded that the model developed is valid for

calculating the flow about airfoils.

81

;>

/

/

Sl

&
u
+i

fH
CO
u

U.
cy_

u

3
en <u

to E
o
<u

0

82

'-_ -f

LT\

4.

L_n

4. Z:

&
w

c

t
Ua

fN 1/3

V.
(50

II C

3
an

o.
J*

to s
T3

83

,

v. f

o0"

o

/
;?

'O.

O
O
Q

0

Tj _

V^1

Figure 5.3a:

SampleGeometry

h

.-r

u

d

84

o

o

l^
*

4>

E
o

v. &

__

1
a
Otic+H

3
i

6

o

85

, PP-P^P
^:pp;pp\\\

Figure 5.4a:

Weighted Grid for Sample Geometry

86

1 A
r

'

I

1 I

.
-"I

I
'VVfi

V^'AlA
.

P.HH'rt1

\ \
\

v".\. \ ^UY.V
^

"

V
V V\/

v 7
'

\ < V .1 V\.(VVV

V A A i \-

i \ V ,V\AV

I
\M*va4

> A / X V>A A<V
'/V'AaAv,

An;

.ii;N

l-l..

?-; N N
'

v;mv< ; / 1 1 ! : . .

'/.'

i

/

^ttPii./J /
' /*

hii'iUlii-
/ / /ff 7

MMlkii}..

iHiLi'ii'LN . \,
T3
-3

Pip. i < A/ ./ v / a - -ff a

''Vr v <
\

> 7 v 7 v. ''/./',' e
'

,V(..(..(v v :< X / '
'

/ \ / / /
*"

>VVVVVy\\'V7'/ v\/
^

/.
,\

"S
./

O

P''

Q~

O

'f.j

V.

7.

7

"^
^v

-S;^

r^l

t+H++PH

Figure 5.6a:

Geometry for Cambered Airfoil

89

S

_a

u
ve u.

V3 =2

2! CT
3

E
o

<5
<*-

O

O.
3

U
B1

O

90

-o

u.

U
-O

U

r

w. en

""
<u

hi rrs

3 c
Ml
a

to
u

O
O

U

Oft
c

ex
a.
eO

r\i

91

6. OPTIMIZATION RESULTS

As previously mentioned, OptdesX optimization software was used to run the

optimization problems. The software was run from a DEC server loaded with an OSF/1

version 3.2 operating system.

Each problem case was analyzed by stopping after every iteration to save results

Consequently, actual run times are not available but every iteration was on the order of
3-

4 minutes with almost all of the time spent in the analysis model. Approximately twenty-

five analysis calls and 1 gradient call were made per iteration. Also, on average,

optimization runs took about five or six iterations to converge.

In the following sections, the problem cases that were investigated are defined and

the corresponding results are presented. Also, Fluent comparisons to selected optimization

solutions are presented.

6.1 Problems Considered

As in most airfoil optimization methods, the aerodynamic coefficients are of special

interest. For this reason, they were incorporated into the analysis model and through using

OptdesX, their defining functions can be specified as either an objective (function to be

optimized) or a constraint (function that limits feasible
design space). The problems to be

considered are defined as follows:

Problem A: Max cL, unconstrained cD and cM

Problem B: Max cl, cd < 0 007, unconstrained cM

92

Problem C: Max cL cD < 0.007, cM < -0.15

Problem D: Min cD, unconstrained cL and cM

Problem E: Min cD, cL > 0 7, unconstrained cM

Problem F: Min cD, cL > 0.7, cM<
-0.15

where all coefficients are the viscous, or real, versions. These were optimized and

constrained instead of the ideal coefficients because the real coefficients capture the

influence of the boundary layer, whereas the ideal coefficients do not.

Also, it has been presented that two distinct airfoil definition schemes were to be

investigated. The first, scheme 1, requires the three Bezier vertices Bg, B9, and Bio to

define a horizontal line. The second definition approach, scheme 2, relaxes the requirement

on the same three points in that they have to lie on a line without any constraint imposed

on the slope of the line.

The last point of investigation are the different starting points to be considered. It

has been mentioned that the NACA 0012 and the NACA 4412 airfoils would be used as

different starting points to the optimization problems.

To be consistent in solution procedure, the side constraints on all design variables

and the limits of all constraints were held fixed throughout the optimization trials. These

limits for both definition schemes and starting points may be seen in Appendix III Also,

the same hybrid GRG-SQP method was used to optimize all the airfoil shapes

Furthermore, the same gradient perturbation of0.001 was also held constant. This allowed

for a basis of comparison between the solutions

93

This investigation outline totals to twenty-four separate problems for

consideration The following section presents the results for each case Also, ifwarranted,

comparisons between cases are made

94

6.2 Problem Results

The results from the various optimization solutions are presented here. They are

addressed in the order defined in the last section. Plots of the progression of the airfoil

shapes at each iteration are presented. Some iterations may be omitted for clarity Tabular

data of the aerodynamic coefficients for each trial is presented along with the plots. Also,

Fluent modeling results from selected problems are presented and compared at the end of

the section.

Problem A: Max cl, unconstrained cD and Cm

NACA 0012 Start Point:

Scheme 1:

From Fig. 6.1 the potential of the method is apparent. The solution

airfoil looks nothing like the original. The flat portion on the bottom

surface is characteristic of the horizontal line definition scheme. Also, many

characteristics of a high lift airfoil can be seen. For example, the surface

distance on the top surface increased greatly while the opposite happened

for the bottom surface. This would result in a greater pressure differential

between the two surfaces, hence, causing greater lift. Another high lift

characteristic that the airfoil possesses is camber. As seen in Table 6. 1 the

optimization increased the viscous lift coefficient by 260 %. But, as would

be expected for an unconstrained cD problem, the drag coefficient increased

by 101 %.

95

Scheme 2:

Again, similar characteristics were exhibited by the problem solution shown

in Fig. 6.2. Although, the bottom front surface is nicely rounded opposed

to the flat surface seen in Fig 6.1 Again a very high increase in lift may be

seen in Table 6 2 (306 %). A comparison of the two solutions from Figs

6. 1 and 6.2 may be seen in Fig. 6 3 Although, the two airfoils were started

from the same point they turned out fairly different, but some similar

tendencies may also be seen .

NACA 4412 Start Point:

Scheme 1:

As may be seen in Fig. 6 4, some problems were encountered in that the

solution had a kink on the lower surface. This is an unacceptable airfoil

because slope continuity is usually required in an airfoil. The kink occurred

because the x-coordinates of Bg, B., and Bio were all very close together

The only way to fix this was to modify the limits of the constraints x9-xl0,

and x8-x9. They were set to be greater than 0.05. The modified shape may

be seen in Fig. 6.5 It tended towards the same shape as the previous but

the kink disappeared. For this airfoil solution, the lift was increased by 75%

(see Table 6.3)

Scheme 2:

This solution, seen in Fig. 6.6, attained the highest lift out of all the

maximum Cl problems. One can notice from Table 6.4 that the lift

96

increased by 84 % So, from an aerodynamic standpoint, this was the best

section achieved, but from an optimization standpoint, the NACA 0012

scheme 2 solution was the best with a 306 % increase in the objective

Also, A comparison plot between this and the previous solution may be

seen in Fig. 6 7. The two solutions were almost identical on the top surface

but very different on the bottom, most likely because of the different

definition schemes. Another observation that may be made is that the

solutions from the different start points were very dissimilar

Problem B: Max Cl, Cd < 0.007, unconstrained cm

NACA 0012 Start Point:

Scheme 1:

Figure 6.8 shows a solution with similar characteristics to the first problem

considered in that it has a flat bottom-front surface. But notice that the

point of maximum thickness on the top surface has decreased. This is due

to the active cD constraint. Table 6.5 shows that the lift was increased by

168 % which is considerably less than the first problem but is still quite

good.

Scheme 2:

Again, a decrease in thickness is shown when comparing this solution (Fig.

6.9) to its unconstrained counterpart. The Cd constraint was again active

and, as shown in Table 6.6, the lift was increased by 219 %. This is still a

very good solution considering its start point. The two solutions from Figs

97

6 8 and 6 9 are compared in Fig 6 10 They are very close in shape except

for the bottom-front Regardless of this difference, the aerodynamic

coefficients were almost identical. Both of these solutions were run

through Fluent and were verified to be close in aerodynamic characteristics

(see the end of the section for Fluent comparison).

NACA 4412 Start Point:

Scheme 1:

Similar to what was seen before, there is a kink in the solution of Fig. 6.11.

Again, the limits were adjusted to be greater than 0.05 yielding the shape in

Fig 6.12. For this section, the constraint was slightly inactive and the

resulting lift was only increased by 5.1 % (see Table 6.7). Still, the lift was

comparable to the previous two solutions.

Scheme 2:

Again, this combination produced the highest lift even though the increase

was low (20.8 %) according to Table 6.8. The solution may be seen in Fig.

6. 13 and the comparison between this and the last solution may be seen in

Fig. 6.14.

Problem C: Max cL, cD < 0.007, cM < -0. 1 5

NACA 0012 Start Point:

Scheme 1 :

Unfortunately, for all the constrained cm problems, the moment coefficient

had little to no affect on the solution since the constraints were only active,

98

if at all, for the first one or two iterations. For this reason the figures for

these airfoils will be presented but numerical results will not be discussed

See Figure 6 .15 for the results of this airfoil. There actually were some

significant differences between this airfoil and its corresponding

constrained cd problem

Scheme 2:

The solution to this problem, seen in Fig. 6.16, was very similar to the its

constrained Cd counterpart

NACA 4412 Start Point:

Scheme 1:

As would be expected, the kink was again present in the solution shown in

Fig. 6.17. However, no attempt to modify the limits was made because it

would almost certainly be the same as the constrained Cd solution.

Scheme 2:

Another identical solution is shown in Fig. 6.18. Both solutions to the

NACA 4412 start point problem never had the cm constraint active, but the

NACA 0012 trials had Cm active for the first iteration, hence, sending the

solutions in slightly different directions.

Problem D: Min cd, unconstrained d, and Cm

NACA 0012 Start Point

Scheme 1:

99

The solution shown in Fig 6.19 is quite different from those seen in the

Max cL problem solutions. The NACA 0012 start point airfoils for this set

ofMn cD problems had difficulties initially moving from the 0012 airfoil In

fact, the solutions often needed to be physically perturbed to get them to

move. This was done by moving one vertex at a time until the solution

moved It usually only took a single perturbation to move the solution As

shown in Table 6.9, the drag was reduced by 33 1 % which is very good

Scheme 2:

A similar shape to Fig. 6. 19 is shown in Fig. 6 20. The drag for this shape

was reduced by 28.5 % (see Table 6.10). It is worth noting that this and

most of the other shapes for the Min Cd problems have very low form drag.

This can be seen by noticing that the total drag to the skin friction drag are

almost equal. A comparison of Figs. 6.19 and 6.20 is shown in Fig. 6.21

where it can be seen that the two shapes are very similar

NACA 4412 Start Point:

Scheme 1:

It can be seen from the solution in Fig. 6.22 that there were still tendencies

for kinks on the bottom surface but the problem resolved itself by the time

a solution was found. The final shape is thinner than the original which

could be expected from a minimum drag problem. The drag for this section

was reduced by an impressive 45.7 % (see Table 6.11). Not only did this

100

airfoil have the largest reduction in drag but it also had the lowest value for

cD.

Scheme 2:

The shape determined for this solution was similar to the previous and is

shown in Fig. 6.23. A comparison of the two is shown in Fig 6 24 Also,

as indicated in Table 6 12, the drag for this airfoil was reduced by 27.4 %

Problem E: Min cD, cL > 0.7, unconstrained cM

NACA 0012 Start Point:

Scheme 1:

With the addition of the Cl constraint, the solution changed quite a bit. The

solution may be seen in Figure 6.25. For this shape, the drag was reduced

by 19.6% (see Table 6.13).

Scheme 2:

The shape changed significantly for this solution as well. Refer to Fig. 6.26

for a plot of the results. As indicated in Table 6 14, the drag was reduced

by 13.2 %. A comparison plot for this and the last solution is shown in Fig.

6.27 Again, the shapes were fairly close.

NACA 4412 Start Point:

Scheme 1:

Once again, the solution for this combination tended to kink as shown in

Fig. 6.28. The overall drag reduction was 26.3 % as indicated in Table

6.15. This solution had the lowest drag as it did in the previous problem.

101

Scheme 2:

The solution for this case was fairly similar to the corresponding

unconstrained Cd problem and may be seen in Figure 6 29 The drag was

reduced by 23.9 % (see Table 6 16). a comparison of this and the last

solution is shown in Fig. 6 30

Problem F: Min cD, cL> 0.7, cM< -0.15

NACA 0012 Start Point;

Scheme 1:

Like the previous constrained cM problems, this and the other forthcoming

solutions did not deviate much, if at all, from the constrained Cd problems

Again, only the plots are presented. The present solution may be seen in

Fig. 6 31.

Scheme 2,

The solution for this airfoil is presented in Fig. 6.32.

NACA 4412 Start Point:

Scheme 1;

Figure 6.33 shows the solution for this airfoil.

Scheme 2:

Refer to Fig. 6.34 for the solution to this airfoil

Now that the results have been presented, some general observations may be

made. As was the case, it could be expected that scheme 2 would produce the highest lift

102

airfoils since it allows for higher camber Furthermore, it seems logical that the 4412 start

point would produce the highest lift since it starts with more lift than the 0012 A similar

case could be made for the minimum drag airfoils. The horizontal definition scheme lends

itself better to low drag shapes. Since the airfoils started at approximately the same cD, it

makes sense that either start point could yield the lowest drag.

It was hoped that the present method would allow the airfoils to converge upon

some global optimum, this, however, was not the case The nonlinearity of the analysis

model was too great which made the solutions settle into local optima. Many pairs of the

cases that were started from the same point converged upon very similar solutions which

indicates that the optima are a strong function of the starting airfoil shape.

As previously mentioned, Fluent runs were made to verify the results of selected

optimized airfoils. The results are as follows (% difference calculated based on Fluent

results):

1) Unconstrained Max Cl, 4412 Start Point, Scheme 2:

Fluent Analysis Model % Difference

Cn 0.0117 0.0105 10.25

.CL..

1.71 1.822 6.1

2) Max cL with cD < 0.007, 0012 Start Point, Scheme 2:

Fluent Analysis Model % Difference

Cn 0.00773 0.00700 9.5

CL ...

1.027 1.101 7.2

3) Max cL with cD < 0.007, 0012 Start Point, Scheme 1:

Fluent Analysis Model % Difference

Cn 0.00764 0.00700 8.4

cl.,. 1.037 1.101 6.1

103

These two (2 and 3) were both run to see if they were actually as close in

aerodynamic coefficients as predicted. As can be seen, they were fairly close which is

somewhat odd because the shapes are dramatically different in the vicinity of the bottom-

front segment.

4) Max cL with cD < 0.007 and cM < -0. 15, 0012 Start Point, Scheme 2:

Fluent Analysis Model % Difference

Cn 0.00889 0.00700 21.3

CL 1.052 1.095 4.1

5) Unconstrained Min cD, 0012 Start Point, Scheme 2:

Fluent Analysis Model % Difference

Cn 0.00421 0.00402 4.4

CL 0.742 0.670 9.7

6) Min cD with cL > 0.7, 4412 Start Point, Scheme 1:

Fluent AnalysisModel % Difference

Cn 0.00430 0.00397 7.7

9L 0.865 0.793 83

7)Min cD with cL > 0.7 and cM < -0. 15, 0012 Start Point, Scheme 2:

Fluent Analysis Model % Difference

Cn 0.00570 0.00520 8.7

CL 0.925 0.861 6.9

Except for the Cd value in number (4), the optimization results were within a

reasonable amount of error. One must keep in mind that the focus of the program was

104

more to have a valid mathematical model that would be efficient for the optimization

process Because of the lack of sophistication of the analysis program, the data is actually

better than expected

105

0.15

Unconstrained Max Cl Problem (horizontal defintion)

0.05

o

-0.05

-0.1

Figure 6.1:

Problem A: NACA 0012 Start Point, Scheme 1

106

0.15

Max Cl (real): NACA 0012 start pt., unconstrained (trial12)

0.05

-0.05

-0.1

t i i r n r

qqQQ.Q.Oq0

i
r~

iteration:

0-

1

2-.-

3..

6o

alpha = 4 deg.

J L J 1 I L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

Figure 6.2:

Pornlem A: NACA 0012 Start Point, Scheme 2

107

0.14

Comparison of Solutions for Unconstrained Max Cl Problem

0

-0.02

-0.04

-0.06

horizontal line definition -

sloped line definition

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

Figure 6.3:

Problem A: NACA 0012 Start Point Comparison

108

0.14

Unconstrained Max Cl Problem (horizontal definition)

alpha = 4 deg.

NACA 4412 start pt.

Figure 6.4:

Problem A: NACA 4412 Start Point, Scheme 1

109

Unconstrained Max Cl Problem (horizontal definition

o

alpha = 4 deg.

NACA 4412 start pt.

0.5

x/c

Figure 6.5:

Problem A: NACA 4412 Start Point, Scheme 1 (modified limits)

110

0.14

Unconstrained Max Cl Problem (sloped definition)

0.12
o o o o o o

o

o.+
+ +.

+ +..+ + + +
+

+-

I 1 1 1

iteration:

0-

o 1
'

4- O

+ o

2-.-

+ o

^ .. + o 3 ..

-. -. + o
^. + o 4 +

+%
5o

^s. N ,+

.o

.o

-0.02

-0.04

0

alpha = 4 deg.

NACA 4412 start pt.

0.1 0.2 0.3 0.4 0.5

x/c

0.6 0.7 0.8 0.9

Figure 6.6:

Problem A: NACA 4412 Start Point, Scheme 2

111

0.14

Comparison of Solutions for Unconstrianed Max Cl Problem

i i i 1 1 1 1

o

sloped line definition -

horizontal line definition

0-

-0.02
-

-0.04

NACA 4412 start pt.

i

^

0 0.1 0.2 0.3 0.4 0.5

x/c

0.6 0.7 0.8 0.9

Figure 6.7:

Problem A: NACA 4412 Start Point Comparison

112

0.15

Max Cl with Cd < 0.007 (horizontal definition)

0.05

~i r i i i r

,oO0Oo

Wfj/tj
**V*.

0-

1

4-.-

5 ..

7 +

9*

11 0

-0.05

-0.1

alpha = 4 deg.

J I I L J L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

Figure 6.8:

Problem B: NACA 0012 Start Point, Scheme 1

113

Max Cl with constrained Cd (line definition)

-0.06
alpha = 4 deg.

-0.08

"0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

Figure 6.9:

Problem B: NACA 0012 Start Point, Scheme 2

114

0.14

Comparison of Solutions for Max Cl with Cd < 0.007

o

-0.06

"0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

Figure 6.10:

Problem B: NACA 0012 Strart Point Comparison

115

o

0 12

Max Cl Problem with Cd < 0.007 (horizontal definition)
W. 1 _-

Q9<?9 9 <p 9 iteration:

V>

_ --.. 0-

0.1 . -..
o-

*
'

->" ---O ^

'

.

Q-

1*"

^^^- '.
Cr-

9Px ^O ^

Cl-

2--

Q.'-X ^\- Cl"

0.08 Q."'X ^S> <* 3-

'z \N ' ct c

/ x '<*

/ \s'.(. 6o
0.06
/ \\ <t

/ N^Act

tf \
0.04
"/ \<<,

"

1 \^
f \<*

70.02

r x

"

o \>
0 ?

Q V__-.3

fo ^ r^^
_-:'

"^

%_ oS^-^~~P:~rp

Ar-^-'

0.02 -^b_
'

'

- -

'"

'
"

alpha = 4 deg.

^^^o__________f^.'-"'"
"

NACA 4412 start pt.

n r\A i ~-i =
'

~
^ [I I I I i i

0 0.1 0.2 0.3 0.4 0.5

x/c

0.6 0.7 0.8 0.9 1

Figure 6.11:

Problem B: NACA 4412 Start Point, Scheme 1

116

0.12

Max Cl Problem with Cd < 0.007 (horizontal definition)

o o o

o

0.1

0.08

0.06

0.04

0.02

-0.02

-0.04

0
oJ-1-

.

^
r"

'

alpha = 4 deg.

O C* "T -'
'

*"

,a
-

"

NACA 4412 start pt.

Figure 6.12:

Problem B: NACA 4412 Start Point, Scheme 1 (modified limits)

117

o

Max Cl Problem with Cd < 0.007 (sloped definition)
0.12

0.1

>> i i i i i i i

0ooooo0n iteration:

_

n/X
X''-' 2--

/ \ o

0.08 o/ \x.. o 3..

/ X
q/ ^\ o 4o

o/ Xv . o

0.06
-

r?Y X
cy X. o

cv \\ o

c/ V. o
0.04

5 \p

A
\0

T \0

0.02
5 \P

"

(

TS o
*-'

__

-

--^

^L__X-_ *"*!

0.02 -^k
""

alpha = 4 deg.

^^^OuCCOOSOOP^^ MAPA _1__19ctart
r_-

n r\A

^. INnUn H'f I __ Mall pi.

i i i i i i i i i

0 0.1 0.2 0.3 0.4 0.5

x/c

0.6 0.7 0.8 0.9 1

Figure 6.13:

Problem B: NACA 4412 Start Point, Scheme 2

118

0.12

0.1

0.08

0.06

0.04

0.02

0

-0.02
-

Comparison of Solutions for Max Cl Problem with Cd < 0.007

-0.04

sloped line definition -

horizontal line definition

NACA 4412 start pt.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

Figure 6.14:

Problem B: NACA 4412 Start Point Comparison

119

0.12

Max Cl Problem with Cd < 0.007 and Cm < -0.15 (horiz. def.)
i i i 1 1 1 1

-0.06 alpha = 4 deg.

-0.08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

Figure 6.15:

Problem C: NACA 0012 Start Point, Scheme 1

120

0.12

Max Cl Problem with Cd < 0.007 and Cm < -0.15 (sloped def.)
'

0o0^uo60
1 1

r-

o o

o o

o --.. o

o --.^ .. o

o " -. .. o

o -
-

-_

^

o. o

O . / ^

"
-

-
^

'<: O

-0.06 alpha = 4 deg.

-0.08

"0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

Figure 6.16:

Problem C: NACA 0012 Start Point, Scheme 2

121

0.12

0.1

Max Cl Problem with Cd < 0.007 & Cm < -0.15 (horiz. def.)
1 i ' i i i 1 1 1

o o o iteration:

o

;._._- o o-

0.08
p y ^X p

'

o. // \x o 3 ..

0.06

/ X fin

Q/ X '
0

6

"

o/ X
Of \n O

0.04

q/ X o

-j
x

J
\

9 VO

0.02
9 \

<

0.02

n r\A

> o o o o o o
o^__o3

.
o

V
-^K, ^~~~~Ppt>'^-''''- -

r
""

"

alpha = 4 deg.

^%h~> ^AnP ' --""
"

^:^cSCnrjan^? NACA 4412 start pt.

i ~i ~-_r T i i i i i i

0 0.1 0.2 0.3 0.4 0.5

x/c

0.6 0.7 0.8 0.9 1

Figure 6.17:

Problem C: NACA 4412 Start Point, Scheme 1

122

o

0 12

Max Cl Problem with Cd < 0.007 & Cm <-0.15 (sloped def.)

0.1

0.08

o'oooo'oq

o

o .- ->

O
^

O / yX

0 /PP

O / /

i i

o
-v.

"*^^ "s_

i i i

iteration:

0-

o
. 1 __

o

.
o 3-.-

X O

s. N. O 4 0

O//
O//

X v

\ \ o

0.06
P// X x

Xs
o

0.04 y
\\

V \o

\o
0.02

c

0c

0.02

>

^pp.

o

0
o

.^pPZ~.

o
o o o o o

oo^c_^

alpha = 4 deg.

n r\A 1

i i i i i

NACA 4412 start pt.

i i i

0 0.1 0.2 0.3 0.4 0.5

x/c

0.6 0.7 0.8 0.9 1

Figure 6.18:

Problem C: NACA 4412 Start Point, Scheme 2

123

0.1

Unconstrained Min Cd Problem (horiz. def.)

-0.02

-0.04

-0.06

-0.08

oo oo

iteration:

2

3-.-

4..

5o

- QQQgQGEHDeoooe-'0-o

alpha = 4 deg.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

Figure 6.19:

Problem D: NACA 0012 Start Point, Scheme 1

124

Unconstrained Min Cd Problem (sloped def.)

-0.06

-0.08

alpha = 4 deg.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

Figure 6.20:

Problem D. NACA 0012 Start Point, Scheme 2

125

.o

Comparison of Solutions for Unconstrained Min Cd Problem

0.1 I j | j 1 j 1 j j

0.08
_r ""^^

0.06
"

/
^V

0.04
- / sloped line definition - \.

/ horizontal line definition X.

0.02

f X^
0 \

V p?

0.02

\\ y^y

x^x.
^^y

'

x ^^-^^ y

A^ -^A-

n r\A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

Figure 6.21:

Problem D: NACA 0012 Start Point Comparison

126

Unconstrained Min Cd Problem (horizontal definition)

0.08

0.06

0.04-

0.02

-0.02
-

-0.04
-

Figure 6.22:

Problem D. NACA 4412 Start Point, Scheme 1

127

0.1

Unconstrained Min Cd Problem (sloped definition)
i i i

i^^
i i i i i

'"'"'^v>\ iteration:

0.08

0.06

/o

0d \4
ppp

ff b\\
*r

N

\ 4o
#>

o.n X

0.04
Jr P\ \
Jf Os \
J ^ \
J o, \
7 <* \

0.02 ? '**, \
-

< A

\

-0.02 -V^v. alpha = 4 deg.

r\ r\A

^^aoe^x^f33SS^^

NACA 441 2 start pt.

i i i i i i i i i

0 0.1 0.2 0.3 0.4 0.5

x/c

0.6 0.7 0.8 0.9 1

Figure 6.23:

Problem D: NACA 4412 Start Point, Scheme 2

128

0.1

Comparison of Solutions for Unconstrained Min Cd Problem

i i i 1 1 1 1

,0

0.08

0.06

0.04

0.02

sloped line defintion -

horzontal line defintion

0

-0.02

-0.04
J L J L

NACA 4412 start pt.

J I I L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

Figure 6.24:

Problem D: NACA 4412 Start Point Comparison

129

0.1

0.08

Min Cd Problem with Cl > 0.7 (horiz. def.)

^o>

oQpQpoo_0-0x)i)Q

-0.02

-0.04

-0.06
-

i 1 r

iteration:

0-

alpha = 4 deg.

-0.08

"0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

Figure 6.25:

Problem E: NACA 0012 Start Point, Scheme 1

130

0.1

0.08

0.06

0.04

0.02

Min Cd Problem with Cl > 0.7 (sloped def.)

^co^o-oa^

-0.02

-0.04
-

-0.06
-

-0.08

alpha = 4 deg.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

Figure 6.26:

Problem E: NACA 0012 Start Point, Scheme 2

131

0.1

0.08

0.06

0.04

0.02

Comparison of Solutions for Min Cd Problem with Constrained Cl

i i 1 1 1 1 1 r

-0.02

-0.04

J L J I I L J 1_

0 0.1 0.2 0.3 0.4 0.5

x/c

0.6 0.7 0.8 0.9 1

Figure 6.27:

Problem E: NACA 0012 Start Point Comparison

132

.<-)

^

0.1

0.08

0.06

0.04

0.02

Min Cd Problem with Cl > 0.7 (horizontal defintion)
i i i

l__^ 1 1 1 1 i

X^^q^o>x. iteration:
/cr^

'
'

OX\
/&T-

Qfe\ 0-

PPP o. X

oX
1-

JZ5T'

PNX
o. n\ 2 -.-

of/ 0. n X

yi o. n x 4

9> P. n X
Q7'

b \\ 6 o
d'

o \ \
T

N \"

0/ on x
9'

p.n \
d on \

J O.N \

_>

ON \
_

f 0. \
o.\

,C1\

V'x 0oOOoc_rv-rv-_-^<:^r^^ '^-
"

aloha
- 4 dpn

v
'

^^^A-UTji7(VlJ^ft_ iX)C- \J *
' ^-

-

'

^
aipi id *r uc^.

XX ^

-
.

.^
,,

-^'".'A
'-- NACA 4412 start pt.

v
^

.

-*

'

-,

N
^. .,. ^

--

x
.>...

^

-

\
^

^

\ ^

\ ^

, 1
^
_

"
1 1 1 L 1 L 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

Figure 6.28:

Problem E: NACA 4412 Start Point, Scheme 1

133

Min Cd Problem with Cl > 0.7 (sloped defintion)
0.1 i i i

i^^_^
i 1 1

1

i

y^ ^*^>. iteration:

0.08
-

/Xo000000000Oo>X --

"

/

%x/ 0
r,

AV
0.06 / o . x 5 ..

-

/o o X\
/ X 7o
jo o X
/O o \
P \

0.04
-

f o \
f X
* \
9 \

0.02 f A
"

b \

c\

l

\D.

0.02
"

x^-X

'"

alpha = 4 deg.

XnOoq_^

n r\A

^^f^3?^^
"

NACA 4412 start pt.

i i i i i i i i i

0 0.1 0.2 0.3 0.4 0.5

x/c

0.6 0.7 0.8 0.9 1

Figure 6.29:

Problem E: NACA 4412 Start Point, Scheme 2

134

Comparison of Solutions for Min Cd Problem with Constrained Cl

0.1 1 1 1 1 1

0.08

0.06

0.04

0.02

-0.02

-0.04

i r i r

sloped line defintion -

horizontal line defintion

NACA 4412 start pt.

J L J I I l_ J L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x/c

0.9 1

Figure 6.30:

Problem E: NACA 4412 Start Point Comparison

135

Min Cd Problem with Cl > 0.7 and Cm < -0.15 (horiz. def.)

0.1

,<P

&0O-0GVGtrot

1
1"

iteration:

0-

1

2-.-

.O

-0.02

-0.04

-0.06
alpha = 4 deg.

-0.08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

Figure 6.31:

Problem F: NACA 0012 Start Point, Scheme 1

136

0.1

0.08-

Min Cd Problem with Cl > 0.7 and Cm < -0.15 (sloped def.)

^oOP-Ptfp-b-a^

-0.04

-0.06 alpha = 4 deg.

-0.08

"0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

Figure 6.32:

Problem F: NACA 0012 Start Point, Scheme 2

137

0.1

0.08

0.06

0.04

0.02

Min Cd Problem with Cl > 0.7 & Cm < -0.15 (horiz. def.)

-0.02

-0.04

alpha = 4 deg.

NACA 4412 start pt.

j __________

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

Figure 6.33:

Problem F: NACA 4412 Start Point, Scheme 1

138

0.1

Min Cd Problem with Cl > 0.7 & Cm < -0.15 (sloped defintion)
1 r

iteration:

0.08-

0.06

0.04

0.02

-0.02

-0.04

J L

alpha = 4 deg.

NACA 4412 start pt.

J I I L

0 0.1 0.2 0.3 0.4 0.5

x/c

0.6 0.7 0.8 0.9 1

Figure 6.34:

Problem F: NACA 4412 Start Point, Scheme 2

139

Table 6.1: Problem A: NACA 0012 Start Point, Scheme 1

Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real |
Moment 1

1 0.00312 0.00362 0.858 0.764 -0 299 -0.260

2 0.00310 0.00386 0.901 0.819 -0.318 -0.284

3 0.00452 0.00638 1.101 1.013 -0.383 -0.348

4 0.00480 00123 1.233 1.422 -0 431 -0519

Table 6.2: Problem A: NACA 00 1 2 Start Point, Scheme 2

Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real

Moment

1 0.00483 0.00516 0.830 0.731 -0.290 -0.248

2 0.00490 0.00534 0 866 0.770 -0.306 -0 266

3 0.00485 0.00815 1.103 1.081 -0450 -0.400

4 0.00491 0.0150 1.124 1.276 -0.393 -0.462

5 0 00492 0.0178 1.324 1.324 -0391 -0.480

6 0.00492 0.0178 1.326 1 326 -0391 -0.481

Table 6.3: Poblenl A: NACA 4412 Start Joint, Scheme 1

Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real

Moment

1 0.00514 0.00715 0.922 0.853 -0.331 -0.303

2 0.00524 0 00718 0.918 0.849 -0.329 -0.301

3 0.00518 0.00718 0.915 0 846 -0.327 -0.300

4 0.00517 0.00874 1.396 1.342 -0.575 -0.522

5 0.00522 0.0105 1.712 1 643 -0.737 -0.707

Table 6.4: Problem A: NACA 4412 Start Point, Scheme 2

[Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real

Moment

1 0.00552 0.00723 0.992 0.951 -0.363 -0.349

2 0.00522 0.00837 1.235 1.157 -0.488 -0.454

3 0.00533 0.00835 1.398 1358 -0.573 -0.577

4 0.00543 0.0103 1.708 1.663 -0.733 -0714

5 0.00543 0.0105 1.822 1.770 -0.787 -0.765

140

Table 6.5: Problem B: NACA 0012 Start Point, Scheme 1

Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real 1

Moment j
1 0.00312 0.00362 0.858 0.763 -0.299 -0.260

2 0.00310 0.00386 0.901 0.819 -0.318 -0.284

3 0.00307 0.00387 0.904 0.825 -0.319 -0.286

4 0.00304 0.00397 0.918 0 843 -0.325 -0.294

5 0.00504 0.00608 1.004 0 900 -0.372 -0.329

6 000502 0.00582 0.993 0 869 -0.365 -0.312

7 0.00515 0.00678 1 061 0.964 -0386 -0.346

8 0.00306 0.00470 1.049 0.939 -0.378 -0.331

9 0.00473 0 00651 1.052 0.996 -0.374 -0.353

10 0.00461 0.00700 1.101 1.060 -0391 -0.377

11 0.00461 0.00700 1.101 1060 -0.391 -0.377

Table 6.6: Problem B: NACA 0012 Start Point, Scheme 2

Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real

Moment J
1 0.00483 0.00516 0.830 0.731 -0.290 -0.248

2 0.00489 0.00534 0.866 0.770 -0.306 -0.266

3 0.00490 0.00694 1.102 1.016 -0.407 -0.372

4 0.00489 0.00700 1.098 1.032 -0.404 -0.378

5 0.00487 0.00700 1.101 1.042 -0.404 -0.381

Table 6.7: Problem B: NACA 4412 Start Point, Scheme 1

Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real

Moment

1 0.00578 0.00700 0.953 0.888 -0.345 -0.319

2 0.00521 0.00700 0.949 0.885 -0.342 -0.317

3 000511 0.00693 0.946 0.882 -0.341 -0.316

4 0.00501 0.00669 1.061 0.987 -0.396 -0.365

Table 6.8: Problem B: NACA 4412 Start Point, Scheme 2

Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real

Moment

1 0.00552 0.00723 0.992 0.951 -0.363 -0.349

2 0.00531 0.00671 0.972 0936 -0.351 -0.339

3 0.00538 0 00700 1.097 1.055 -0.413 -0.398

4 0.00543 0.00700 1.204
i li i i inn:

1.158 -0.465
'' ' " >

-0.448

141

Table 6.9: Problem D: NACA 0012 Start Point, Scheme 1

Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real

Moment

1 0.00519 0.00612 0481 0.397 -0.124 -0.090

2 0.00516 0.00605 0.484 0.400 -0.125 -0.091

3 0.00437 0.00541 0.534 0.460 -0.142 -0.111

4 0.00414 0.00416 0628 0.522 -0.170 -0.125

5 0.00412 0.00412 0.629 0.525 -0.170 -0.126

Table 6.10: Problem D: NACA 0012 Start Point, Scheme 2

Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real 1

Moment

1 0.00519 0.00612 0.481 0.397 -0.124 -0.090

2 0.00513 0.00601 0484 0.400 -0.125 -0.091

3 0.00543 0.00652 0.542 0 462 -0.147 -0.114

4 0.00411 0.00528 0.560 0.489 -0.152 -0.122

5 0.00422 0.00438 0659 0.565 -0 186 -0.147

6 0.00401 0.00406 0.674 0.572 -0.191 -0.147

7 0.00402 0.00402 0670 0.568 -0.187 -0.145

Table 6.11I: Problem D: NACA 4412 Start Point, Scheme 1

Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real

Moment

1 0.00519 0.00715 0.922 0.853 -0.331 -0.303

2 0.00510 0.00661 0887 0.832 -0.311 -0.291

3 0.00509 0 00650 0.880 0.827 -0308 -0.288

4 000509 0.00650 0.880 0.827 -0.308 -0.288

5 0.00540 0.00540 0.763 0.645 -0.257 -0.207

6 0.00409 0.00453 0.750 0.673 -0.240 -0.208

7 0.00405 0.00405 0.803 0.703 -0.265 -0.223

8 0.00377 0.00378 0.733 0.688 -0.230 -0.213

1 9 0.00377 0.00377 0.733 0.688 -0.230 -0.213 |

142

Table 6.12: Problem D: NACA 4412 Start Point, Scheme 2

Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real

Moment

1 0.00552 0.00723 0.992 0.951 -0 363 -0.349

2 0.00506 0.00555 0.883 0.813 -0.298 -0.270

3 0.00511 000511 0.847 0.760 -0.283 -0.247

4 0.00514 0.00514 0.848 0.743 -0.286 -0.242

Table 6.13: Problem E: NACA 0012 Start Point, Scheme 1

Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real

Moment

| 1 0.00506 0.00521 0.834 0.756 -0.276 -0.245

2 0.00493 0.00498 0851 0.778 -0.282 -0.253

1 3 0.00493 000495 0.850 0.777 -0.281 -0.253

Table 6.14 : Problem E: NACA 0012 Start Point, Scheme 2

Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real

Moment

1 0.00591 0.00602 0.820 0.742 -0.276 -0.245

2 0.00487 0.00504 0.803 0 740 -0.256 -0.231

3 0.00488 0.00489 0.805 0.734 -0.258 -0.230

1 4 0.00487 0.00488 0.805 0.735 -0.258 -0.230

Table 6. 15: Problem E: NACA.4412 Start

Ideal Lift

Point, Scheme 1

Iteration Skin

Friction

Real

Drag

Real Lift Ideal

Moment

Real 8

Moment

1 0.00519 0.00715 0.922 0.853 -0.331 -0.303

2 0.00510 0.00571 0.850 0796 -0.288 -0.268

3 0.00500 0.00501 0.764 0.700 -0.241 -0.217

4 0.00500 0.00500 0.765 0.701 -0.241 -0.217

5 0.00453 0.00473 0.771 0.713 -0.244 -0.219

6 0 00397 000397 0.793 0.728 -0.246 -0.220

143

Table 6.H.: Problem E: NACA 4412 Start Point, Scheme 2

Iteration Skin

Friction

Real

Drag

Ideal Lift Real Lift Ideal

Moment

Real

Moment

1 0.00552 0.00723 0.992 0.951 -0.363 -0.349

2 000524 0.00637 0.972 0.939 -0.350 -0.339

3 0.00522 0.00620 0968 0.936 -0.347 -0.337

4 0.00520 0.00606 0.965 0.934 -0.346 -0.336

5 0.00505 0.00579 0.963 0.932 -0 344 -0.334

6 0.00532 0.00537 0.870 0.796 -0.299 -0.269

7 0.00528 0.00532 0.865 0.795 -0.297 -0.268 J

144

7. CONCLUSIONS AND RECOMMENDATIONS

The objectives of the current work were fulfilled in that (1) a mathematical model

was developed to analyze the flow about an airfoil that incorporated boundary layer

effects, (2) the code was incorporated into an optimizer and optimal airfoils were found

for all the described cases, and (3) a CFD model was generated to verify the results of the

optimal solutions. For the most part, the work was successful. But, as can be expected

with any large project, some problems were encountered. Also, it was determined that

much work could still be done but would be beyond the scope of the present thesis.

Probably the most deficient part of the project was the analysis model. Many

problems were experienced while running optimization models. For instance, the boundary

layer calculator would sometimes have difficulties calculating the conditions for the

infeasible designs proposed during search direction determination and the code would

subsequently crash. This is of some concern because the hybrid GRG-SQP method used,

usually takes small steps in the infeasible direction and the returns to an active constraint

boundary This did not occur often enough that it hindered the progress of the work but it

is an area that should be corrected. It would be desirable to incorporate some type of

mechanism that, before the code was allowed to crash, informed OptdesX of the ill-

conditioned problem and made to either change search directions or reduce step sizes.

Since the moment coefficients turned out not to affect the solution, some time

could be spent trying to determine a more suitable way of controlling pitching moment.

Even when the constraint was active it quickly became inactive with increasing lift. One

145

possible way to approach this is to set upper and lower limits on the moment coefficient,

in affect, making the pitching moment a side constraint.

Another thing that could be done is to develop a postprocessor routine that would

save all the required information at every iteration without having to physically stop the

optimization. Currently, optimization runs are made one iteration at a time so that results

can be saved. This not only slows the optimization process because calculations are

stopped but also because information from previous iterations is lost, hence, OptdesX is

not allowed to take full advantage of the variable metric update used in search direction

determination

Other work that could be done includes investigating different angles of attack.

The current work only looked at a four degree angle of attack. Also, different Reynolds

numbers could be investigated.

Despite the mentioned deficiencies, some valuable information was acquired from

the project. For instance, it was determined that the optimal solutions were highly

dependent on the staring airfoil shape. As illustrated in the result plots, the optimal

sections were not limited to airfoils close in shape to the starting point. This is a notable

improvement over many existing methods. Also, it was found that different geometry

definition methods could be used for different types of problems For example, the sloped

line definition method could be used if a high lift airfoil is desired and the horizontal line

definition method could be used if low drag airfoils are required

The optimization results were very successful from an optimization standpoint as

well as a design standpoint. For the unconstrained maximum lift problem, the objective

146

was improved upon by as much as 306 percent Likewise drag was improved upon by as

much as 45.7 percent. Also the results were proven to be accurate within a reasonable

degree through the use of CFD. Overall, the method was successful but left room for

improvement.

147

LIST OF REFERENCES

1. Eppler, R ,
and Somers, D. M.,A Computer Program for the Design andAnalysis oj

Low SpeedAirfoils, NASA TM 80210, 1980.

2. Vanderplaats, G. N, Hicks, R. N, and Murman, E. M., Applications ofNumerical

Optimization Techniques toAirfoilDesign, NASA Ames Research Center, NASA SP-

347, Part II, pp. 749-768, March, 1975.

3. Vanderplaats, G. N, and Hicks, R. N, Numerical Optimization Using a Reduced

Number ofDesign Variables, NASA Ames Research Center, NASA TM X-73, 151,

July 1976

4. Liebeck, R. H
,
and Ormsbee, A. J., Optimization of Airfoils for Maximum Lift,

Journal ofAircraft, Vol. 7, No 5, 1969

5. Coiro, D. P., and Nicolosi, F., Design and Optimization of Glider Components,

Technical Soaring, Vol. XIX, No. 2, 1995.

6. Chang, I. C, et. al., Optimization of the Wing-Body Configuration by the Euler

Equations, AIAA 94-1899,
12th

AIAA Applied Aerodynamics Conference, 1994.

7 Venkataraman, P., A New ProcedureforAirfoilDefinition, Paper AIAA 95-1875, 13

AIAA Applied Aerodynamics Conference, San Diego, CA., June 1995.

8 Parkinson, A., et al
,
OptdesX - A Software System for Optimal Engineering Design,

Design Synthesis Inc., Provo, Utah, 1992

9. Vanderplaats, G. N, Numerical Optimization Techniques for Engineering Design,

withApplications, McGraw-Hill Series inMechanical Engineering, 1984.

10 Parkinson, A., and Wilson, M, Development of a Hybrid GRG-SQP Algorithm for

ConstrainedNonlinear Programming, J. ofMech. Trans, and Automation in Design,

Trans. ASME, Vol. 110, pp. 308, Sep. 1988.

11. Rogers, D. F ,
and Adams, J. A., Mathematical Elements for Computer Graphics,

McGraw-Hill, 1990.

148

12. Moran, J ,
An Introduction to Theoretical and Computational Aerodynamics, John

Wiley and Sons, 1984

13 Abbot, I. H ,
and Von Doenhoff, A. E., Theory of Wing Sections, Dover Publications,

1959

14 Venkataraman, P ., A Design Optimization Technique for Airfoil Shapes, Paper AIAA

94-1813,
12th

AIAA Applied Aerodynamics Conference, Colorado Springs, CO., June

1994.

15 Fluent User's Guide v4.2, Fluent Inc., Lebanon, NH, 1993.

149

Appendix I: FORTRAN Program ofAnalysis Model

c ... subroutine anapre

c Preprocessing Routine

c

subroutine anapre (modelN)
character*17 modelN

c. ..set model name (16 chars max)

mode 1N= 'Optimum
Airfoil'

return

end

c . . . subruotine anafun

c Analysis Routine

c

subroutine anafun

c

c Airfoil is described using Bezier Polygons.

c Hess-Smith-Douglas Method is used for initial source panels

c and a single vortex distribution (MORAN)
cc

cc Boundary layer transition, seperation are predicted using

cc Twhaites Method, Michael's method, and Head's Method (MORAN)

c

c There are fourteen design variables

c

c There are 22 constraints
-

all linear

cc enforcing geometrical compatibility in the definition of

c airfoil geometry

cc

cc by
Venkat- September 30, 1993

c

c parameter ntotal=200, pi=3 . 1415926565

implicit real*8 (a-h, o-z)

c dimension xa(210) , ya(210), xinit(210), yinit(210)

dimension xa(210), ya(210)

c dimension dx(210) , dy(210), sinthe (210) , costhe(210)

dimension sinthe (210) , costhe(210)

c dimension dist (210) , xmid(210), ymid(210), a(210,210)

dimension dist (210) , xmid(210), ymid(210)

c dimension cp(210), vtan(210), vgrad(210), theta(210)

dimension cp(210), vtan(210)

c dimension c (210)

c

c common /design/ xtO ,
ytO ,

xtl,ytl,xt2 ,yt2 , xt3 ,yt3 ,

c
*

Xt4,yt4,xt5,yt5,xt6,yt6,

c
* xb7 ,

yb7 , xb8 ,
yb8

,
xb9 , yb9 ,

c
* xbl0,ybl0,xbll,ybll

common/envdata/ alpha, vfree, anufree, rhofree, chord,

*
pref, calf, salf

common/param/ntotal, nseg, nact, nupper, nlower, npanels,

*
pi, pinv, nactl

150

common/ac/a(210, 210) , c (210)
common /rey/ re

common/cd/ cdf

common/hfact/ h

common/dxdy/ dx (210) , dy (210)
common /vc/ vcl,vcd,vcm

common/xc/ xcl,xcd,xcm

ntotal = 210

pi = 3.1415926585

pinv = 0.5/pi

ifirst = 1

define the Bezier Vertices as design variables

c. .get AV values from OptdesX (Variable name 16 chars max)

cc call avdsca (?var ,

'

?VariableName
'

)

call avdsca (xtO,
'x0-front'

)

print *, 'xtC =
'

,xt0

call avdsca (yto, 'y0-front
'

)

call avdsca (xtl, 'xl-top
left'

)

call avdsca (yti, 'yl-top
left'

)
call avdsca xt2, 'x2-top left

'

)

call avdsca yt2, 'y2-top left')

call avdsca xt3, 'x3-top center')

call avdsca yt3, 'y3-top center')

call avdsca xt4, 'x4-top right
'

)

call avdsca yt4, 'y4-top right
'

)

call avdsca xt5, 'x5-top right
'

)

call avdsca yts, 'y5-top right
'

)

call avdsca xt6,
'x6-back'

)

call avdsca yt6,
'y6-back'

)

call avdsca xb7, 'x7 -bottom right')

call avdsca yb7, 'y7-bottom right')

call avdsca xb8, 'x8-bottom right')

call avdsca yb8, 'y8-bottom right')

call avdsca (xb9, 'x9 -bottom
center'

call avdsca (yb9, 'y9-bottom
center'

call avdsca (xblC ,
'xlO-bottom

left'

call avdsca (ybic ,
'ylO-bottom

left'

call avdsca (xbl_., 'xll-bottom
left'

call avdsca (ybll., 'yll-bottom
left'

write (6 , *) xtO
'
,xt0

write (6, *) ytO
'

,yto

wr i te (6 ,

*
) xtl

'

,xtl

write (6, *) yti ',yti

write (6, *) xt2
'
,xt2

write (6, *) yt2 ',yt2

write (6, *) xt3
'

,xt3

write (6, *) 'yt3 ',yt3

write (6, *) xt4
'
,xt4

write (6, *) 'yt4
'

,yt4

write (6, *) 'xt5
'

,xt5

write (6, *) yt5 ',yt5

write (6, *) 'xt6
'

,xt6

write (6, *) 'yt6
'

,yt6

write (6, *) 'xb7 ',xb7

write (6, *) 'yb7
'
,yb7

writ<3(6,*) 'xb8 ',xb8

write (6, *) 'yb8 ',yb8

writ<3(6,*) 'xb9
'
,xb9

write (6, *) 'yb9 ',yb9

write (6, *) 'xbl():
'
,xbl0

151

write(6,*) 'yblO

write (6,*) 'xbll

write (6,
*

) 'ybll

,yblO

,xbll

,ybll

c. . .new variable calls

c call avdsca (npoints, 'npoints
'

)
call avdsca (alpha, 'alpha (deg.)')
call avdsca (vf ree, 'vfreen (rn/s)')
call avdsca (anufree, 'anuf

ree'

)
call avdsca (rhof ree, 'rhofree (kg/m^3)')
call avdsca (chord,

'

chord (m)
'

)
call avdsca (pref, 'pref (Pa)')
call avdsca (re,

'

reynolds #')
call avdsca (h,

'

shape factor,
h'

)

c. . .send functions to OptdesX (Function names 16 chars max)

cc call afdsca(?fun,
'

?Function Name')

c the functional constraints are geometric to provide an acceptable

c shape definition. Constraints are set up so that they are positive.

c

c the ordinates yt3
, yt4 , yb9 ,yblO are not design variables. This

c allows the location of the maximum points on the top and bottom

c surface.

yt3 = yt2

yt4 = yt2

c yb9 = yb8

c yblO = yb8

c constrain (xblO,yblO) such that it lies on the line defined

c by (xb9,yb9) and (xb8,yb8)

slope = (yb8-yb9) / (xb8-xb9)

yblO =
slope* (xbl0-xb8)+yb8

c constraints on the absisca's

xtl2 = xt2-xtl

xt32 = xt3-xt2

xt43 = xt4-xt3

xt54 = xt5-xt4

xt65 = xt6-xt5

xb67 = xt6-xb7

xb78 = xb7-xb8

xb89 = xb8-xb9

xb910 = xb9-xbl0

xblOll = xblO-x. 11

c constraints on the ordinates

ytlO = ytl-ytO

yt21 = yt2-ytl

yt45 = yt4-yt5

yt56 = yt5-yt6

ybOll = ytO-ybll

yblllO = ybll-yblO

yb78 = yb7-yb8

yb67 = yt6-yb7

yb89 = yb8-yb9

yb910 = yb9-ybl0

152

call afdsca (yt3
, 'yt3=yt2

'

)

call afdsca (yt4, 'yt4=yt2
'

)
c call afdsca (yb9,

'yb9=yb8'

)
c call afdsca(yblO,

'yblO=yb8'

)
call afdsca(yblO, 'yblO on line')

call afdsca(xtl2, 'abscissca 1-2')
call afdsca(xt32, 'abscissca 3-2')
call afdsca(xt43

, 'abscissca 4-3')
call afdsca(xt54, 'abscissca 5-4')

print *,'four functions called...'

call afdsca(xt65, 'abscissca 6-5')
call afdsca(xb67, 'abscissca 6-7')
call afdsca(xb78, 'abscissca 7-8')
call afdsca (xb89, 'abscissca 8-9')

print *, 'another four functions called...

call afdsca(xb910, 'abscissca 9-10')
call afdsca(xbl011, 'abscissca 10-11')
call afdsca(ytlO, 'ordinate 0-1')
call afdsca (yt21, 'ordinate 2-1')

print *, 'another four functions called...

call afdsca (yt45, 'ordinate 4-5')
call afdsca (yt56, 'ordinate 5-6')

call afdsca(yb011, 'ordinate 0-11')
call afdsca(yblllO, 'ordinate 10-11')

print *, 'another four functions called. . .

call afdsca (yb78,
'

ordinate 7-8')

call afdsca (yb67 ordinate 6-7')

call afdsca (yb89, 'ordinate 8-9')

call afdsca (yb910, 'ordinate 9-10')

print *, 'another two functions called. . .

'

c call afdsca (yt23 , 'equality y 2-3')

c call afdsca (yt34, 'equality y 3-4')

c print *, 'another two functions
called'

c call afdsca (yb89, 'equality y 8-9')

c call afdsca (yb910, equality y 9-10')

c print *, 'yb910 = ',yb910

cc

cc obtain airfoil coordinates from subroutine coord(xa,ya)

cc

cc call coord (xa,ya)

cc

c call coord (xa,ya, npoints)

c call coord(xa,ya)

nwhich = 0

if (nwhich.eq. 0) then

call coord (xa, ya, xtO , yt 0 , xtl , yt 1 , xt2 , yt2 , xt3 , yt3 ,

*
Xt4,yt4,xt5,yt5,xt6,yt6,

* xb7 ,
yb7 , xb8 , yb8 , xb9 , yb9 ,

xbl0,ybl0,xbll,ybll)

153

write(6,*) 'called and returned from coord (xa, ya)
'

else

open(unit=14, f ile=
'

input .dat
'

,

status='old'

)
2 0 read (14, *,end=3 0) i, xa (i) , ya (i)

nact = nact + 1

if (xa(i) .eq.O . 0) nlower = i-1

go to 2 0

3 0 continue

npanels = nact-1

nupper = npanels-nlower

write (6 ,

*
)

'

nact
, npanels

'

, nact , npanels

write (6,
*
) 'nupper, nlower

'

, nupper, nlower

close (unit=14)
endif

write (6,*) 'about to write the airfoil
coordinates'

open (unit=12,
file=" coord.dat"

,
status=

"unknown"

)
do 100 i = 1, nact

write(12,*) i , xa (i) , ya (i)

c write(6,*) i, xa (i) , ya (i)
100 continue

close (unit=12)

print *, 'wrote airfoil
coordinates'

cc

cc

c if (if irst .eq. 1) then

c open (unit=15,
file="

initial .dat ", status=
'unknown'

)

c else

c open (unit = ll,
file="

inbet .dat ", status = 'unknown')

c endif

c write (6,*) 'about to write the airfoil
coordinates'

c do 10 i=l,nact

c xinit(i) = xa (i)

c yinit (i) = ya (i)

c write (6,*) xa (i) , ya (i)

c write(15,*) xa (i) ,
ya (i)

c if (if irst .eq. 1) write(10,*) xa(i),ya(i)

c if (if irst .ne . 1) write(ll,*) xa(i),ya(i)

clO continue

c if (if irst .eq. 1) close(unit = 10, keep)

c if (ifirst.ne.l) write(ll,15)

cl5 format (//////)

c print *, 'wrote airfoil
coordinates'

c nact = nact+1

c ifirst = ifirst+1

cc calculate objective function --

max lift coefficient

cc
__

min drag coefficient

cc

cc the aerodynamics starts here

cc subroutines used:

cc ambient

cc pslope (xa,ya, dx, dy, dist, sinthe, costhe)

cc coeffnt (xa,ya, sinthe, costhe, a, c, nactl,xmid,ymid)

cc solsys (a, c, nact, ntotal, ind)

cc veldist (xa,ya, xmid,ymid, dx, dy, costhe, sinthe, a, nact 1, cp, vtan)

cc clcdcm (dx, dy, cp, cl, cd, cm)

cc intgrl (xa,ya, vtan, vgrad, theta)
- to be done

154

cc

cc these subroutines are found in filename =
'
aerodyn . f

'

cc

cc get ambient conditions

cc

cc

call ambient

write (6,*) 'returned from subroutine
ambient1

cc set up panel length and orientation

cc

c call psslope (xa,ya, dx, dy, dist , sinthe, costhe)

call psslope (xa,ya, dist, sinthe, costhe)

write(6,*) 'returned form
psslope'

cc

cc set up the influence coefficients

cc

c call coef fnt (xa,ya, sinthe, costhe, a, c,xmid,ymid)
call coef fnt (xa,ya, sinthe, costhe, xmid,ymid)

write(6,*) 'returned form coef
fnt'

cc

cc solve the linear system using gauss elimination

cc

c call solsys (a, c, nact , ntotal , ind)
call solsys (nact

, ntotal, ind)
write (6,*) 'returned from

solsys'

cc

if (ind.eq.l) write(6,201)

201 format (//5x, 'The system is singular')

cc

cc

cc obtain velocity distribution and pressure coefficients

cc

c call veldist (xa,ya, xmid, ymid, costhe, sinthe, a, c, cp, vtan)
c call veldist (xa,ya, xmid, ymid, costhe, sinthe, cp, vtan)

call veldist (xa,ya, xmid, ymid, costhe, sinthe, loop, cp, vtan)

write(6,*) 'returned from
veldist'

cc

cc calculate aerodynamic coefficients

cc

c call clcdcm(dx, dy, xmid, ymid, cp, cl, cd, cm)

call clcdcm(xmid, ymid, cp, loop)

write (6,*) 'returned from
clcdcm'

cc

cc others to follow from here

cc

write (6,*) 'xcl,xcd,xcm:
'

write(6,*) xcl,xcd,xcm

call afdsca(cdf ,

'

skin friction')

call afdsca (xcd,
'

ideal drag coeff)

call afdsca (vcd, 'real drag coeff)

call afdsca (xcl, 'ideal lift coeff)

call afdsca (vcl, 'real lift coeff)

call afdsca (xcm,
'

ideal mom. coeff)

call afdsca (vcm, 'real mom. coeff)

print *, 'returned from calculating
cd,cl,cm'

155

return

end

c ... subroutine anapos

c Postprocessing Routine

c

subroutine anapos

return

end

156

c===

c

c

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

cc

subroutine coord (x,y, npoints)
subroutine coord (x,y)

subroutine coord (x, y ,
xtO , ytO , xtl , yti, xt2 ,yt2 ,

xt3 ,
yt3 ,

"
Xt4,yt4,xt5,yt5,xt6,yt6,

*
Xb7,yb7,xb8,yb8,xb9,yb9,

*
xblO,yblO,xbll,ybll)

subroutine to obtain airfoil coordinates from Bezier

geometry description, to be accessed by OptdesX for

airfoil optimization.

number of Bezier segments = nseg = 4

max number of ordinates = ncord = 200

number of points in each segment = npoints - 25

number of actual coordinates = nact

to conform to panel definition later, the airfoil

coordinates are generated clockwise starting from the

bottom left segment

programmed by venkat, 10/29/93

curves are generated using

[v**3 v**2 v 1] [-1 3

[3 -6

[-3 3

[1 0

v ;parameter ; (b?l,b?2)

-3 1] [bll bl2]
3 0] [b21 b22]

0 0] [b31 b32]

0 0] [b41 b42]

vertices of the polygon

cc

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

implicit real*8 (a-h, o-z)

parameter npoints = 28

dimension x(l), y(l), b(4,4,2)

dimension coeff (4,4) ,param(l,4) ,vert(4,2) ,xy(l,2) ,
bet (4,2;

common /design/ xtO
,
ytO ,

xtl ,
yti ,

xt2 ,
yt2 , xt3 , yt3 ,

* Xt4,yt4,xt5,yt5,xt6,yt6,

* xb7 ,
yb7

,
xb8 ,

yb8 ,
xb9 ,

yb9 ,

* xblO,yblO,xbll,ybll

common/param/ntotal, nseg, nact, nupper,
nlower , npanels,

* pi, pinv, nactl

npoints=28

write (6, *) 'xtO
'
,xt0

write (6 , *) 'ytO
'
,yt0

write (6, *) 'xtl
'
,xtl

write (6, *) 'yti ',ytl

write (6, *) 'xt2
'

,xt2

write (6, *) 'yt2
'

,yt2

write (6, *) 'xt3
'
,xt3

write (6, *) 'yt3
'

,yt3

write (6, *) 'xt4
'

,xt4

write (6, *) 'yt4
'

,yt4

write (6, *) 'xt5
'
,xt5

157

c

c

c

c

c

c

c

c

c

c

c

c

c

c

cc

cc

cc

10

cc

cc

cc

write (6 ,

*
'yt5 '.yt5

write (6,
*

'xt6
'

,xt6

write (6,
*

'yt6
'

,yt6

write (6,
*

'xb7
'

,xb7

write (6,
+

'yb7
'

,yb7

write (6,
+

'xb8
'

,xb8

write (6,
*

'yb8
'

,yb8

write (6,
*

'xb9
'

,xb9

write (6,
*

'yb9
'

,yb9

write (6,
+

'xblO:
'

,xblO

write (6,
*

'yblO:
'

,ybl0

write (6,
*

'xbll:
'

,xbll

write (6,
? 'ybll:

'

,ybll

write (6,*) 'in
coord'

write (6,*) 'npoints :', npoints

nseg = 4

read the coefficient matrix

do 10 i=l,4

do 10 j=l,4

coeff (i, j) = 0.0

continue

coeff (1, 1) = -1.0

coeff (1,2) =3.0

coeff(l,3) = -3.0

coeff(l,4) = 1.0

coeff (2, 1) =3.0

coeff(2,2) = -6.0

coeff (2,3) =3.0

coeff(3,l) = -3.0

coeff (3,2) =3.0

coeff (4, 1) =1.0

start airfoil definition

from bottom to right

print the coefficient is
stored'

cc

cc

cc

cc

cc

cc

define bottom right polygn vertices

b(l,l,l)

b(l, 1,2)

b.1,2,1)

b(l,2,2)

b(l,3,l)

b(l,3,2)

b(l,4,l)

b(l,4,2)

= xt6

= yt6

= xb7

= yb7

= xb8

= yb8

= xb9

= yb9

define bottom left polygon vertices

b(2,l,l)

b(2,l,2)

b(2,2,l)

b(2,2,2)

b(2,3,l)

b(2,3,2)

b(2,4,l)

b(2,4,2)

xb9

yb9

xblO

yblO

xbll

ybll

xtO

ytO

cc

158

cc define top left polygon vertices

cc

b(3, 1,1) = xtO

b(3, 1,2) = ytO

b(3,2,l) = xtl

b(3,2,2) = yti

b(3,3,l) = xt2

b(3,3,2) = yt2

b(3,4, 1) = xt3

b(3,4,2) = yt3

cc

cc define top right polygon vertices

cc

b(4,l,l) = xt3

b(4,l,2) = yt3

b(4,2, 1) = xt4

b(4,2,2) = yt4

b(4,3,l) = xt5

b(4,3,2) = yt5

b(4,4,l) = xt6

b(4,4,2) = yt6

cc

cc start computing upper and lower surfaces

cc

print *, 'stored the polygon
vertices'

ij = 1

do 20 jseg = 1, nseg

cc read the values of the vertices into vert(i,j)

do 25 i = 1,4

do 25 j = 1,2

vert(i,j) = b(jseg,i,j)
write (6 ,

*
) vert (i , j)

25 continue

cc call amult to multiply coeff (i,j)
*
vert(i,j)

call amult (4,4,4,2, coeff, vert, bet)

print *,
'multiplied'

, jseg
do 2 6 i = 1,4

write (6 ,

*
) vert (i , 1) , vert (i , 2)

26 continue

cc

cc construct the parameter matrix param(l,4) and calculate x,y

cc

param(l,4) =1.0

if (jseg.eq. 1) ii=l

if (jseg.gt . 1) ii=2

do 30 i=ii, npoints

w = (float (i)-1.0) / (float (npoints) -1)

cc write (6, *)w

print *,
'

w
='

,
w

param(l,l) = w**3

param(l,2) = w**2

param(l,3) = w

159

cc

cc call amult to calculate x and y
cc

call amult (1, 4, 4, 2 , param, bet , xy)

print *, 'multiplication of
parameter'

cc

print *,'xy =
'

, xy (1 , 1) , xy (1 , 2)

if (xy (1, 1) .eq.O .0) nlower = ij
x(ij) = xy(l,l)

y(ij) = xy(l,2)

print *, 'ij , ij,x(ij) ,y(ij)

ij = ij +1

print *, 'ij,x,y',ij,x(ij-l),y(ij-l)

cc write (6, *)x(in) ,y (in)
100 format(lx,2fl0.0)
cc

3 0 continue

2 0 continue

nact = ij-1

npanels = nact
- 1

write (6,*) 'nact', nact

cc do 35 i = 1, nact

cc if (x(i) . eq. 0 . 0) i = nlower

3 5 continue

c nupper = nact
-

nlower

nupper = npanels
-

nlower

print *, 'nupper, nlower, npanels ', nupper , nlower, npanels

print *, 'nact', nact

return

end

subroutine amult (il,jl,i2,j2,a,b,c)

cc

cc matrix multiplication

cc

implicit real*8 (a-h, o-z)

dimension a (il, jl) ,b(i2,j2) ,c(il,j2)

cc

do 20 i = 1, il

do 20 j = 1 , j 2

c(i,j) = 0.0

do 20 k = l,jl

c(i, j) = c(i, j) + a(i,k)*b(k, j)

2 0 continue

return

end

160

c

c This file contains subroutines for ideal . f

c

c==

cc

subroutine ambient

cc

cc get ambient and free stream data

cc

implicit real*8 (a-h, o-z)
cc

common/envdata/alpha, vfree, anuf ree, rhofree, chord, pref,
*

calf, salf

write (6,*) 'in
ambient'

alpha = alpha*3 .141592658/180.

cc

c

salf = dsin(alpha)
calf = dcos (alpha)

c

write(6,*)
'

salf , calf , salf , calf

c

c vfree = 150

c anufree = 1.5723e-04

c rhofree = 2.3769e-03

c chord = 5.0

c pref = 2116.2

cc

print
*,'

alpha, .. etc ', alpha, pref

cc

return

end

C==:

c subroutine psslope (x,y, dx, dy, dist , sinthe, costhe)

subroutine psslope (x,y, dist, sinthe, costhe)

cc

cc sets the slope of the panels and calculate the length

cc

implicit real*8 (a-h, o-z)

cc

c dimension x(l) ,y (1) , dx(1) , dy (1) ,
dist (1)

dimension x (1) ,y (1) , dist (1)

dimension sinthe (1) , costhe (1)

cc

cc

common/param/ntotal, nseg, nact , nupper, nlower, npanels,

"
pi, pinv, nactl

common/dxdy/ dx(210) , dy (210)

do 10 i = 1, npanels

dx(i) = x(i+l)-x(i)

dy(i) = y(i+l)-y(i)

dist(i) = dsqrt(dx(i)*dx(i) + dy (i) *dy (l))

sinthe(i) = dy (i) /dist (i)

costhe(i) = dx(i) /dist (i)

10 continue

161

print *,'dx(l),dy(l)..',dx(l),dy(l) ,dist(l) ,
sinthe (1)

print *, 'dx (npanels) . .

'

, dx(npanels) , dist (npanels)

return

end

c subroutine coef fnt (x, y, sinthe, costhe, a, c, xmid, ymid)

subroutine coef fnt (x,y, sinthe, costhe, xmid, ymid)

cc

cc setting up the coefficoent matrix for the source panels

cc

implicit real*8 (a-h, o-z)

cc

dimension x (1) , y (1) , sinthe (1) , costhe (1)

c dimension a (ntotal, ntotal) , c (1) , xmid (1) ,ymid(1)

dimension xmid(1) ,ymid(1)

cc

cc

cc

cc

cc

cc

cc

cc

common /param/ntotal, nseg, nact, nupper, nlower, npanels, pi,
*

pinv,nactl

common/ envdata/ alpha, vfree, anuf ree, rhofree, chord, pref,

*
calf, salf

common/rhs/ tempo (210) ,al(210,210)

common/ac/ a (210 ,
210) , c (210)

write(6,*) 'in
coeffnt'

write (6,*) 'nact:', nact

write(6,*)
'

salf ,
calf , salf ,

calf

c

open(unit=ll, f ile="thetal ,
status= 'unknown

'

)

do 160 i = 1, nact

write (11, *) i, sinthe (i) , costhe (i)

c write(6,*)
'

i, sinthe (i) ,
costhe (i) :

'

c write(6,*) i, sinthe (i), costhe (i)

160 continue

close (unit=ll)

cc

cc initialize coefficients

cc

do 90 j = l,nact

a (nact, j) =0.0

9 0 continue

cc

cc initialize the velocity at the midpoints of i panel to zero

GO

open(unit=12, file='mid2 .dat
'

,
status=

'unknown'

)

do 120 i = 1, npanels

xmid(i) = 0.5*(x(i) + x(i+D)

ymid(i) = 0.5*(y(i) + y(i +D)

write(12,*) xmid(i) ,ymid(i)

a (i, nact) =0.0

contribution of the j source panel at the i panel

do 110 j = 1, npanels

flog =0.0

ftan = pi

cc

c print *, 'flog,
ftan'

, flog, ftan

if (j .eq.i) go to 100

dxj = xmid(i) -x(j)

dxjp = xmid(i) -x(j+1)

162

dyj = ymid(i) -y(j)

dyjp = ymid(i) -y(j+l)

flog = 0.5*dlog((dxjp*dxjp+dyjp*dyjp) / (dxj *dxj+dyj *dyj))
ftan = datan2 (dyjp*dxj-dxjp*dyj,dxjp*dxj+dyjp*dyj)

cc

c print
*,'

flog,
ftan'

, flog, ftan
c print *,

'pi,pinv'

,pi,pinv

cc

100 continue

ctimtj = costhe(i) *costhe(j) + sinthe (i) *sinthe (j)

stimtj = sinthe(i) *costhe(j) -

costhe (i) *sinthe (j)
cc

a(i,j) =
pinv*

(ftan*ctimtj + flog*stimtj)
cc

c print
*,'

ctimtj , stimtj ', ctimtj , stimtj
b =

pinv* (f log*ctimtj -

ftan*stimtj)
cc

a (i, nact) = a (i, nact) + b

cc

c print *, 'a (i, nact)
'

,a(i,nact)

if ((i.gt .1) .and. (i. It .npanels)) go to 110

cc

cc if i panel touches the trailing edge, add

cc contributions due to the Kutta Condition

cc

a (nact, j) = a(nact,j)
- b

a(nact,nact) = a(nact,nact) + a(i,j)

cc

110 continue

cc

cc evaluation of the right hand side

cc

c(i) = sinthe (i) *calf -

costhe (i) *salf

120 continue

close (unit=12)

cc

print *, 'c(l) ',c(l)

c(nact) = -(costhe(l) + costhe (npanels)) *calf
*

-(sinthe(l) + sinthe (npanels)) *salf

cc

c

c STORE VALUES OF RHS VECTOR BEFORE SENDING [A] TO GAUSS

c

open (unit=20, f ile='a.dat
'

,
s tatus =

'unknown'

)

open (unit=21, f ile='c.dat
'

, status =
'unknown'

)

c open (unit=22, f ile='aal .dat
'

,
status=

'unknown'

)

c open(unit=23, f
ile='

tempo.dat
'

,

status=' unknown'

)

do 130 i=l,nact

write(21,*) i,c(i)

c write (6,*) 'i,c(i):',i,c(i)

tempo (i) = c(i)

c write(23,*) i,tempo(i)

do 140 j = l,nact

write(20,*) i,j,a(i,j)

al(i, j) = a(i, j)

c write(22,*) i,j,al(i,j)

140 continue

13 0 continue

close (unit=20)

close (unit=21)

c close (unit=22)

c close (unit=23)

c print *, 'a(nact, nact) ,c(nact)
'

,a(nact, nact) , c(nact)

163

cc

return

end

c subroutine veldist (x, y, xmid, ymid, costhe, sinthe, a, c, cp, vtan)

c subroutine veldist (x,y, xmid, ymid, costhe, sinthe, cp, vtan)

subroutine veldist (x,y , xmid, ymid, costhe, sinthe, loop, cp, vtan)

cc

cc calculation of pressure distribution

cc

cc

implicit real*8 (a-h, o-z)

dimension x(l) ,y (1) ,xmid(l) ,ymid(l) ,
costhe (1) ,

sinthe (1)

c dimension a (1, ntotal), c (1), vtan (1), cp (1)

dimension vtan (1) , cp (1)

c

c new dimension statements

c

dimension xt(210) ,yt(210) ,xb(210) ,yb(210)

dimension prod (210) ,prodn(210) ,dstar(210) ,dstarn(210) ,

*
xdstar(210) ,ydstar(210)

dimension s(210)

dimension pgrad(210)

c dimension ve(210)

c dimension vtanl(210)

cc

common/param/ntotal, nseg, nact, nupper, nlower, npanels,

*
pi, pinv, nactl

common/ envdata/alpha, vfree, anufree, rhofree, chord, pref,

*
calf, salf

c

c new common statements

c

common/rhs/ tempo(210) ,al(210,210)

c common/skal/ nzero,ymult

common/ cd/ cdf

common /vel/ ve(210)

common/ac/ a (210 , 210) ,
c (210)

common/trans/ xtrans

write(6,*) 'in
veldis'

c

loop = 0

c

ymult =0.0

c open (unit=20,file='al.
dat'

,
status=

'unknown'

)

open (unit=21,file='rhsl.
dat'

,

status='

unknown
'

)

do 290 i=l,nact

write(21,*) i, c (i) ,
tempo (i)

do 280 j = l,nact

c write(20,*) i,j,a(i,j)

280 continue

290 continue

c close (unit=20)

close (unit=21)

10 continue

cc

cc vorticity is found in c(nact)

cc

cc

gamma = c(nact)

do 13 0 i = 1, npanels

vtan(i) = calf*costhe(i) + salf*sinthe (i)

164

cc

c

c add contributions of jth panel

c

do 12 0 j = 1, npanels

flog =0.0

ftan = pi

if (j .eq. i) go to 100

cc

dxj = xmid(i) -x (j)

dxjp = xmid(i) -x(j+1)

dyj = ymid(i) -y(j)

dyjp = ymid(i) -y (j+1)

flog = 0 . 5*dlog((dxjp*dxjp+dyjp*dyjp) / (dxj *dxj+dyj *dyj))

ftan = datan2 (dyjp*dxj -dxjp*dyj , dxjp*dxj+dyjp*dyj)

100 continue

ctimtj = costhe (i) *costhe (j) + sinthe (i) *sinthe (j)

stimtj = sinthe (i) *costhe (j)
-

sinthe (j) *costhe (i)
cc

cc

cc

aa =
pinv*

(f tan*ctimt j + flog*stimtj)

b =
pinv*

(f log*ctimt j
- ftan*stimtj)

vtan(i) = vtan(i)
- b*c(j) + gamma*aa

cc

120 continue

cp(i) = 1.0 -

vtan(i) *vtan (i)

130 continue

cc

cc

c

c CALL CLCDCM FOR IDEAL SOLUTION

c

if (loop.eq.0) then

call clcdcm(xmid, ymid, cp, loop)

endif

c

c (invert viscous solution)

c

c if (loop.eq.l) then

c do 310 i = l,nact

c vtanl(i) = -vtan (npanels+1-i)

c cp(i) = 1.0 - vtanl(i)**2

c310 continue

c do 320 i = l,nact

c vtan(i) = vtanl(i)

c320 continue

c endif

c

c FIND STAGNATION POINT

c

stag = vtan(l)

do 150 i = 2, npanels

if (vtan(i) .lt.0) then

go to 150

else

nstagp
= i

nbottom = i

go to 160

endif

150 continue

c

cl60 ntop = (nact+1) -nbottom

160 ntop =
npanels- (nbottom-2)

165

c do 170 i = npanels , nstagp, -1

c vtan (i+1) =vtan (i)
cl70 continue

c vtan (nstagp) = 0.0

print *, 'nstagp location :', nstagp
c

c WRITE UPDATED Cp TO DATA FILE AND RETURN TO MAIN

c

if (loop.eq.l) then

open (unit=16,
file='

update .dat
'

,
status=

'unknown'

)
open (unit =3 2 , f ile='rhs3 .dat

'

, status =
'

unknown
'

)
open (unit=33, file= 'mid. dat

'

,
status=

'unknown'

)

do 2 60 i = 1, npanels

write(16,*) i, vtan (i) , cp (i)

write(32,*) i,c(i)

write(33,*) xmid(i) , ymid (i)

260 continue

close (unit=16)

close (unit=32)

close (unit=33)

go to 20

endif

c

open (unit=15 , f ile= 'velocity .dat
'

,
status= 'unknown

'

)

do 140 i = 1, npanels

write (15,*) i, vtan (i) , cp (i)

140 continue

close (unit=15)

c

c FIND TRANSITION POINT FOR LOWER SURFACE

c

do 370 i=l, nbottom

if (cp (i+1) . gt
.cp (i)) then

ntrans = i

xtrans = x(i)

go to 380

endif

370 continue

380 continue

if (xtrans.lt .0.1) xtrans =0.1

write (6,*) 'xtrans
:'

,
xtrans

write (6,*)
'

ntrans :', ntrans

c

write(6,*) 'setting up ve,x,y for
intgrl'

c

c SET UP Ve, X, AND Y FOR CALLING INTEGRAL

c

c open (unit =16, f ile='xbyb.dat
'

,
status=

'unknown'

)

sign = -1.0

do 180 nsurf =1,2

if (sign.eq. -1 .) then

do 190 i = 1, nbottom

ve(i) = sign*vtan(nstagp+l-i)

xb(i) = xmid(nstagp+l-i)

yb(i) = ymid(nstagp+l-i)

c write (6,*) i, xb(i) , yb(i) , ve (i)

190 continue

mode=0

write (6,*) 'calling intgrl:
lower'

c call intgrl (nbottom, xb, yb, ve, skind, sigdx)

call intgrl (nbottom, xb,yb, skind, sigdx, prod, ds tar, mode)

write (6,*) 'back from intgrl:
lower'

skindb = skind

sigdxb = sigdx

166

print *, 'bottom: skindb,
sigdxb'

, skindb, sigdxb

c

c REARRANGE BOTTOM PRODUCTS AND THICKNESS
c

do 210 i = 2, nbottom

prodn(i-l) =prod(nbottom+l- (i-1))

dstarn(i-l) = dstar (nbottom+1- (i-1))
210 continue

c

else

do 200 i = l,ntop
ve(i) = vtan(nstagp-l+ (i-1))

xt(i) = xmid(nstagp-l+ (i-1))

yt(i) = ymid(nstagp-l+ (i-1))
200 continue

mode=l

write(6,*) 'calling intgrl: upper'

c call intgrl (ntop, xt,yt,ve, skind, sigdx)
call intgrl (ntop,xt,yt, skind, sigdx, prod, dstar, mode)
write (6,*) 'back from intgrl: upper'

skindt = skind

sigdxt = sigdx

print *, 'top: skindt, sigdxt ', skindt, sigdxt
c

c REARRANGE TOP PRODUCTS AND THICKNESS

c

do 22 0 i = 2, ntop
prodn (nbottom+i-2) =prod (i)

dstarn(nbottom+i-2) =dstar (i)
220 continue

endif

c

sign = 1.0

180 continue

cdf = abs (skindt /sigdxt) +abs (skindb/ sigdxb)

c cdf = (skindt+skindb) / (sigdxt+sigdxb)

print *,
'

sigdxb, sigdxt ', sigdxb, sigdxt

print *,
'

cdf , skindb, skindt :', cdf , skindb, skindt

c

c CALCULATE SURFACE DISTANCE STARTING AT T.E.

c

s(l) = 0.0

do 23 0 i = 2, npanels

dxmid = xmid(i) -xmid(i-l)

dymid = ymid(i) -ymid (i-1)

s(i) = s (i-1) +sqrt (dxmid*dxmid+dymid*dymid)

23 0 continue

c

c CALCULATE PRODUCT GRADIENTS FOR NORMAL VELOCITY (BASED

c ON 3 POINT QUADRATIC APPROXIMATOR)

c

open (unit=31, f ile= 'pgrad.dat
'

, status =
'unknown'

)

prodl = prodn (3)

si = s(3)

prod2 = prodn (1)

s2 = s(l)

s(npanels+l) = s(npanels-2)

do 240 i = 1, npanels

prod3 = prodl

s3 = si

prodl = prod2

si = s2

prod2 = prodn (npanels-2)

167

if (i . It
.npanels) prod2 = prodn(i+l)

s2 = s (i+1)
fact = (s3-sl) / (s2-sl)

pgrad(i) = ((prod2-prodl) *fact- (prod3-prodl) /fact) /

(s3-s2)
write (31,*) i,pgrad(i)

240 continue

close (unit=31)

ADD ON NORMAL VELOCITY CORRECTION TO RIGHT HAND SIDE

OF COEFFICIENT MATRIX

c

c

c

c

c

c

pgrad(nact) = 0.0

do 250 i = l,nact

c(i) = tempo (i) +pgrad(i)
: c (i) = t empo (i)

do 33 0 j = l,nact

a(i,j) = al(i,j)

330 continue

250 continue

open (unit=22, f ile='aa2 .dat
'

,
status=

'unknown'

)

open (unit=23,
file='

rhs2 .dat
'

,

status=' unknown'

)

open(unit=24, f ile='all .dat
'

,
status=

'unknown'

)

do 340 i=l,nact

write (23,*) i , c (i), tempo (i)

do 3 50 j = l,nact

write(22,*) i,j,a(i,j)

write(24,*) i,j,al(i,j)

continue

continue

open (unit =2 3 , f ile='rhs2 .dat
'

,
status =

'unknown'

)

do 3 60 i=l,nact

write(23,*) i, c (i) , tempo (i)

continue

close (unit=22)

close (unit=23)

close (unit=24)

CALL GAUSS FOR REEVALUATION

c

c

350

340

c

c

c

c

c360

c

c

c

c

c

c

201

call solsys (a, c, nact ,
ntotal , ind)

call solsys (nact, ntotal, ind)

if (ind.eq.l) write(6,201)

format (//5x, 'The system is singular')

CALCULATE B.L. COORDINATES

open(unit=17, f ile='blcoord.dat
'

,
status=

'unknown'

do 270 i = 1, npanels

xdstar(i) = xmid(i) -dstarn(i) *sinthe(i)

ydstar(i) = ymid(i) +dstarn(i) *costhe (i)

write (17, *) i,xdstar(i) , 1 . l*ydstar (i)

270 continue

close (unit=17)

c

c

c

c

c

c

cc

loop = 1

go to 10

write (6, *)

write (6, *)

'nstagp
='

, nstagp
'

nbottom, ntop
'

, nbottom, ntop

188

c print *, 'gamma, cp, ...', gamma, cp (1) , cp (npanels)
cc

2 0 return

end

c subroutine clcdcm(dx, dy, xmid, ymid, cp, cl , cd, cm)

subroutine clcdcm(xmid,ymid, cp, loop)
cc

cc calcualtion of aerodynamic coefficients

cc

cc

implicit real*8 (a-h, o-z)

cc

c dimension dx(1) , dy (1), xmid (1) , ymid (1), cp (1)

dimension xmid (1) , ymid(1) , cp (1)

cc

common /param/ntotal , nseg, nact , nupper, nlower, npanels, pi ,

'
pinv,nactl

common/ envdata/alpha, vfree, anufree, rhofree, chord, pref,
"

calf, salf

common/cd/ cdf

common /vc/ vcl,vcd,vcm

common/xc/ xcl,xcd,xcm

common/dxdy/ dx(210) , dy (210)

write (6,*) 'in
clcdcm'

write (6,*) 'loop:', loop
cc

cc CLEAR CO

cc

cfx =0.0

cfy =0.0

cl = 0.0

cd = 0.0

cm = 0.0

do 100 i = 1, npanels

cfx = cfx + cp(i)*dy(i)

cfy = cfy
-

cp(i)*dx(i)

cm = cm + cp(i) *(dx(i) *xmid(i) + dy (i) *ymid (i))

cc

100 continue

cd = cfx*calf + cfy*salf

cl = cfy*calf
- cfx*salf

c

c SAVE IDEAL COEFFICIENTS

c

if (loop . eq . 0) then

xcd = cd

xcl = cl

xcm = err

write(6,*) 'ideal
coefficients:'

endif

c

c ADD SKIN FRICTION DRAG TO FORM DRAG

c

i f (loop . eq . 1) then

write(6,*) 'real
coefficients:'

write (6,*)
'

cd, cdf :
'

, cd, cdf

cd = abs(cd) + cdf

ved = cd

vc 1 = c 1

vcm = cm

169

endif

cc

write(6,*) 'alpha (deg):', asin (salf) *180/3 . 1415926585

write(6,*) 'cl, cd, cm:', cl,cd,cm

cc

cc print *, 'alpha, cl ,
cd
..', alpha, cl , cd, cm

return

end

c

c BOUNDARY LAYER STUFF

c

c

c subroutine intgrl (nx, x,y, ve, skind, sigdx)
subroutine intgrl (nx, x,y , skind, sigdx, prod, dstar, mode)

c INTEGRAL METHOD FOR CALCULATION OF BOUNDARY-LAYER

c GROWTH ON AN AIRFOIL, STARTING AT A STAGNATION POINT

c

c
THWAITES'

METHOD USED FOR LAMINAR -REGION

c MICHEL'S METHOD USED TO FIX TRANSITION

c HEAD'S METHOD USED FOR TURBULENT -FLOW REGION

c

implicit real*8 (a-h, o-z)

c

dimension x(210) ,y (210)

dimension yy(50)

dimension dstar (210), prod (210)

c dimension ve(210)

common/grad/ xx(200) ,vgrad(200) , theta(200)

common/rey/ re

common/par/ naca

common/parl/ tau, epsmax, ptmax

common/vel/ ve(210)

common/hfact/ h

common/trans/ xtrans

real lambda, 1

write(6,*) 'in
intgrl'

pi = 3.1415926535

loop = 0

c do 500 i = l,nx

c write (6,*) i,x(i),y(i),ve(i)

c500 continue

c

c FIND DISTANCES BETWEEN NODES ALONG SURFACE

c

xx(l) = 0.0

do 100 i = 2,nx

dx = x(i)
-

x(i-l)

dy = y(i)
-

y(i-l)

100 xx(i) = xx(i-l) + sqrt(dx*dx + dy*dy)

print *, 'distances
found'

c

c FIND VELOCITY GRADIENTS AT NODES

c

vl = ve(3)

xl = xx(3)

170

v2 = ve(l)

x2 = xx(l)

xx(nx+l) = xx(nx-2)
do 110 i = l,nx

v3 = vl

x3 = xl

vl = v2

xl = x2

v2 = ve(nx-2)

if (i.lt.nx) v2 = ve(i+l)
x2 = xx(i+l)

fact = (x3-xl)/(x2-xl)
vgrad(i) = ((v2-vl) *fact- (v3-vl) /fact)/ (x3-x2)

c if (i.eq.l) then

c write (6,*) 'v3',v3

c write(6,*) 'x3',x3

c write (6, *) 'vl
'

, vl

c write(6,*) 'xl',xl

c write (6,*) 'v2',v2

c write(6,*) 'x2',x2

c write(6,*)
'

fact ', fact

c write (6,*)
'

vgrad (1)
'

, vgrad(1)
c endif

110 continue

write (6,*)
'

vgrad (1) ', vgrad (1)
c

print *, 'gradients
found'

c do 530 i = l,nx

c write (6,*) vgrad (i)
c530 continue

c

c SET INTERACTION MODE

c

c write (6,*)
'

INTERACTIVE->1,
NON->0'

c read (5, *) mode

if (mode.eq.O) then

ians = 1

c xtrans =
.3

c re = 6e6

go to 510

else

ians = 2

continue

endif

c

c

c

c write (6,*) 'Do you want to fix transition location? (1)

c

c read (5,*) ians

c if (ians.eq.2) go to 120

c write(6,*) 'Input transition
location'

c read (5,*) xtrans

c

print *, 'criteria
selected'

c

c INPUT REYNOLDS NUMBER BASED ON REFERENCE V AND L

c

cl20 write(6,*) 'input
Re'

c read(5, *) re

c

510 print 1000

SELECT TRANSITION CRITERIA

write (6, *) 'Do you want to fix transition

write (6, *) 'Or use Michels Criterion (2)
'

171

skind =0.0

sigdx = 0.0

c

print *, 'onto laminar calculations'

open (unit=11, f ile= 'prod .dat
'

, status = 'unknown
'

)
c

c LAMINAR FLOW REGION

c

print *, 'vgrad(l)', vgrad (1)
if (vgrad(l) .lt.0.0) vgrad (1) = abs (vgrad (1))

c if (vgrad(l) .It .0.0) vgrad(l) =vgrad(2)/2.

theta(l) = sqrt (0 . 75/re/vgrad(1))
i = 1

200 lambda = theta (i) **2*vgrad (i) *re
c write (6,*)

'

lambda :', lambda

if (lambda. It .-. 0842) go to 400

call thwats (lambda, h, 1)

if(i.eq.l) hi = h

if (i.eq.2.and.h.gt.hl) h = hi

c write(6,*) 'l,h(2) :
'

,l,h

c

c displacement thickness, 'dstar', and counter, ns

c (ns to be compared with nx)

c

dstar(i) = h*theta(i)
ns = i

prod (i) =ve (i) *dstar (i)
write (11,*) i,y (i) ,prod(i)

c

cf = 2.*l/re/theta(i)
if (i.gt.l) cf = cf/ve(i)

print 1010, x(i) ,y (i) , ve (i) , vgrad (i) , theta (i) , h, cf

if (i.gt.l)then

dx = xx(i) -xx(i-l)

else

dx = xx(i)

endif

c

c skin friction calculator

c

if (cf .ge.0.0) then

skind = skind+cf*dx

sigdx = sigdx+dx

endif

c sigdx = sigdx+dx

c

i = i+1

if (i.gt.nx) return

dth2ve6 = .

225* (ve (i) **5+ve (i-1) **5)
*
(xx(i) -xx (i-1)) /re

theta(i) = sqrt (((theta (i-1) **2
)* (ve (i-1) **6) +dth2ve6)

/(ve(i)**6))

c write (6,*) 'dth2ve6, theta: ', dth2ve6, theta (i)

if (i.eq.2) theta(2) = theta(l)

c

c print *, 'testing for
transition...'

c

c TEST FOR TRANSITION

c

c if (ians .eq.
'm'

) go to 210

if (ians.eq.2) go to 210

if (x(i) .It .xtrans) go to 200

go to 300

210 rex = re*xx (i) *ve (i)

172

ret = re*theta(i) *ve (i)
retmax = 1 .

174*
(1 . +22400 . /rex) *rex** . 46

if (ret . It
.retmax) go to 200

c

c TURBULENT FLOW REGION
c

300 itrans = i

write(6,*)
'

itrans :', itrans
write (6, *) 'x(itrans) :

'

,x(itrans)
c310 if (mode.eq.O) then

310 h = 1.3

c else

c write(6,*) 'INPUT H AT TRANSITION (-1.3-1
4)'

c read (5,*) h

c endif

c

if (h. It. 1.0) return

i = itrans

yy(2) = hlOfh(h)
yy(l) = theta(i-l)

320 dx = xx(i) -xx(i-l)

call runge2 (i-1, i,dx,yy, 2)
theta (i) = yy (1)
h = hofhl(yy(2))
rtheta = re*ve (i) *theta (i)
cf = cfturb(rtheta,h)

print 1020, x (i) ,y (i), ve (i), vgrad (i) , theta (i), h, cf
c

c skin friction stuff

c

skind = skind+cf*dx

sigdx = sigdx+dx

c

c more displacement thickness and counter stuff

c

dstar(i) = h*theta(i)
ns = i

prod (i) =ve (i) *dstar (i)

write(ll,*) i,y (i) ,prod(i)
c

if (h.gt.2.4) go to 410

i = i+ 1

if (i.le.nx) go to 320

write(6,*) 'no separation,
returning'

close (unit=ll)
return

400 write(6,*) 'LAMINAR
SEPARATION'

write (6,*) 'REATTACHING A TURBULENT BOUNDARY
LAYER'

go to 3 00

c return

410 write(6,*) 'TURBULENT
SEPARATION'

c i f (loop . eq . 1) then

do 520 k = i,nx

theta(k) = theta(i-l)

dstar(k) = dstar(i-l)

prod(k) = prod (i-1)

c sigdx = sigdx+ (xx(i) -xx(i-1))

52 0 continue

c write (6,*) 'STILL TURBULENT SEPARATION...
RETURNING'

close (unit=ll)

return

c endif

c loop = 1

c write (6,*) 'TRYING A DIFFERENT VALUE FOR
H'

173

c h=1.2

c go to 310

10 0 0 format (///,9x,
' x'

, 8x, 'y
'

, 7x,
'

ve
'

, 6x,
'

vdot
'

, 5x,
'theta'

, 8x,
'h'

8x,'cf',/)
1010 formate 1

'

, f 10 . 5 , f 9 . 5
, 2f 9 . 4 , f 11 . 7

, f 9 . 4, f 10 . 6)
1020 format (

'

t
'

, f 10 . 5 , f 9 . 5
, 2f 9 . 4 , f 11 . 7

, f 9 4 flO 6)
1030 format (al)

c

end

subroutine thwats (lambda, h, 1)
c

implicit real*8 (a-h, o-z)
c

c THWAITE'S CORRELATION FORMULAS

c

real 1, lambda

if (lambda. It . 0 .0) go to 100

1 =
.22+lambda*(1.57-1.8*lambda)

h = 2.61-lambda*(3.75-5.24*lambda)
c write(6,*) 'l,h:',l,h

go to 200

100 1 =
.22 + 1.402*lambda + . 018*lambda/ (. 107+lambda)

h = 2.088 +
.0731/(.14+lambda)

c write(6,*) 'l,h:',l,h

200 return

end

function hlOfh(h)
c

implicit real*8 (a-h, o-z)
c

c HEAD'S CORRELATION FORMULA FOR HI (H)

c

if (h.gt.1.6) go to 100

hlOfh = 3.3 +
.8234*(h-l.l)**(-1.287)

return

100 hlOfh = 3.3+1.5501*(h-.6778)**(-3.064)

return

end

function hofhl(hl)

c

implicit real*8 (a-h, o-z)

c

c INVERSE OF H1(H)

c

c print *, 'hi:
'

,hl

if (hi .It. 3.3) go to 110

if (hi .It. 5.3) go to 100

hofhl = l.l+.86*(hl-3.3)**(-.777)

c print *, 'returning from hofhl,
1'

return

100 hofhl =
.6778 + 1 .

1536* (hl-3 . 3)**(-. 326)

c print *, 'returning from hofhl,
2'

return

110 hofhl =3.0

c print *, 'returning from hofhl,
3'

return

end

c-

174

function cf turb (rtheta, h)
c

implicit real*8 (a-h, o-z)
c

c LUDWEIG-TILLMAN SKIN FRICTION FORMULA

c

c print *, 'in fct cfturb'

cfturb =
.246*(10.**(-.678*h)

)*

(rtheta)
**

(-

.26.

c print *, 'cf
turb='

, cfturb

return

end

subroutine derivs(i)
c

implicit real*8 (a-h, o-z)
c

c SET DERIVATIVES DY VECTOR Y

c

common/rnk/ yt (50) ,yp (50)

common/grad/ xx(200) , vgrad (200) , theta (200)
common /rey/ re

common/vel/ ve(210)

c print *, 'in
derivs'

c

hi = yt(2)

c print *, '1: hl=',hl

if (hi .le. 3.) return

c print *,
'2'

h = hofhl (hi)

c print *, '3 : h= '

, h

rtheta = re*ve (i) *yt (1)

i=\i

ve (i) =
'

,
ve (i)

yt(l)=',yt(l)

rtheta=
'

,
rtheta

(h+2.) *yt (1) *vgrad(i) /ve(i)
*

+ .5*cfturb(rtheta,h)

c print *, '5: yp (1) =
'

, yp (1)

yp(2) = -hl*(vgrad(i)/ve(i)+yp(l)/yt(l))
*

+.0306*(hl-3.)**(-. 6169)/yt(l)

c print *, '6: yp (2) =
'

, yp (2)

c

c print *, 'returning from
derivs'

return

end

subroutine runge2 (io, il, dx, yy , n)

c

implicit real*8 (a-h, o-z)

c

c 2ND-ORDER RUNGE -KUTTA METHOD FOR SYSTEM

c OF N FIRST-ORDER EQUATIONS

c

dimension ys (50) ,yy (50)

common/rnk/ yt (50) ,yp (50)

c

c print *, 'in runge2
'

c

c print *, '4

c print *, '4

c print *, '4

c print *, '4

yp(l) = -(h+

intvls = il-io

if (intvls. It. 1) go to 200

175

do 130 i = 1, intvls
do 100 j = ln

100 yt(j) = yy(j)

call derivs (io+i-1)
do 110 j = l,n

yt(j) =
yy(j) + dx*yp(j)

^1^/ yy{^. +
5*dx*yp(j)

call derivs (io+I)
do 120 j = i,n

120 yy(j) =
ys(j) +

.5*dx*yp(j)
130 continue

F Ji

200 return

end

110

176

c subroutine solsys (a, c, nn, m, ind)
subroutine solsys (nn,m, ind)

c

c Purpose: solution of the linear system of equations

c

c AX=C (1)

c

c Technique: gaussian elimination with partial pivoting

c

c Arguments :

c

c a is an nn x nn matrix

c c is an nn vector

c nn is the dimension of system (1); l<=nn<=m

c m is the maximum value of nn; l<=m<=20

c ind is the error indicator

c ind=0 ... no error

c ind=l . . . system (1) is singular

c

c Remark: The solution of sytem (1) is given back in vector c.

c

c

c

c

c

c

c

c dimension a (m, 1) , c (1) ,
b(210) ,

iv(210)

dimension b(210) ,
iv(210)

common/ac/ a (210 ,
210) , c (210)

c

write(6,*) 'in
solsys'

c

c initialization of variables

c

ind=0

if(nn.eq.l) go to 10

n=nn-l

do 1 i = 1 ,
nn

iv(i)=i

1 b(i)=c(i)

c

c LU decomposition of matrix a

c

do 6 k=l,n

kk=k+l

c

c searching for the pivot in column k

c

rmax=abs (a (iv (k) , k))

irho=k

do 2 i=kk,nn

d=abs(a(iv(i) ,k))

if (rmax.ge.d) go to 2

rmax=d

implicit real*8 (a-h, o-z)

177

irho=i

2 continue

c write(6,*) 'first
test'

,k

if (rmax.eq. 0 . OdO) go to 9

c write(6,*) 'got past first test for
singularity'

if (irho.eq.k) go to 3

imax=iv(k)

iv(k) =iv(irho)

iv(irho) =imax

3 ik=iv(k)
c

c one step of LU decomposition

c

do 4 i=kk,nn

ii=iv(i)

a(ii,k)=a(ii,k) /a(ik,k)

4 b(ii)=b(ii)-a(ii,k)*b(ik)
do 5 j=kk,nn

do 5 i=kk,nn

ii=iv(i)
5 a(ii,j)=a(ii,j)-a(ii,k)*a(ik,j)

6 continue

in=iv(nn)

c write (6,*) 'second
test'

if (a(in,nn) . eq . 0 .OdO) go to 9

c write(6,*) 'got past second test for
singularity'

c

c Back Substitution

c

c (nn) =b(in) /a (in, nn)

do 8 i= 1 ,
n

j=nn-i

ij=iv(j)

sum=0 . OdO

jj=j+l

do 7 k=jj,nn

7 sum=sum+a(ij , k) *c (k)

8 c(j)=(b(ij) -sum) /a(ij , j)

return

10 continue

c write(6,*) 'third
test'

if (a(l,l) .eq.O.OdO) go to 9

c write(6,*) 'got past third test for
singularity'

c(l)=c(l)/a(l,l)

return

9 ind=l

return

end

178

Appendix II: Sample Calculations of cD and cL From Fluent Wall Force Data

The wall force data from Fluent is given in the following form:

WALL FORCES BY ZONE :

UNITS = NEWTONS

WALL NORMAL FORCES SHEAR FORCES

ZONE X-DIR. Y-DIR. X-DIR.

0 . 000E+00

Y-DIR.

Wl 0 .OOOE+00 0 . OOOE+00 0 . 000E+00

W3 2 .526E+01 1.879E+02 1 .308E+00 -1.625E-01

W4 4. 193E+01 4.985E+02 2 .316E+00 -1.882E-01

W5 1.704E+01 8 .506E+02 3 .321E+00 -6.906E-02

W6 -3 .848E+02 1.145E+03 7 .093E+00 1.549E+00
W7 1.109E+02 1.259E+02 4 .306E+00 -4.093E-01

W8 5.093E+00 -2.227E+02 4 .589E+00 1.025E-01

W9 1.753E+01 -2.335E+02 3 .919E+00 3 .225E-01

WA 1.625E+01 -1 . 668E+02 3..219E+00 4.061E-01

Each column can be added to yield:

Normal Forces: F^, = - 1 50.797 N

Fy>n = 2180.45 N

Shear Forces: Fx,9 = 30.071 N

Fy,3= 1.5295 N

The respective x and y-component forces may be added together to get the total forces Fx

andFy:

Fx - -150.797 N + 30.071 N =
-120.726 N

Fv = 2180.45 N + 1.5295 N = 2181.9795 N

179

Next, these forces can be resolved onto the L and D axes defined by the four degree angle

of attack to get FL and FD:

FL =

Fx sin
4

+ Fy cos
4

= (-120.726 N)sin
4

+ (2181 N)cos
4

= 2168.24 N

FD = Fx cos
4

+ Fy sin
4

= (-120.726 N)cos
4

+ (2181 N)sin
4

= 31.78N

Now that the lift and drag forces are known, and knowing p
= 1.225 kg/m3, V*

= 87.7

m/s, and A
= cS

=

(lm)(lm)
= 1

m2

(assuming a unit span), cl and Cd can be calculated:

h
CL

- '

\pVlA

2168.24.V

\(\.225kg /m2X87.79/n/ s)(\m2)
= 0.457

FD
^D

\pVlA

31.78_V

j(\.225kg/m2)(S7.79m/s)(\m2)

= 0.00669

180

Appendix IH: Start Point and Variable Limit Data

NACA 0012 Start Point, Scheme 1

OptdesX v. 2.0 Model: Optimum Airfoil

Date: May 18 13 :59

Name

:========= vanar

Value T Map Min Max

yl-top left 0.04209039 C 1 0.000000 0 .1500000

x2-top left 0.1582809 C 1 0.05000000 0.5000000

y2-top left 0.06001964 C 1 0.000000 0 .1500000

x3-top center 0.2855014 C 1 0.1000000 0 .9000000

x4-top right 0.4351009 c 1 0.2000000 0 .9000000

x5-top right 0.6940482 c 1 0.5000000 0.9800000

y5-top right 0.04554018 c 1 0.000000 0.1500000

x7 -bottom right 0.6940482 c 1 0.5000000 0.9500000

y7 -bottom right -0.04554018 c 1 -0.1000000 0.02000000

x8 -bottom right 0.4351009 c 1 0.2000000 0 .9000000

y8-bottom right -0.06001964 c 1 -0.1000000 0.000000

x9 -bottom cente 0.2855014 c 1 0.1000000 0.9000000

xlO-bottom left 0.1582809 c 1 0.05000000 0.5000000

yll-bottom left -0.04209039 c 1 -0.1000000 0.000000

Name Value Name Row File

xO- front 0.000000

yO-front 0.000000

xl-top left 0.000000

y3-top center 0.06001964

y4-top right 0.06001964

x6-back 1.000000

y6-back 0.000000

y9-bottom center -0.06001964

ylO-bottom left -0.06001964

xll-bottom left 0.000000

alpha (deg.) 4.000000

vfreen (m/s) 88.00000

anufree 1.790000e-05

rhofree (kg/irT3) 1.225000

chord (m) 1.000000

pref (Pa) 101325.0

reynolds # 6000000.

shape factor, h 1.300000

Name Value 0 T Map Allowable Indifference

skin friction 0.005202947 1 0.006000000 0.004000000

ideal drag coef 0.0004913578 1 0.001000000 0.000000

real drag coeff 0.006164937 V 1 0.004000000 0.003000000

ideal lift coef 0.4786968 1 2.000000 5.000000

real lift coeff 0.3961095 > 1 0.5000000 0.6000000

ideal mom. coef -0.1234409 1 -0.1080000 0 .000000

real mom. coeff -0.08983321 1 -0.07150000 0 .000000

abscissca 1-2 0.1582809 < 1 0.5000000 0.2000000

abscissca 3-2 0.1272205 < 1 0.5000000 0 .2000000

abscissca 4-3 0.1495995 < 1 0.5000000 0.2000000

abscissca 5-4 0.2589473 < 1 0.5000000 0 .2000000

181

abscissca 6-5 0.3059518 < 1 0.5000000 0 .2000000

abscissca 6-7 0.3059518 < 1 0.5000000 0.2000000

abscissca 7-8 0 .2589473 < 1 0 .5000000 0.2000000

abscissca 8-9 0.1495995 < 1 0.5000000 0 .2000000

abscissca 9-10 0 .1272205 < 1 0.5000000 0.2000000

abscissca 10-11 0.1582809 < 1 0.5000000 0 .2000000

ordinate 0-1 0.04209039 < 1 0.07000000 0.02000000

ordinate 2-1 0.01792925 < 1 0.07000000 0 .02000000

ordinate 4-5 0.01447946 < 1 0.07000000 0 .02000000

ordinate 5-6 0 .04554018 < 1 0.07000000 0 .02000000

ordinate 0-11 0.04209039 < 1 0.05000000 0 .02000000

ordinate 10-11 0.01792925 < 1 0.05000000 0.02000000

ordinate 7-8 0.01447946 < 1 0.05000000 0.02000000

ordinate 6-7 0.04554018 < 1 0.05000000 0.02000000

Name Value Name Weight

yt3=yt2 0.06001964

yt4=yt2 0.06001964

yb9=yb8 -0.06001964

ybl0=yb8 -0.06001964

182

NACA 0012 Start Point, Scheme 2

OptdesX v. 2.0 Model: Optimum Airfoil

Date: Jun 9 10:46

=========================== Variables ===========================

Name Value T Map Min Max

yl-top left 0.03039909 C 1 0.000000 0.1500000

x2-top left 0.09117680 C 1 0.05000000 0.5000000

y2-top left 0.06011704 C 1 0.000000 0.1500000

x3-top center 0.3052042 C 1 0.1000000 0.9000000

x4-top right 0.5092053 C 1 0.2000000 0.9000000

x5-top right 0.8601437 C 1 0.5000000 0.9800000

y5-top right 0.02366456 C 1 0.000000 0.1500000
x7-bottom right 0.8428542 C 1 0.5000000 0.9500000
y7 -bottom right -0.02635697 C 1 -0.1000000 0.05000000

x8-bottom right 0.5150580 C 1 0.2000000 0.9000000

y8-bottom right -0.05737329 C 1 -0.1000000 0.02000000

x9-bottom cente 0.3384985 C 1 0.1000000 0.9000000

y9-bottom cente -0.05990206 C 1 -0.1000000 0.000000

xlO-bottom left 0.1038991 C 1 0.05000000 0.5000000

yll-bottom left -0.03255699 C 1 -0.1000000 0.000000

Name Value

xO-front

yO-front

xl-top left

y3-top center

y4-top right

x6-back

y6-back

ylO-bottom left

xll-bottom left

alpha (deg .)
vfreen (m/s)

anufree

rhofree (kg/rrT3)

chord (m)

pref (Pa)
reynolds #

shape factor, h

0.000000

0.000000

0.000000

0.06011704

0.06011704

1.000000

0.000000

-0.06326210

0.000000

4.000000

88.00000

1.790000e-05

1.225000

1.000000

101325.0

6000000.

1.300000

Name Row File

Functions

Name Value O T Map Allowable Indifference

skin friction 0.005200088

ideal drag coef 0.0003167802

real drag coeff 0.005621189

ideal lift coef 0.4843278

real lift coeff 0.3272960

ideal mom. coef -0.1266045

real mom. coeff -0.05720270

abscissca 1-2 0.09117680

abscissca 3-2 0.2140274

abscissca 4-3 0.2040011

0.006000000

0.001000000

0.004000000

2.000000

2.000000

-0.1080000

-0.08000000

0.5000000

0.5000000

0.5000000

0.004000000

0.000000

0.003000000

5.000000

5.000000

0 .000000

-0 .1000000

0.2000000

0 .2000000

0.2000000

183

abscissca 5-4 0.3509384 < 1 0 .5000000 0 .2000000

abscissca 6-5 0.1398563 < 1 0.5000000 0.2000000

abscissca 6-7 0.1571458 < 1 0.5000000 0 .2000000

abscissca 7-8 0.3277962 < 1 0.5000000 0 .2000000

abscissca 8-9 0 .1765595 < 1 0.5000000 0.2000000

abscissca 9-10 0.2345994 < 1 0.5000000 0 .2000000

abscissca 10-11 0 .1038991 < 1 0.5000000 0.2000000

ordinate 0-1 0.03039909 < 1 0.07000000 0.02000000

ordinate 2-1 0 .02971795 < 1 0.07000000 0.02000000

ordinate 4-5 0.03645248 < 1 0.07000000 0 .02000000

ordinate 5-6 0.02366456 < 1 0.07000000 0.02000000

ordinate 0-11 0.03255699 < 1 0.05000000 0.02000000

ordinate 10-11 0 .03070512 > 1 0.000000 0.02000000

ordinate 7-8 0.03101632 < 1 0.05000000 0 .02000000

ordinate 6-7 0.02635697 < 1 0.05000000 0.02000000

ordinate 8-9 0.002528770 < 1 0.05000000 0.02000000

ordinate 9-10 0.003360045 < 1 0.05000000 0 .02000000

Name Value Name Weight

yt3=yt2 0.06011704

yt4=yt2 0.06011704

yblO on line -0.06326211

184

NACA 4412 Start Point, Scheme 1

OptdesX v. 2.0

Date: Jun 13 11:30

Model: Optimum Airfoil

Name

========== Variables =

Value T Map Min Max

yl-top left 0.04987590 C 1 0.000000 0.1500000

x2-top left 0.1687511 C 1 0.05000000 0 .5000000

y2-top left 0.09863604 c 1 0.000000 0 .1500000

x3-top center 0.3459586 c 1 0.1000000 0.9000000

x4-top right 0.5898137 c 1 0.2000000 0.9000000

x5-top right 0 .8737301 c 1 0.5000000 0.9800000

y5-top right 0.03972514 c 1 0.000000 0 .1500000

x7 -bottom right 0.6171246 c 1 0.5000000 0.9500000

y7 -bottom right -0.005359016 c 1 -0.1000000 0.05000000

x8-bottom right 0.2607737 c 1 0.2000000 0.9000000

y8-bottom right -0.02477605 c 1 -0.1000000 0 .02000000

x9-bottom cente 0.2567351 c 1 0.1000000 0 .9000000

xlO-bottom left 0.2390857 c 1 0.05000000 0.5000000

yll-bottom left -0.04435326 c 1 -0.1000000 0.000000

Name Value Name Row File

xO-front 0.000000

yO-front 0.000000

xl-top left 0.000000

y3-top center 0.09863604

y4-top right 0 .09863604

x6-back 1.000000

y 6 -back 0.000000

y9-bottom center -0.02477605

ylO-bottom left -0.02477605

xll-bottom left 0.000000

alpha (deg.) 4.000000

vfreen (m/s) 88.00000

anufree 1.790000e-05

rhofree (kg/mA3) 1.225000

chord (m) 1.000000

pref (Pa) 101325.0

reynolds # 6000000.

shape factor, h 1.300000

Name Value 0 T Map Allowable Indifference

skin friction 0.003916747 1 0.006000000 0.004000000

ideal drag coef -0.0009351347 1 0.001000000 0.000000

real drag coeff 0.005394147 1 0.003000000 0 .002000000

ideal lift coef 0.9967275 1 2.000000 5.000000

real lift coeff 0.9395008
/N

1 2.000000 5.000000

ideal mom. coef -0.3639720 1 -0.1080000 0 .000000

real mom. coeff -0.3411043 1 -0.1500000 -0.1600000

abscissca 1-2 0.1687511 < 1 0.5000000 0.2000000

abscissca 3-2 0.1772075 < 1 0.5000000 0 .2000000

abscissca 4-3 0.2438551 < 1 0.5000000 0.2000000

185

abscissca 5-4 0.2839164 < 1 0.5000000 0 .2000000

abscissca 6-5 0.1262699 < 1 0.5000000 0 .2000000

abscissca 6-7 0.3828754 < 1 0 .5000000 0 .2000000

abscissca 7-8 0.3563509 < 1 0 .5000000 0.2000000

abscissca 8-9 0.004038600 < 1 0.5000000 0 .2000000

abscissca 9-10 0.01764940 < 1 0.5000000 0 .2000000

abscissca 10-11 0.2390857 < 1 0.5000000 0.2000000

ordinate 0-1 0.04987590 < 1 0.07000000 0.02000000

ordinate 2-1 0.04876014 < 1 0.07000000 0.02000000

ordinate 4-5 0.05891090 < 1 0.07000000 0.02000000

ordinate 5-6 0.03972514 < 1 0 .07000000 0.02000000

ordinate 0-11 0.04435326 < 1 0.05000000 0.02000000

ordinate 10-11 -0.01957721 > 1 0.000000 0.02000000

ordinate 7-8 0.01941703 < 1 0.05000000 0.02000000

ordinate 6-7 0.005359016 < 1 0.05000000 0.02000000

Name Value Name Weight

yt3=yt2 0.09863604

yt4=yt2 0.09863604

yb9=yb8 -0.02477605

ybl0=yb8 -0.02477605

186

NACA 4412 Start Point, Scheme 2

OptdesX v. 2.0

Date: Jun 13 13:16

Model: Optimum Airfoil

Name Value T Map Min Max

yl-top left 0.04458123 c 1 0.000000 0 .1500000

x2-top left 0.1436718 c 1 0.05000000 0.5000000

y2-top left 0.09913947 c 1 0.000000 0.1500000

x3-top center 0.3678981 c 1 0.1000000 0 .9000000

x4-top right 0.5460722 c 1 0.2000000 0 .9000000

x5-top right 0.8651925 c 1 0.5000000 0.9800000

y5-top right 0.04501393 c 1 0.000000 0.1500000
x7 -bottom right 0.7342057 c 1 0.5000000 0.9500000
y7 -bottom right -0.002717187 c 1 -0.1000000 0.05000000
x8-bottom right 0.2959381 c 1 0.2000000 0.9000000
y8-bottom right -0.02227282 c 1 -0.1000000 0 .02000000
x9 -bottom cente 0.2712898 c 1 0.1000000 0.9000000

y9-bottom cente -0.02384712 c 1 -0.1000000 0.000000

xlO-bottom left 0.1923185 c 1 0.05000000 0.5000000

yll-bottom left -0.03956147 c 1 -0.1000000 0.000000

Name Value Name Row File

xO-front 0.000000

yO-front 0.000000

xl-top left 0.000000

y3-top center 0.09913947

y4-top right 0.09913947

x6-back 1.000000

y6 -back 0.000000

ylO-bottom left -0.02889106

xll-bottom left 0.000000

alpha (deg .) 4.000000

vfreen (m/s) 88.00000

anufree 1.790000e-05

rhofree (kg/mA3) 1.225000

chord (m) 1.000000

pref (Pa) 101325.0

reynolds # 6000000.

shape factor, h 1.300000

cti<

0 TName Value Map Allowable Indifference

skin friction 0.005340677 1 0.006000000 0.004000000

ideal drag coef -0.0008125669 1 0.001000000 0.000000

real drag coeff 0.007057980 V 1 0.003000000 0.002000000

ideal lift coef 0.9999108 1 2.000000 5.000000

real lift coeff 0.9600351 > 1 0.7000000 0.8000000

ideal mom. coef -0.3658146 1 -0.1080000 0.000000

real mom. coeff -0.3515703 < 1 -0.1500000 -0 .1600000

abscissca 1-2 0.1436718 < 1 0.5000000 0.2000000

abscissca 3-2 0.2242263 < 1 0.5000000 0.2000000

abscissca 4-3 0.1781741 < 1 0.5000000 0.2000000

187

abscissca 5-4 0.3191203 < 1 0.5000000 0.2000000

abscissca 6-5 0.1348075 < 1 0.5000000 0.2000000

abscissca 6-7 0.2657943 < 1 0.5000000 0 .2000000

abscissca 7-8 0 .4382676 < 1 0.5000000 0 .2000000

abscissca 8-9 0.02464830 < 1 0 .5000000 0.2000000

abscissca 9-10 0.07897130 < 1 0.5000000 0 .2000000

abscissca 10-11 0.1923185 < 1 0.5000000 0.2000000

ordinate 0-1 0.04458123 < 1 0.07000000 0 .02000000

ordinate 2-1 0.05455824 < 1 0.07000000 0.02000000

ordinate 4-5 0.05412554 < 1 0.07000000 0.02000000

ordinate 5-6 0.04501393 < 1 0.07000000 0.02000000

ordinate 0-11 0.03956147 < 1 0.05000000 0 .02000000

ordinate 10-11 -0.01067041 > 1 0.000000 0.02000000

ordinate 7-8 0.01955563 < 1 0.05000000 0.02000000

ordinate 6-7 0.002717187 < 1 0.05000000 0.02000000

ordinate 8-9 0.001574300 < 1 0.05000000 0 .02000000

ordinate 9-10 0.005043939 < 1 0.05000000 0 .02000000

Name Value Name Weight

yt3=yt2 0.09913947

yt4=yt2 0.09913947

yblO on line -0.02889106

188

	A Numerical optimization technique for the design of airfoils in viscous flows
	Recommended Citation

