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Abstract 

 A polymer-based nanofiber composite actuator designed for linear actuation was 

fabricated by electrospinning, actuated by electrolysis, and characterized by electrical and 

mechanical testing to address performance limitations and understand the activation processing 

effects on actuation performance. Currently, Electroactive polymers (EAPs) have provided uses 

in sensory and actuation technology, but have either low force output or expand rather than 

contract, falling short in capturing the natural motion and function of muscle desperately needed 

to provide breakthroughs in the bio-medical and robotic fields. Previous research has shown 

activated Polyacrylonitrile (PAN) fibers having biomimetic functionalities similar to the 

sarcomere contraction responsible for muscle function. Activated PAN is also known to contract 

and expand by electrolysis when in close vicinity to the anode and cathode, respectively. PAN 

nanofibers especially show faster response to changes in environmental pH and improved 

mechanical properties over larger diameter fibers. Conductive additives were introduced to the 

electrospinning solution and activated in an attempt to create composite PAN nanofiber gel 

actuators with improved conductivity and eliminate the need of stiff electrodes. Tensile testing 

was conducted to examine changes in mechanical properties between annealing and hydrolysis 

processing. Introducing conductive additives did not show a significant increase in conductivity 

and created unusable samples, requiring alternative electrode materials. Electrochemical 

contraction rates up to 25%/ min were achieved. Strains of 58.8%, ultimate stresses up to 77.1 

MPa, and moduli of 0.21 MPa were achieved with pure PAN nanofiber mats, surpassing 

mechanical properties of natural muscles. Improvements to contraction rates and young’s moduli 

are necessary to capture the function and performance of skeletal muscles properly.  
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List of Terms 

 

Adenosine Triphosphate (ATP) – a molecule typically found in living organisms, capable of 

providing energy for cell division, material transport, muscle contraction, and other cellular 

activities. 

Amphoteric – a chemical property of a molecule or ion to donate or accept protons, reacting as 

either an acid or base, respectively.  

Aromatization Index (AI) – A numeric value used to determine the percentage of molecular ring 

structures present within a given sample using wide-angle X-ray diffraction.  

Dielectric Elastomer – A compliant capacitor that produces large strains using electrostatic 

pressures. A type of Electroactive polymer. 

Electroactive Polymer – A polymeric material that is stimulated by an electric field, causing 

volumetric deformations to the material. 

Isometric testing – An actuation test characterizing the contractile forces generated from an 

actuator held at a static displacement 

Isotonic testing – An actuation test characterizing the maximum displacement achieved from an 

actuator with a constant force applied in a resistive manner. 
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Chapter 1: Introduction 

 The foundation of this research, to develop a PAN-based actuator, has strongly been 

supported by the concept of biomimetics. Biomimetics is the study of a biological system's 

structure and function to act as a source of inspiration for design concepts and engineering 

solutions [1]. Nature, through evolution and adaptation, has managed to create complex 

biological systems within flora and fauna over millions of years. The successes of this natural 

trial and error process are showcased throughout all biological creatures and various natural 

phenomena. Basing our inspiration on such successful natural “experiments” would serve as a 

proper starting point for new technological advances and understanding. 

 We have been borrowing ideas from nature for hundreds of years. Leonardo da Vinci 

studied birds and how they achieved flight. As a result, he developed the Ornithopter as an 

attempt to fly like birds (See Figure 1) [2]. In a more recent era, Speedo, a swimwear 

manufacturer, developed swimsuits utilizing the varying textures of shark skin as inspiration to 

reduce drag and control flow on a swimmer [3]. Another example is the lotus flower and its 

ability to repel water. The lotus’s unique coating has inspired the design of super hydrophobic 

surfaces for self-cleaning materials [4]. As many innovations have stemmed from nature’s 

design, mimicking the human body and the various functions is an ongoing challenge worthy of 

exploration. 

 With advances in robotics, artificial intelligence, medicine, and cybernetics, the human 

race is approaching towards the development of artificial humans. For example, MIT researchers 

have developed a computer chip capable of mimicking the activity of a single brain synapse, 

providing insight into learning and memory production [5]. Development has also been made by 

the bioprinting company Organovo towards recreating tissue with the use of stem cells and 3D 
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printers [6].  As efforts are made towards understanding our brain and physiology, efforts 

towards understanding human locomotion and the mechanisms of muscles are equally important. 

 

Figure 1: Leonardo da Vinci's plans for an Ornithopter, a flying machine kept aloft by the beating of its wings; about 1490 [2] 

1.1 Skeletal Muscle Functions and Mechanisms 

Skeletal muscles are soft tissue found within most animals providing a means of 

locomotion. These muscles are tethered to the skeletal system through tendons to create moments 

of force and provide rotational motion to limbs and digits. As the muscle contracts, a pulling 

force is generated and applied to the joint. It has been shown that isolated muscle fibers can 

contract upwards of ±50%, although only ±10% contraction is observed for limb movement. [8] 

The interest in understanding the contraction mechanism as well as the associated mechanical 

properties brought forth histological investigations into skeletal muscle mechanics and functions 

with the hopes of mimicking such functions through artificial technology. 
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Figure 2: Structural Anatomy of the Human Muscle [9] 

Skeletal muscles consist of multiple myocytes (muscle fibers) tethered together in a 

parallel configuration (See Figure 2). Muscle fibers typically have a diameter between 10 - 100 

µm, dependent on genetics and level of strength. [10] Each muscle fiber consists of smaller 

myofibrils containing long chains of sarcomeres with diameters of 1-2 µm. The sarcomere is 

considered to be the basic unit of muscle made of actin (thin) and myosin (thick) myofilaments 

that supports muscle function. These myofilaments have been observed to maintain its original 

length and slide past one another, caused by cross bridges pulling on actin filaments and 

reducing the length of the sarcomere. This “sliding filament” mechanism shown in Figure 3, 

proposed by Hugh Huxley describes how sarcomeres shorten, translating to large scale muscle 

contraction [11]. 

The sarcomere contraction is initiated by the release of Ca
+2

 from the sarcoplasmic 

reticulum (SR) membrane surrounding the myofilaments. The SR membrane is responsible for 

the exposure and removal of Ca
+2

 to and from the myosin and actin filaments when triggered by 

motor neuron stimuli.  As the concentration of Ca
+2

 increases, filament sliding begins and as the 

concentration decreases, the sliding ceases. The Ca
+2

 exposure coupled with the available high 
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energy molecule Adenosine triphosphate (ATP) necessary for cell metabolism provides the 

energy required to complete the contraction process [10].  

 

Figure 3: Relaxed and Contracted State of Sarcomere [12] 

Muscles contain various properties desired for actuator technologies. Muscles have the 

ability to vary stiffness as the given situation requires. For example, catching a ball requires an 

arm stiff enough to stop the ball but soft enough to avoid receiving a large impulse on contact. 

The human body can adapt and optimize the stiffness of the incorporated muscles as needed. [13] 

Stiffness variance also contributes to the ability to gradually apply force through fiber 

recruitment, providing acceleration and force control. Table 1 lists additional properties of 

skeletal muscle in mammals. 

Natural muscles can be recognized as the best existing actuator, not for a single 

dominating feature, but rather for its overall balanced performance and desired features [13, 14]. 

Various technologies have emphasized mimicking the essential function of muscles: linear 

contraction. Over time, the evolution of technology has driven actuator research into the 
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direction of biomimetics and began the exploration of alternatives using smart materials that 

closely mimic muscles.  

Table 1: Mechanical Properties of Mammalian Skeletal Muscle [10] 

Maximum Strain (%) >40 

Stress (MPa) 0.35 

Density (kg·m-3) 1037 

Strain Rate (%·s-1) >50 

Cycle Life >10
9 

Modulus (MPa) 10 - 60 

 

1.2: Smart Materials for Actuation 

1.2.1: Dielectric Elastomers (DEAPs) 

Dielectric elastomers are electroactive polymers that directly convert electrical energy 

into mechanical energy, and vice versa. Typically, two conductive layers sandwich a compliant 

elastomer film and through electrostatic attraction, the two layers compress the film. Large 

strains ranging from 10% upwards to 300% are achievable [13]. Although the compressive strain 

is high, volume must be conserved and a majority of the displacement expands the elastomer 

perpendicular to the compressive forces. Consequently, dielectrics are typically utilized in an 

expansive manner, contradictive to natural muscle’s contraction-only function (See Figure 4).  
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Figure 4: Dielectric Elastomer where V is applied voltage and p is the produced pressure [15] 

Kovacs took advantage of the dielectric elastomer's compressive features and 

incorporated multiple DEAPs into a stack formation as shown in Figure 5. The benefit of an in-

series stack allows the absolute deformation length to be dictated by the number of layers, 

simplifying the actuator design. [16] 

 

Figure 5: DEAP Stack Actuator in passive mode (left) and active mode (right) [16] 

Dielectric elastomers pose many limiting factors for actuation use. Dielectric breakdown 

is a significant failure mode that may result from imperfections in the thin polymer films as well 

as high strain rates [13, 17]. Typical dielectrics require high voltages to produce significant 

strain. Upwards to 150 MV/m is required, limiting the application for large and high frequency 

applications due to the energy requirements. Biddiss provides an extensive list of dielectric 
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actuator limitations including challenges in control, contaminant resistance, efficiency, and 

performance that can be found in Appendix A. 

 

1.2.2: Ionic Polymer/Metal Composites (IPMCs) 

Ionic Polymer/ Metal Composites are composed of a polymer electrolyte confined 

between two metal layers. By introducing an electric field, the ions located within the polymer 

will begin to polarize. Due to this polarization, the composite will begin to attract ions to one 

side of the polymer as well as water. The imbalance of water distribution causes swelling on one 

side and contraction on the other, causing the material to produce a bending motion. Factors such 

as thickness, surface area, type of polymer used, and amount and quality of water present all 

contribute to the amount of torque produced by the material. 

 

Figure 6: Ionic Polymer Metal Composite [18] 

One apparent disadvantage of IPMCs is the generated torque. Muscles function in a linear 

manner whereas IPMCs provide bending actuation with very limited linear displacement. 

Incorporating IPMCs to impose linear displacements would require a novel design and 

orientation to produce linear actuation. Another limitation is the need to remain wet for 

operation. Maintaining hydration allows ions to diffuse across the material. Furthermore, due to 
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the electrical breakdown of water at 1.23 V, higher voltages degrade the displacement output of 

the IPMC [19]. 

 

1.2.3: Shape Memory Alloys (SMAs) 

SMAs possess a unique ability to recover to its pre-deformed state with the application of 

heat. The material, typically Nitinol (NiTi), can be deformed and maintain its final orientation. 

By applying heat to the material bringing it beyond its transition temperature, the material 

returns to its original state, even after being cooled.  

Due to the fact the metal alloys are actuated via joule heating, it is very difficult to 

control the displacement due to the ongoing phase transformations [13]. Also, since cooling due 

to free air convection is much slower than the heating phase, an active cooling method is 

required to match the heating and cooling times for symmetric actuation. SMAs do not have high 

tolerance to cyclic loading, limiting its long term use. 

  

1.2.4:  Intrinsically Conductive Polymers (ICPs) 

Conductive polymers are organic structures featuring coupled structures supporting 

electron transport. These polymers can be actuated electrochemically. The electric charge along 

the polymer backbone can be increased or decreased through a change in oxidation state. The 

change in charge triggers a flow of ions towards or away from the polymer to restore the balance 

of electrical charge. Typically, a flow of ions into the polymer causes swelling and a flow of ions 

from the polymer reduces swelling, causing contraction (See Figure 7).  Polypyrrole has been 

recognized as one of many suitable candidates for low voltage applications [21].  
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Figure 7: Swelling and Contraction of Conductive Polymer Chains. As positive charge is created in the polymer, negative ions 
(anions) flow into the polymer to restore charge balance. [20] 

Conductive polymers have mechanical strengths much superior to natural muscles. 

Stresses up to 34 MPa can be supported with Moduli ranging from 0.1 to 3 GPa. The applied 

voltage required to actuate the material is low, ranging from 1.2 to 10 V. Low voltages would 

allow for portable devices such as prosthetics to operate without the need for large electrical 

equipment.  

Although the required voltage is low in comparison to many other smart materials, high 

current is required to compensate for the very low electromechanical coupling in high power 

devices [21]. Overall strain and strain rates due to internal mechanical resistance limits the 

material’s application towards fast actuators.  

Table 2: Summary of natural muscle and various smart material properties. Adapted from [13] 

Property Natural 
Muscle 

Dielectric Elastomers Ionic 
Polymer/Metal 

Composites 

Shape Memory 
Alloys 

Conductive 
Polymers 

Strain (%) >40 380 3.3 8 12 
 Strain Rate  

(%·s-1) 
>50 4,500 3.3 300 12 

Stress (MPa) 0.35 7.7 15 200 34 
Modulus (MPa) 10-60 1.0 – 3.0 100 83,000 3,000 
Density (kg·m-3) 1,037 960 1,500 6,450 - 
Work Density  

(kJ·m-3) 
40 3,400 5.5 10,000 1000 

Specific Power  
(W·kg-1) 

 

284 400 continuous 
3,600 Peak 

2.56 >50,000 150 

Cycle Life  >109 >107  @ 5% strain 
106 @ 50% strain 

- 107 @ 0.5% strain 800,000 
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Of the mentioned smart materials, many show promise in sensory and other niche 

applications, but require additional development to be considered for flexible actuation 

applications. A summary of various smart material properties is provided in Table 2. One 

commonality amongst each candidate was either high force generation or high strain potential. 

Natural muscle possesses a dynamic balance of both properties to provide superior overall 

performance. Although researchers have been inspired by the linear contraction muscles 

produce, emphasis should be placed on understanding and incorporating the underlying 

biological operations supporting muscle function. 

    

1.3: Biomimetic Analysis of Skeletal Muscles 

Muscles operate through electrochemical and chemo-mechanical coupling. Electrical 

impulses from the spinal cord transfer to motor neurons signaling the release of Ca
+2

 and ATP 

use. The processing of Ca
+2

 and ATP initiates the filament sliding and the reactions can cycle at 

frequencies of 7 Hz and upwards, providing fast muscular motion [10]. Adopting these energy 

couplings provides a suitable configuration to transfer control signals to operate artificial muscle 

actuators. 

Natural muscle contains an integrated circulatory system used to provide oxygen and 

energy to the surrounding muscular tissue as well as remove waste and heat. Various particles 

and heat are transferred across capillaries typically 10 µm in diameter [22]. Due to the density of 

capillaries within the tissue, the distances which particles and heat diffuse across are tens of 

micrometers. Emphasis must be made on taking advantage of the local delivery and removal for 

proper muscle function. 
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The benefits of locally exchanging resources and waste are a result of the scale of the 

myofilaments responsible for initiating actuation. Theoretically if the myofibrils were larger, 

limited diffusion rates would reduce the speed at which muscles can contract as well as the 

frequency of contraction. Thus, the micro and nanoscale dimensions of the myofibrils and 

myofilaments minimize diffusion issues. Thus, incorporating nanoscale features into a material 

may promote fast diffusion as well as benefit from the strength of materials at the nanoscale.  

Although many of the potential smart materials perform well and possess similar 

properties as skeletal muscle, few show similar actuation mechanics. Our current understanding 

of sarcomeres and myofilaments grants us an attempt to mimic their functions one way or 

another. Polyacrylonitrile has shown promise as a candidate material and potentially capture 

many of the same functional features of sarcomeres [10].  
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Chapter 2: PAN Material Properties, Processing, and Performance 

 

Figure 8: Synthesis of Polyacrylonitrile 

2.1: Properties of Polyacrylonitrile 

 Polyacrylonitrile (PAN) is a synthetic organic polymer formed by the polymerization of 

acrylonitrile (AN). PAN is typically used in the textile industry for the production of artificial 

silk as well as outdoor fabrics [23]. The first woven fibers based on PAN were produced by the 

DuPont Corporation in 1941 under the trademark name Orlon [24]. Aside from textiles, PAN is 

used as a component for ABS plastic as well as a precursor for producing carbon fibers [25].  

  Although PAN is classified as a thermoplastic, it tends to degrade prior to melting. PAN's 

insolubility, thermal stability, and resistance to organic solvents make it a strong candidate as a 

biocompatible material. Due to comparable mechanical properties to natural muscle, in particular 

the large elongation and contraction percentages of activated PAN, development of artificial 

sarcomeres may be possible [26].  

Bulk material properties of unprocessed PAN can be found in Table 3. Rosenbaum 

examined the mechanical behavior of macro scale PAN fibers. It was discovered that PAN fibers 

stretched upwards of 100% strain can recover to near 0% under the right kinetic conditions [27].  

This high strain capability coupled with the tensile strength and similar density makes PAN 

fibers comparable to the mechanical properties of natural muscle. Before PAN fibers can be 

utilized as an artificial muscle actuator, it must be processed and activated.  
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Table 3: Bulk Mechanical Properties of Polyacrylonitrile [28] 

Elongation at Break (Yield) Flexural Modulus Tensile Strength Young's Modulus Density 

3-4% 3.1-3.8 GPa 50-65 MPa 3.1-3.8 GPa 1.1-1.15 g/cm3 

 

2.2: PAN Activation Processing 

Figure 9 depicts the changes to the chemical structure of PAN made by pre-oxidation and 

hydrolysis. To improve the strength of the PAN fibers, the polymer is pre-oxidized. PAN prior to 

pre-oxidation, consists of individual molecular chains (See Figure 9a). Temperatures ranging 

between 220° to 300° C are exposed to the polymer, creating pyridine rings. These rings 

crosslink the polymers together, enhancing the elastomeric properties. The strength of the 

material is proportional to the amount of fiber crosslinking. Strong covalent bonds are formed 

between the PAN molecular chains within each fiber. As more and more crosslinks are formed, 

the deformed state of the material can provide stronger restorative forces and return to its 

undeformed state. This process can then be followed by a higher temperature carbonization 

process (~1000°C) to evolve the remaining nitrogen and oxygen to create high strength carbon 

fiber. 

Pre-oxidized PAN contains pyridine rings as well as nitrile groups as shown in Figure 9b. 

The hydrolysis process, also known as saponification, converts the remaining nitrile groups to 

carboxyl acid groups (See Figure 9c). These groups are acknowledged as the driving mechanism 

for actuation [9]. Typically, inorganic hydroxides such as Sodium Hydroxide (NaOH) and 

Lithium Hydroxide (LiOH) are used to create the carboxyl acid groups. The hydroxide is heated 

to below boiling point (~ 95°C) and the annealed PAN fibers are introduced to the solution for 

30 minutes. The 'activated' PAN fibers are then washed in distilled water for 24 hours to remove 
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any hydroxide residue. The annealing and hydrolysis processes are typically similar amongst the 

various researchers exploring PAN actuation unless otherwise noted.  

 

Figure 9: Schematic of the chemical structure of (a) PAN fibers; (b) pre-oxidized PAN fibers; (c) hydrolyzed PAN gel fibers [29] 

 

2.3 Actuation Performance of PAN Fibers 

Umemoto et. al observed activated PAN fibers to contract when exposed to acidic 

solutions and expand with exposure to alkaline solutions suggesting potential use as an artificial 

muscle actuator [29]. PAN fibers (22.5 µm diameter) were activated and performance 

characteristics under isotonic and isometric conditions were documented. The PAN fibers were 

stimulated using direct chemical exposure of various concentrations of NaOH and HCl solutions. 
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 Correlation was found between the 'Aromatic Index' (AI) and peroxidation time as well 

as its effects on contract time and contract forces. AI represents the degree of ring structures 

present in the PAN fibers. As pre-oxidation times increased, an increase in pyridine ring 

structures are formed due to the evolution of hydrogen, cyclization of nitrile groups (C≡N), and 

crosslinking of chain molecules [25]. Activated PAN contracting from its expanded state shows a 

decrease in overall length change (
  

  
) and increase in contraction forces as the AI value 

increases. In other words, larger AI values are analogous to increasing stiffness of the material, 

showing smaller deflections yet supporting larger forces. 

Unlike acidic and basic exposures, ion production due to electrolysis of water can 

stimulate the activated PAN. Shahinpoor suggested an electrochemical process to overcome the 

challenges posed by the use of high and low pH solutions [26]. pH is defined as the 

concentration of hydrogen ions present in a solvent or solution. As water is disassociated at the 

electrodes, hydrogen and hydroxide ions are formed, increasing and decreasing the pH, 

respectively. Since activated PAN is stimulated by pH, electrolysis provides a safer alternative 

for actuation as well as a means to control the degree of contraction and elongation using 

voltage. 

Choe et. al fabricated an electrochemically driven PAN fiber bundle actuator to test 

actuation performance [30]. Thirty strands of pre-oxidized PAN fibers (220°C for 5 hours) were 

bound and saponified in LiOH. The activated fiber strands were then attached to a load cell to 

determine generated forces during contraction. Titanium mesh electrodes were used for the 

electrolysis process within 0.1 M NaCl solution. Isotonic testing was also conducted to 

determine the amount of work generated from the chemical and electrochemical actuation of the 

PAN fiber bundle. 
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Figure 10: PAN sample [30] 

The electro-chemically driven PAN bundle actuator managed to generate 80% of the 

maximum force produced by a similar chemically driven system within 30 minutes. The isotonic 

testing revealed chemical actuation generated work an order of magnitude higher than 

electrochemical work. Chemical actuation was completed within the first minute and 

electrochemical actuation was completed within 30 minutes (See Figure 11).  

 

 

Figure 11: Work generated by chemical actuation (left) and Electrochemical Actuation (right) [30] 

 

Shahinpoor addresses the long actuation times by comparing the PAN fibers to a 

diffusion controlled slab-type gel model provided below: 

  

   
    

 

         
 
    

         

   (1) 
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Where 
  

   
  is the normalized change in gel length, τ is the characteristic time of swelling, 

t is time, lch is characteristic length, and D is the overall diffusion coefficient of ions within PAN 

fibers [26]. If the characteristic length, instead of representing the thickness of a slab-like 

material, was associated with the radius of PAN fibers, the elongation rates would be dependent 

on fiber diameter. As a result, the elongation rates can be improved with smaller fiber diameters. 

Small diameter PAN fibers can be fabricated through an electrospinning process. 

 

2.4: Electrospinning  

Electrospinning is a high voltage process ranging from 5-50 kV that draws fibers from a 

polymer solution to be collected onto an electrically grounded collector plate. As the voltage 

applied to the syringe increases, the solution becomes charged and the electrostatic forces 

overcome the surface tension of the fluid, eventually forming a Taylor cone. From the Taylor 

cone, a jet of fluid is extruded once the threshold voltage is surpassed and the polymer solution 

begins to evaporate. The evaporation of the solution allows fibers to form as well as transfer the 

charge from the solution onto the surface of the polymer fibers. This charge transfer causes an 

abrupt change in the flow from the Taylor cone. A whipping effect occurs, forcing the fibers to 

elongate and stretch, progressively decreasing the fiber diameter. Typically, the fiber diameters 

can range from a few microns to a few nanometers.  
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Figure 12: Behavior of Polymer solution during Electrospinning [31] 

 

 The use of nanofibers for actuation provides many benefits. Naraghi et. al examined the 

mechanical behavior of individual PAN nanofibers and found increasing elastic modulus with 

decreasing fiber diameters [32,33]. High molecular alignment found in nanofibers improved the 

fiber strength. Elastic moduli of 6 GPa were attained with fiber diameters of 200 nm (See Figure 

13).  

 

Figure 13: (a) Elastic modulus and (b) yield strength vs. nanofiber diameter for three electrospinning conditions. The range of 
modulus values for bulk PAN is shown in the shaded region in (a) [33] 
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  Samatham recognizes fiber diameter plays a limiting role in solvent diffusion across the 

fiber. Thicker fibers require longer times to completely diffuse through the core, limiting the 

overall response time. Thus, reducing the fiber diameter will improve the response times, 

decreasing the duration needed to complete diffusion. Aside from fibril diffusion, nanofibrous 

structures are also preferred materials for improved permeability. [34]. 

 The use of nanofiber mats also increases surface area [35-38]. Allowing chemical 

solvents or ions produced by electrolysis to be exposed to larger areas will improve response 

time necessary to saturate the fibers.  

  

2.5: Parameter Effects on Electrospinning 

The fiber diameter and fiber morphology are dependent on a large array of parameters. 

The electrospinning solution properties are one of the primary contributors affecting fiber 

diameter. Factors such as dielectric constant, conductivity, surface tension, viscosity, molecular 

weight, and solution temperature are taken into consideration when synthesizing the polymeric 

solution for desired fiber diameters.  Understanding the roles each parameter plays toward fiber 

morphology will allow proper adjustments to the electrospinning apparatus to fabricate 

nanofibers with a desired range of diameters for the given application. 

 

2.5.1: Concentration 

Solution concentration is found to have a strong influence towards fiber diameter of 

electrospun nanofibers [39]. Various combinations of PAN concentrations (6-12 wt. %) and 

applied voltages (10-20 kV) were used for electrospinning and the resulting fibers were 

examined using a SEM. Fiber diameter decreased with lower concentrations and showed 
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consistent diameters, but beading along the fibers were present. Wang et. al mentions going 

below the minimum concentration that will form continuous fibers, the entanglement 

concentration, will produce nanoparticles instead. Higher concentrations yielded larger, non-

uniform diameter fibers (See Figure 14). [35] 

 

Figure 14: The morphology of fibers at applied voltage from 10 to 20kV at concentrations from 6% to 12% with a constant 
collector distance of 10 cm (The Values below the images and the brackets show the average fiber diameter (nm) and the 

standard deviation of fiber diameter. [39] 
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Between surface tension and viscoelastic forces, fiber morphology was found to be 

dependent on the most dominant force. At lower polymer concentrations, surface tension is the 

dominant force, minimizing surface area by forming beads along the fiber. Higher concentrations 

show viscoelastic force dominance, resisting bead formation and forming smooth fibers. Solution 

concentrations between 8-10 wt. % will provide relatively small, uniform PAN nanofibers. 

 

2.5.2: Collection Distance 

Naraghi et. al have found strong correlation between the fiber diameter and collection 

distance. As the collection distance is increased while maintaining the same electric field 

intensity, smaller diameter nanofibers develop [33]. As the polymer/solution jet requires longer 

time to reach the collector plate, an increased amount of solution is evaporating, increasing the 

viscosity. Increased viscosity induces larger shear stresses onto the polymer, improving 

molecular orientation and decreasing fiber diameter. Aside from the initial bending instabilities 

caused by the solution evaporation, additional instabilities may occur at long enough distances, 

further increasing solution evaporation, shear stresses, and molecular orientation. 

 

Figure 15: Schematic of the relationship between mechanical property size effects and electrospinning parameters. [33] 
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Aside from dependencies on fiber diameter and collection distance dictating mechanical 

strength, the concern of diffusion across PAN fibers is revisited. The preparation of the 

electrospinning solution requires dissolving PAN within a high dielectric solvent, saturating the 

PAN molecular chains. As PAN fibers are electrospun, residual solvent that does not evaporate 

remains trapped within the core of the collected fibers. The outer core of the PAN fibers 

condenses and solidifies whilst the inner core retains solvent molecules. [40]. Since the retained 

solvent was intentionally used as the polymer dispersant, it increases the plasticity of the 

material. Thicker fibers will retain more solvent and reduce the overall modulus of the fiber. 

Therefore, smaller diameter fibers will contain less solvent and provide better cross section 

uniformity, enhancing the modulus. [32] 

 

2.5.3: Dielectric Solvent 

Solution preparation requires a solvent with a high dielectric constant and conductivity. A 

high dielectric value intensifies the whipping effect as well as reducing the formation of beads, 

influencing nanofiber structure. In comparison to other dielectric solutions, Dimethylformamide 

(DMF) possesses a high dielectric constant (36.71) and highest conductivity (1.090 mS/m), 

eliminating the need to introduce salts to improve conductivity and create impurities into the 

nanofiber mats [41]. DMF also suspends carbon based particles very well, reducing 

agglomeration typically seen within water. This is preferred when incorporating conductive filler 

material to enhance strength and/or conductivity. 
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2.5.4: Humidity 

The humidity of the local environment will influence the morphology of the collected 

fibers. The evaporation of the electrospinning solvent is necessary to extract the polymer fibers 

from the solution. High humidity will decrease the rate of evaporation and droplets may be 

collected onto the collector plate. Low humidity greatly affects high volatile solutions, rapidly 

evaporating the solvent and potentially causing clogging within the syringe needle [41]. 

 

2.6: Actuation Performance of PAN Nanofibers 

Exploring the effect of fiber diameters on actuation rates, Gestos et. al actuated single 

hydrogel nanofibers by Atomic Force Microscopy (AFM) and reported significantly improved 

actuation rates. He suggests the slower actuation seen by Lee et. al [14] was due to the slow 

infusion of the solution into the bundled PAN fibers [42]. Samatham et. al electrospun nanofibers 

approximately 100 - 300 nm in diameter. Activated electrospun nanofibers were exposed to 1 M 

HCl to induce contraction. Instantaneous volume change was observed with over 100% change 

in length achieved [43].  

Electrochemical actuation of PAN nanofibers hasn't been conducted or mentioned in the 

literature since Samatham in 2006 [44]. Exploring the design limitations and functions of PAN 

nanofibers may revive the pursuit of polymeric gel actuation for artificial muscle application. 

Addressing diffusion limitations, processing effects on mechanical properties and performance, 

and effects of electrochemical interactions will bring forth insight towards improving 

electrochemomechanical actuator systems. 
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Chapter 3: Chemical and Electro-Chemical Actuation Mechanism 

 

3.1: Activated PAN Fibers 

Once PAN fibers have been activated, they become amphoteric and can accept and 

donate protons. This is due to the Carboxyl acid groups formed during hydrolysis. The acid 

group is comprised of a hydroxyl group (O-H) and a strongly polarized carbonyl group (C=O) 

(See Figure 16). Due to the strong polarization of the carbonyl group and oxygen's tendency to 

be electronegative, the negative charge typically resides with the oxygen atom. Thus, protons are 

attracted to the carbonyl group and protons can be donated from the hydroxyl group [45]. 

  With many of the groups residing along the polymer chain in close proximity containing 

a dominant negative charge on the carbonyl group, electrostatic repulsive forces are present. The 

similar charges of the groups will repel from one another to restore equilibrium. The repulsive 

forces consequently force the polymer backbone chain to expand, expanding the whole polymer 

network. The electronegativity can be manipulated in order to expand and contract the polymer 

backbone (See Figure 17). 

Figure 16: Carboxylic Acid and its dipole configuration (right) [45] 
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Figure 17: Simplified actuation mechanism of a single Activated PAN polymeric chain. The CPK coloring code is applied for 
Carbon (black), Oxygen (red), and Hydrogen (white) 

 3.2 Chemical Actuation 

Introducing an acidic solution exposes the activated polymer chain to a high 

concentration of hydronium ions (H3O
+
). With the additional proton, hydronium ions are very 

reactive and can donate the excess proton to the Carbonyl moiety to stabilize into H2O. This 

donation protonates the carboxyl acid group and redistributes the charge across the carboxyl 

group. With the carbonyl group no longer as strongly polarized, the overall charge of the 

carboxyl group is neutralized. This neutralization reduces the electrostatic repulsion forces, 

allowing the polymer chain to 'relax' and contract. Also, with the presence of additional 

hydrogen atoms, there may be subsequent hydrogen bonding between the carboxyl groups as 

well as bonding with nitrile groups found along the crosslinked polymer, enhancing the 

contraction effect. 

  This process can be reversed by exposing the activated polymer to a basic solution. 

Having a basic solution which has a dominant concentration of hydroxide (OH
-
) ions present will 
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actively accept available protons. Since the carboxyl groups were introduced to additional 

hydrogen ions, they will relinquish the hydrogen ion, deprotonating the acid group. With the 

removal of the hydrogen, the distribution of charge across the group is disrupted, restoring the 

strong polarization to the carbonyl moiety. This charge restoration also restores the electrostatic 

repulsion, again stretching the polymer backbone to obtain equilibrium. Both the protonation and 

deprotonation occurs when a significantly acidic or basic solution is present. 

 Umemoto et al. observed abrupt contraction and elongation at different ranges of pH 

values [29]. The pH of the solution was decreased and increased in a step wise manner from pH 

14 to pH 0 and vice versa. Abrupt contraction was shown at pH 3.7 as the pH decreased. As the 

pH increased, abrupt elongation was observed at pH 10.3. Lee et. al. also observed drastic 

change in contraction and elongation between pH 1-3 and pH 10-12, respectively. [14] This 

contraction/expansion process is characterized by a hysteresis loop and shows little to no 

degradation in performance. These findings suggest a pH threshold that must be met in order to   

Figure 18: Hysteresis of Activated PAN fiber length vs. variation in pH [14] 
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begin the protonation and deprotonation process for actuation. 

  The contraction and expansion of the polymer network also causes changes in osmotic 

pressure within the system. Activated PAN fibers function like hydrogels, containing a 

significant amount of water or solution within its polymer network. When a low pH environment 

is present, the network will contract, resulting in the expulsion of solution from the network. 

When the contracted network is then exposed to a basic solution, the polymer network begins to 

expand. The expansion causes an inwards osmotic pressure, allowing solution to be re-absorbed 

into the network. It is believed this reabsorption assists in expanding the network. 

  Although acidic and basic solution actuation is shown to be effective, there are significant 

disadvantages for its use for fast actuation. Alternating acidic and basic solution exposure to the 

PAN fiber network can cause salt buildups, hindering the actuation capabilities. Many 

researchers have mitigated this issue by introducing an intermediary rinse cycle using water 

between chemical exposures. This process slows down the actuation process and would require a 

complex irrigation system to properly expose fibers and nanofibers to the appropriate solution. 

An alternative proposed by Shahinpoor et. al is to simulate the acidic and basic exposure using 

electrolysis. [26] 

 

3.3 Electro-chemical Actuation: Electrolysis 

Electrolysis can be utilized to create significant amounts of Hydrogen (H
+
) and 

Hydroxide ions as the products of disassociating water or an electrolytic solution (See Figure 

19). At the surface of each of electrode, the half reactions of water that occur are dependent on 

the direction of the applied voltage. At the anode, the positive end of the voltage supply is 

attached and draws electrons. Oxygen gas and hydrogen ions are evolved from the 
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decomposition of water at the anode. The hydrogen ions will react with water forming 

hydronium, resulting in an increased concentration of hydronium ions and increased solution 

acidity. 

 

Figure 19: Electrolysis Half Reactions for water (Bottom) and Diagram with resulting Products (Top) 

  A similar process is seen at the cathode. The negative lead of the voltage supply is 

attached to the cathode, supplying electrons. Introducing electrons with water evolves Hydrogen 

gas and Hydroxide ions. An increased concentration of Hydroxide ions within solution increases 

the alkalinity of the solution. These changes in solution concentration change the pH value of the 

local solution, providing a means for actuation.  

  Even though the pH concentration changes are due to electrolysis, it is localized to the 

surface of the electrode. Due to the sudden change in pH, the concentration of ions will migrate 

from the electrode to stabilize. Flow effects caused by bubbling and pH of bulk solution 

contribute to forming a pH gradient dependent on the distance from the electrode surface. Bin et. 

al have examined this distribution of pH near the electrode surface using micro pH electrodes 

[46]. At 10 µm from the anodic surface within a solution of pH 6.42, the pH dropped 
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significantly to approximately 2 at +2.5V. At the same voltage and distance from the cathodic 

surface, the measured pH was approximately 10 (See Figure 20).  

  The significant change in pH value near the electrode surface (~10 µm) can be taken 

advantage of to actuate activated PAN nanofibers, addressing the potential pH threshold 

limitations shown in Figure 18. By maintaining close contact of the PAN nanofibers to the 

electrode, actuation can be triggered with an applied voltage. Metal deposition of Platinum onto 

the PAN fibers was suggested. 

 

3.4: Improving PAN Fiber Conductivity 

  Shahinpoor et. al. introduced Platinum onto the fiber surface to increase the overall 

conductivity of the PAN nanofiber mat [26]. Due to the stiffness of platinum, the rate of 

Figure 20: Distribution of pH near anodic surface (left) and cathodic surface (right) [46] 

Figure 21: Delamination of Pt from PAN fibers [26] 
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elongation was significantly slower and deflection was reduced in comparison to the chemical 

reactions. Contraction and elongation rates were approximately 5%/min and 3%/min, 

respectively. Also, actuation cycling caused the deposited metal to delaminate from the fibers, 

requiring higher voltages to achieve the same strain percentage (See Figure 21). Graphite with 

gold counter electrodes was introduced to address the previous issues, significantly improving 

contraction rates by 100% and elongation rates by 67%.  

An alternative to metal deposition and individually coiling graphite near PAN fibers is 

introducing conductive filler material to the nanofiber mats. Multi-walled Carbon Nanotubes, 

graphite, as well as conductive polymers have been explored as potential conductive filler 

material [47-49]. PAN is known to be an insulating material with conductivity ranging from 2 

pS/m to 0.7 µS/m [47]. By reducing the resistivity of the PAN nanofiber mat, it can be used as a 

conductive actuating hydrogel electrode [26]. The compliance of electrodes for this application is 

essential for minimizing the stiffness of the material as well as maintaining consistent electrical 

properties under high strain loading.    

 Common electrode materials such as platinum and silver have significantly higher 

conductivities of 9.43 and 63 MS/m, respectively [50]. This allows the material to transfer 

electrons through with minimal resistance. Since the electrolysis process requires the flow of 

electrons to operate, minimizing the resistance will increase the output of produced ions. Thus, it 

is critical to significantly improve the conductivity of the PAN nanofiber composite in order to 

maximize the ion production required to significantly change localized pH values. 

Proper dispersion of conductive filler is essential to improve conductivity within PAN 

nanofiber mats. Carbon-based conductive filler requires proper dispersion techniques to prevent 

agglomeration. Van der Waal forces cause individual CNTs and graphite nanofibers to cluster 



C h e m i c a l  a n d  E l e c t r o - C h e m i c a l  A c t u a t i o n  M e c h a n i s m  G o n z a l e z  | 31 

 

within solution. This clustering reduces the overall dispersion within the nanofiber mats and 

reduces the conductivity. Reducing the agglomeration will allow the conductive filler to be 

dispersed evenly, improving the likelihood of a continuous conductive network to exist within 

the nanofiber mat. Ultrasonication and high shear homogenization are typically implemented to 

mechanically disperse the conductive filler in solution. [47]. 

3.5: Activating Conductive PAN Nanofiber Composites for Actuation (Aims of Research) 

 Although the improved mechanical and electrical properties of PAN nanofibers 

embedded with CNTs are discussed here, no articles in the literature discussing the application of 

PAN nanofiber composites for actuation were found. The purpose of this research is to merge the 

efforts towards activated PAN nanofibers and the PAN/MWCNT composites and explore the co-

electrospinning and activation of PAN with suitable conductive material to develop a composite 

actuator that contracts electrochemically (See Figure 22). The activated PAN composite will 

theoretically serve as an electrode, producing H+ or OH- ions within the nanofiber network, 

causing actuation.  

The previous work done on electrospinning PAN nanofibers, activating the material, and 

chemically actuating the PAN nanofibers will be reproduced. The PAN nanofibers will then be 

electrochemically actuated using electrolysis. The electrospinning process will then be modified 

by introducing conductive material to the polymeric solution to prepare and activate nanofiber 

composite mats. 

Electrical and mechanical testing will be conducted to characterize the composite 

material's performance. SEM imaging will be done to observe the nanofiber morphology, fiber 

diameter, and interaction with conductive materials. The conductivity of the material will be 



C h e m i c a l  a n d  E l e c t r o - C h e m i c a l  A c t u a t i o n  M e c h a n i s m  G o n z a l e z  | 32 

 

examined to determine if the material would behave as an electrode and support electrolysis. 

Mechanical tensile testing of the contracted and expanded states of PAN will determine the 

relationship between the concentration of added conductive material and the resulting tensile 

properties of the composite. The parameters associated with the activation process are also 

examined for optimization purposes. 

 

Figure 22: Flow chart of relatable research and associated authors on the methods of PAN actuation, the integration of the 
electrospinning process, and work done creating composite nanofiber mats with conductive material. The two highlighted 
topics represent the potential result of combining research efforts that have yet to be combined in available literature. 
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Chapter 4: Experimental Procedures and Results 

 

Figure 23: Horizontal Electrospinning Setup 

4.1: PAN Nanofiber Fabrication 

For all of the electrospinning experiments, both Polyacrylonitrile (PAN, Mw = 150,000) 

and Dimethylformamide (DMF) were purchased from Sigma Aldrich and used for all solution 

preparations.  PAN was combined with DMF to create a 10% wt. solution and was mixed for 24 

hours using a magnetic stir-bar. The solution changed from a clear solution with agglomerate 

PAN particles to a homogenized pale yellow solution with higher viscosity. Care was taken to 

minimize exposure to air to prevent the DMF from evaporating and increasing the %wt. of the 

solution.   

A horizontal electrospinning setup was chosen to minimize the collection of excess 

solution droplets on the collector plate. As shown in figure 23, the setup consists of a high 

voltage power supply (10 kV), a syringe pump (KD scientific), a 2”, 15 gauge stainless steel, flat 

tip needle, and a custom steel collector plate. The collector plate was covered with aluminum foil 
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for handling convenience. The positive lead from the power supply was attached directly to the 

base of the syringe needle and the ground was attached to the aluminum foil.   

 

Figure 24: Close-up of Custom Collector Plate with Aluminum Foil 

 

An electric field of 1 kV/cm was maintained with a collection distance of 10 cm. The 

flow rate was held at 0.763 ml/hr for 2 hours. Once the voltage was applied, a white circular film 

gradually appears on the center of the collector plate. PAN nanofibers were collected, eventually 

covering the entirety of the aluminum foil directly exposed to the electrospinning path. Small 

samples were extracted to examine the fiber diameter using a SEM (AMRAY 1830). 

Following Schreyer's activation process, the electrospun PAN was annealed for 2 hours at 

240°C [43]. To simplify the handling of the samples, the electrospun fibers remained on the 

aluminum foil and were removed after heat treatment. An ATS Series 3600 Oven was used for 

all annealing processing. Due to the oven's internal blower and the fragility of the PAN sample, 

the sample was placed on a baking sheet and covered with aluminum foil to prevent physical 

damage. Color change from white to dark brown was observed, indicating successful 

crosslinking [51]. The degree of crosslinking was observed using the SEM.   
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Figure 25: Pure PAN before (left) and after (right) heat treatment. SEM images show the effects of annealing on the 
crosslinking between PAN nanofibers. 

 

Pre-oxidized PAN nanofibers were hydrolyzed within 1M Sodium Hydroxide (NaOH, 

Sigma Aldrich) at 95°C for 30 minutes. The temperature was reduced accordingly to minimize 

bubbling that may damage the samples. Activated samples were transferred to distilled water to 

remove excess NaOH solution over the course of 24 hours. Processed samples had a dark brown, 

near black appearance and had a texture consistent to wet seaweed.  

 

4.2 Chemical Activation 

  To verify the activation process was successful, samples were exposed to 1N Citric Acid 

(HNO3) to cause contraction and 1M NaOH to cause expansion. All measurements were made 

using a standard ruler.  The initial length and width of the activated PAN sample was 4.5 cm and 

1 cm, respectively. The contraction from exposure to HNO3 from a NaOH solution showed an 

overall length of approx. 3 cm and width of 0.5 cm. Reversing the exposure expanded the sample 

to its initial length and width. A 33% decrease in length is achievable and by neglecting the 

change in thickness, a 67% decrease overall change in volume between NaOH and HNO3 was 

achieved (See Figure 26). 
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Figure 26: Chemical Activation using HNO3 for contraction(Left) and NaOH for expansion (Right) Solutions. An enhanced scale 
has been added due to the image quality. 

4.3 Electrochemical Activation  

0.1 M NaCl solution was used as the electrolytic solution for the electrolysis process. A 

platinum wire and a platinum wire basket were the active electrodes in this setup. Due to the 

difficulty of handling the thin hydrogel samples, the platinum basket contained the sample to 

provide the necessary ions  for actuation. A potential of +12.5 V was applied to the electrode 

basket for 5 minutes and the sample was promptly removed for examination. The sample was 

returned to the electrode basket and -12.5 V was applied. 
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Figure 27: CAD model of the Electrochemical Actuation Setup 

  After the first 5 minutes of exposure to the anode, noticeable changes in shape were 

observed. Localized areas were contracted as well as discolored. The discoloration may be a 

result of hypochlorite formation due to the electrolysis of the NaCl solution. After the sample 

was returned and voltage switched, discoloration was reduced and the sample returned to its pre-

contraction state.  

 

Figure 28: Electrochemical contraction (Left) and Expansion (Right) of PAN Nanofibers. 
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  The non-uniform contraction is the result of the amount of direct contract the sample 

made with the electrode. Since the significant changes in pH remain localized to the electrode, 

the areas of the sample that made direct contact with the electrode will be affected the greatest. 

The activated PAN sample tended to float within the basket and move due to the gas production 

of electrolysis. Measurements were not taken due to difficulty in confirming the average 

decrease in length and width. This observation emphases the necessity to maximize the amount 

of contact electrodes make with activated PAN nanofibers to significantly improve actuation 

capability. 

 

4.4 Introduction of Conductive Additive to Electrospinning 

To address the electrode contact issue, conductive additives were added to the 

electrospinning solution to improve the conductivity of the nanofiber mat and eliminate the need 

of stiff electrodes. Graphite nanofibers (200-500 nm dia.) and Multi-walled Carbon nanotubes 

(110-170 nm dia.) purchased from Sigma-Aldrich were used. Based on results published by 

Almuhamed to maximize volumetric electric conductivity, an electrospinning solution of 10% 

PAN and 1 % of MWCNT was used. [47]. Solutions of 10%PAN/5% Graphite and 

10%PAN/5%MWCNT were also tested. PAN and the selected conductive additive were 

combined and DMF was  added. The solution was mixed using a electromagnetic stir-bar for 24 

hours and followed with sonication for 30 minutes. Due to the volatility of DMF, the solution 

was contained and held within an ice bath to prevent solution evaporation   

  The solutions were electrospun for 2 hours at 0.768 ml/hr, using a 10 cm collection 

distance, and with a 1 kV/cm electric field. Electrospun samples were activated using the same 
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process described in section 4.1. Samples were extracted before and after annealing for SEM 

analysis.  

 

Figure 29: Top view of 90% PAN/10% MWCNT (left) and 66% PAN/33% Graphite (right) collected onto aluminum foil 

    

  During the electrospinning process, a 3D nanofiber mound of PAN nanofibers and 

MWCNTs began forming on the collector plate. Reducing the flow rate prevented 3D formations 

and provided a flat, uniform collection of fibers similar to previous electrospinning samples. The 

1% MWCNT sample had a gray color with a white outline. The separation of the polymer from 

the conductive additive may be due to the influence of electrostatic forces on the MWCNTs. 5% 

MWCNT and 5% graphite samples were black due to dominating carbon content. Little color 

change was observed after annealing. 

Following hydrolysis, the samples became very amorphous and difficult to handle. Due 

to the conductive additives, the PAN nanofibers had a less dense network for crosslinking. The 

integrity of the nanofiber mat was reduced, weakening the structure.  
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Figure 30: Significant Agglomeration of 10% PAN/ 5% MWCNT SEM sample (Scale 100µm) 

  SEM analysis shows significant agglomeration of conductive additive material (Figure 

30). This agglomeration is known to increase the percolation threshold, decreasing the overall 

conductivity of the material [47]. Figure 31 depicts interwoven conductive nanofibers, signifying 

potential of individual nano-electrodes generating ion locally to each PAN nanofiber. Until 

further studies are done on the integration of conductive filler material, alternative means of 

conduction were investigated. 

 

Figure 31: PAN and Graphite Intertwined Nanofibers (Scale 10 µm)  
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4.5 Alternative Conductive Electrode Materials 

Two considerations for alternative conductive material are conductive graphite sheets and 

graphite aerosol. PGS Graphite sheets (Panasonic) with a thickness of 25 µm were purchased and 

used as is for all testing. Dry Graphite Aerosol Spray Lubricant (Asbury Carbons) advertised to 

improve conductivity was tested on un-treated silicon wafers. Various spray times were 

implemented to determine the effect of graphite thickness on conductivity (See Table 4). Silicon 

wafers were held approximately 12" from the spray nozzle and were allowed to completely dry 

prior to conductivity testing. Thickness was determined through SEM analysis (See Figure 32).  

  Conductivity of both materials was measured using the four point probe method. Since 

the thickness of the sample layer was much less than the spacing between each probe, the 

following equation is applied to calculate the sheet conductivity σ measured in Siemens per 

meter: 

      
   

  
 
 

 
   (3) 

 

Where t is sheet thickness and R is measured resistance. Thickness was determined from 

SEM images of each sample. 

 

Figure 32: SEM Image of Graphite deposited onto Silicon Wafer. Spray time = 1.0 sec 
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Both materials were also subject to electrolysis testing to determine its ability to 

disassociate water. 0.1 M NaCl solution and a graphite electrode were used for all tested 

electrode samples.  

Table 4: Conductivity vs. Spray Time 

Spray 
Time 
(sec) 

Avg. Thickness 
(µm) 

Conductivity 
(S/m) 

0 0 0 

0.5 0.3 2.9 

1.0 0.4 0.9 

1.5 0.8 16.0 

2.0 4.2 1.6 

2.5 12.2 0.4 

3.0 17.4 0.1 

 

  Of the tested samples, a 1.5 second spray time yielded the largest sheet conductivity of 

15.95 S/m. A noticeable characteristic amongst all samples was uneven graphite layering. The 

solvent suspending the graphite evaporated off of the wafers unevenly, resulting in varying 

thicknesses across the substrate. Multiple measurements were taken across a sample to create an 

average conductivity. 

  Between the two media, the graphite sheet had the best conductivity of 7.8 kS/m. During 

electrolysis testing, the graphite sheet electrode successfully disassociated water. However, all of 

the graphite aerosol samples could not conduct within solution. Further investigation into 

aerosols containing conductive material may be warranted as an alternative method of improving 

conductivity of PAN composites. 
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4.6 Transient variation of Localized pH  

  Bin emphasized the effects of distance on changes in localized electrode pH [46]. 

Improving actuation rates requires the examination of time dependencies on pH variation. The 

intended design for PAN actuators is to have active electrodes in direct contact with activated 

PAN nanofibers. Minimizing the limiting effect of distance promotes greater dependency on 

time and voltage for electrolytic ion production.  

 

Figure 33: Electrolysis Setup for localized pH measurements over time 

  Two graphite sheet electrodes were placed within a 0.1M NaCl solution for the 

electrolysis process. One electrode was attached to a pH meter (See Figure 34) in such a way as 

to make direct contract with the glass probe. The pH meter was calibrated using pH 7 and pH 4 

buffer solutions as the attached electrode would be the active anode producing H
+
, decreasing pH 

levels. For cathode operation, the pH meter was recalibrated using pH 7 and pH 10 buffer 

solution for increasing pH levels. Applied voltage was held constant for 1 minute durations and 
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pH values collected throughout each duration (See Figure 35a & 35b). The testing solution was 

stirred to restore the initial pH equilibrium prior to retesting at new voltages. 

 

Figure 34: pH Meter with attached Graphite Sheet Electrode 

  As the voltage increased, the pH decreased at faster rates. At 15V, 3 pH was achieved 

within the first 3 seconds and 0 pH was reached by 27 seconds. The pH change was more 

dramatic for the active cathode. An applied voltage of 10V produced 11.25 pH within 3 seconds, 

surpassing 14 pH within 9 seconds. 15V yields a pH of 14 within the first second of operation. 

Increasing voltage would drive H+ production up, further reducing the pH drop at the anode.  
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a) 

 

 

b) 

Figure 35: pH vs. Time 

4.7 Processed PAN Nanofiber Tensile Testing 

Tensile testing was administered to PAN nanofibers before and after the hydrolysis 

process. Variation in annealing time was applied to observe effects crosslinking has on the 
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mechanical strength and strain capabilities throughout activation processing. To improve 

handling, samples were electrospun for 6 hours with the same parameters mentioned in Section 

4.1. The thickness of the samples ranged between 0.007” and 0.015”. Testing was done on 

samples with annealing times of 1.5, 2.0, 2.5, and 3.0 hours. The average mass of the tensile 

samples was 35.6 ±1.7 mg. From SEM analysis, the average fiber diameter was 490 ± 40 nm. 

Testing was conducted on the MTS Sintech Model 1125 Tensile Tester using a 50 kg load cell. 

   Each test sample’s gage area measured 2" x 0.75" prior to hydrolysis. The samples not 

hydrolyzed had electrical tape applied to the grip sections to improve gripping within the tensile 

tester. For samples to be hydrolyzed, the grip sections were bound with Polydimethylsiloxane 

(PDMS) to improve grip traction and handling whilst withstanding high alkalinity treatment (See 

Figure 37). 

 

Figure 36: Annealed PAN nanofibers with increasing duration from left to right prepared for tensile testing 
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Figure 37: Hydrolyzed PAN samples with PDMS Grip Sections 

Sylgard
®

 184 Silicone Elastomer was applied to the PAN samples within a custom mold. 

The samples were cured at 130°C for 40 minutes and then hydrolyzed for 30 minutes. Since 

there is no standardized testing method available for hydrogel nanofibers, a custom procedure is 

used to test the contracted state of the material. Hydrolyzed samples tested under contraction 

were prepared by exposure to HCl, followed by a rinsing phase in distilled water to remove 

excess acid. Measurements before and after acid exposure were made. The length and width of 

hydrolyzed sample varied due to the uptake of water during the rinsing process. Prior to each 

tensile test, excess water was removed from all wet samples.  
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Figure 38: PDMS Grip Section Casting of Pre-oxidized PAN Samples in Custom Mold 

 A 0.05 in/min strain rate was applied to the dry samples and 0.2 in/min applied to the wet 

samples. Higher strain rates for the wet samples were used to prevent stress relaxation as well as 

excessively long testing that may dry out the samples.  

 

Figure 39: Tensile Testing of Dry Samples (Left) and Wet Expanded Samples (Right) 

  The variation of color amongst the samples progressed from a light tan for shortest 

annealing times to a dark brown for the longest annealing times (See Figure 36). The dry 

samples showed no necking upon failure. The samples showed low ductility as well as near clean 

breaks perpendicular to the applied load. A few samples showed shearing between layers, 
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indicating layer delamination due to poor layer crosslinking. The impact of annealing times on 

ultimate stress and maximum strain is summarized in Tables 5-7. Of the dry samples, the 2.5 

hour heat treatment provided the greatest average ultimate stress and maximum strain at 3.6 MPa 

and 7.3%, respectively. 

Table 5: Pre-oxidized Sample Tensile Data 

Pre-Oxidized Samples 
Annealing 

Time 
(hour) 

Ultimate Stress (MPa) (Young’s Modulus {kPa}) Maximum Strain (%) 

1 2 3 Avg. 1 2 3 Avg. 

1.5 3.4 (53.4) 4.1 (102) 2.9 (130) 3.5 (95.2) 4.9 5.7 5.9 5.5 

2.0 1.4 (123) 2.3 (139) 1.5 (149) 1.8 (137) 4.0 5.5 4.8 4.8 

2.5 3.8 (63.4) 3.1 (22.7) 3.8 (107) 3.6 (64.3) 6.1 8.8 6.8 7.3 

3.0 4.7 (140) 3.4 (41.7) 2.2 (53.5) 3.4 (78.4) 5.3 7.0 5.3 5.9 

 

Table 6: Expanded Hydrolyzed Sample Tensile Data 

Hydrolyzed (Expanded) Samples 
Annealing 

Time 
(hour) 

Ultimate Stress (MPa) (Young’s Modulus {kPa}) Maximum Strain (%) 

1 2 3 Avg. 1 2 3 Avg. 

1.5 0.04 (0.69) 0.04 (0.91) 0.02 (0.82) 0.03 (0.80) 48.5 37.7 26.6 37.6 

2.0 0.04 (0.55) 0.01 (0.45) 0.04 (0.84) 0.03 (0.61) 35.3 29.3 32.7 32.4 

2.5 0.11 (1.60) 0.05 (1.11) 0.09 (1.83) 0.08 (1.51) 38.6 32.0 35.2 35.3 

3.0 0.05 (0.94) 0.04 (0.70) 0.03 (0.75) 0.04 (0.80) 40.1 45.8 42.3 42.7 
 

Table 7: Contracted Hydrolyzed Sample Tensile Data 

Hydrolyzed (Contracted) Samples 

Annealing 
Time      

(hour)  

Avg. Initial 
Length 

Contraction 
(%) 

Ultimate Stress (MPa) (Young’s Modulus {kPa}) Maximum Strain (%) 

1 2 Avg. 1 2 
- 

Avg. 

1.5 58.8 19.8 (23.4) 18.9 (32.7) 19.4 (28.0) 131 118 - 124.5 

2 55.5 121 (68.9) 33.3 (103) 77.1 (86.0) 128 95.8 - 111.9 

2.5 47.5 39.6 (248) 26.4 (166) 33.0 (207) 84.5 74.4 - 79.5 

3 45.5 11.5 (225) 11.7 (168) 11.6 (197) 53.6 68.0 - 60.8 
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Tensile testing of the expanded hydrolyzed samples displayed elastomeric stress-strain 

behavior. High deflection under low loads was observed with no necking or dramatic volume 

change. Failures occurred in the same lateral manner as the dry samples. Three hour annealing 

times showed abrupt changes in stress during testing. Progressive failure of the sample’s layers 

resulted in transferring the load onto the remaining intact layers until complete failure.  Upon 

inspection, no permanent deformation was found amongst the expanded samples. The greatest 

average stress was produced by 2.5 hour heat treatment, but the greatest strain was produced by 

the 3.0 hour sample. 

Contacted hydrolyzed samples showed significant degrees of initial contraction due to the 

acid exposure. The contraction strengthened the fiber layers, allowing a dramatic increase in load 

capacity. Strain capabilities were also improved, reaching upwards of 131%. Plastic deformation 

was evident upon examining the samples after testing. As the samples began plastically 

deforming, striations formed due to fiber realignment with the direction of load. A majority of 

the samples showed very linear stress – strain plots. As annealing time increased, the linearity of 

the stress-strain plots decreases and the material behaves less like an elastomer.  
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Figure 40: Tensile Testing of Wet Contracted PAN Nanofiber Mat 

As shown in figure 42, as annealing time increases, the amount of contractile 

displacement decreases. Due to the increasing pyridine groups formed from pre-oxidation, the 

contraction potential diminishes with the decrease in available carboxylic acid groups. Annealing 

times beyond 3 hours at 240°C will remove most nitrile groups, forming cross-linked PAN that 

would be unresponsive to acidic or basic stimuli after hydrolysis. 
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Figure 41: Effects of Annealing Time on Ultimate Stress 

 

Figure 42: Effects of Annealing time on Maximum Strain 

 

Figure 43: Effects of Annealing Time on Young’s Modulus 
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  The hydrolysis process significantly reduces the elastic modulus of the PAN nanofiber 

mats. Nearly two orders of magnitude difference is shown in Figure 43. As annealing times 

increase, the resulting stiffness for contracted PAN nanofibers increases, peaking at 207 kPa.  

Variations in tensile testing could be attributed to a few factors. Due to the 

electrospinning process, the fibers are collected onto a fixed plate. This configuration will cause 

a greater density of collected fibers at the center of the collector plate, varying the thickness. 

Stress vs. Strain plots are provided in Appendix C. 

 

4.8 PAN/Graphite Composite Actuator (Prototype I) 

The results from the alternative electrode testing (See Section 4.5) and the PAN nanofiber 

tensile testing (See Section 4.7) have influenced the design of the PAN/Graphite composite 

actuator to maximize actuation performance. 10% wt. PAN/DMF was electrospun for 2 hours 

and annealed for 2.5 hours. Two PAN nanofiber samples 3" x 0.75" were prepared and enclosed 

a PGS graphite sheet electrode of the same dimensions. The composite layers were held together 

with PDMS in the same manner used to prepare the gripper sections for the hydrolyzed tensile 

samples. Upon activation, a copper lead was attached to the inner graphite electrode. The PAN 

composite was fully immersed within 0.1 M NaCl solution alongside a graphite electrode. +10V 

were applied for 5 minutes to the PAN composite. The voltage was reversed after an 

intermediate examination. 
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Figure 44: PAN/Graphite/PAN configuration for electrolysis 

  The PAN/Graphite/PAN composite showed significant contraction and curling. The 

composite linearly contracted 10% and sustained a width reduction of 40%. Localized areas 

showed discoloration and contraction. Due to the lack of adhesion between the layers, the PAN 

layers had maximal contact near the grip sections and almost no contact near the center, slowing 

the actuation process. As the PAN layers contracted, buckling was observed from the electrode. 

The buckling created higher surface contact with the unaffected sections of PAN and induced 

contraction. Once the voltage was reversed, the sample returned to its initial state. 

 

Figure 45: Graphite electrode buckling within PAN/Graphite/PAN composite 
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4.9 Modifications to PAN/Graphite Composite Design (Prototype II) 

  To reduce the layer separation during electrolysis, sample preparation was modified. 

PAN was electrospun for 2 hours and the process was paused. A graphite sheet electrode with 

spring-like geometry was placed over the electrospun nanofibers (See Figure 46 & Appendix F). 

The spring geometry would allow for greater deflection and minimize buckling. The 

electrospinning was continued for another 2 hours, allowing the PAN nanofibers to completely 

envelope the graphite electrode. The sample followed the same activation procedures as the first 

composite design and tested within the same conditions.  

 

Figure 46: Modified Electrode Design applied to Electrospun Sample 

 

  Significant improvements in contraction were observed within the first minute of 

electrolysis at +15V. A 25% length decrease and 37% width decrease was observed. Reversing 

the voltage resulted in a delamination of the PAN layers. Excessive bubbling caused the thin 

nanofiber film to fail and decreased electrode contact. The graphite electrode showed signs of 

swelling and degradation, resulting in electrode failure. Bubbling may have caused diffusion 

across the electrode as well as pressure buildup within the PAN composite. 
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Figure 47: Modified PAN/Graphite/PAN in contracted state
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Chapter 5: Discussion of Results 

 

5.1: Conductive Additives 

  Handling difficulties of PAN/MWCNT and PAN/Graphite samples potentially resulted 

from incomplete crosslinking of the PAN fiber layers. As the electrospun fibers are collected, the 

nanofibers rest on top of one another. Similar to the "fluffy" 3D structures formed on the 

collector plate, the density of the conductive PAN mat would be less than the pure PAN mat. 

Low density nanofiber mats would produce weak crosslinking between the layered fibers during 

annealing. Longer heat treatments may improve crosslinking, but the strain capabilities diminish 

for long annealing times. 

  SEM analysis has shown persistent agglomeration of conductive material within the PAN 

nanofiber mats. Consequently, the conduction of the samples was unobtainable due to the high 

resistance.  Although the sonication process was included in the preparation of the solution, 

additional processing may be necessary to minimize agglomerates from forming. PAN is 

naturally insulating with an electrical resistance of approximately 1.5 x 10
-12

 S/m, requiring at 

least twenty orders of magnitude improvement to have conductivities comparable to various 

metals [47]. Surfactants and surface functionalization of Carbon nanotubes may enhance the 

MWCNT and graphite dispersion. The difficulty of introducing additional constituents to the 

electrospinning is changes to the solution properties, requiring adjustments to the electrospinning 

setup parameters. 

  CNTs are classified as 1D-conductors in the axial direction. To enhance the conductivity 

of a material, unidirectional alignment of CNTs will greatly improve performance. From the 
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observation of MWCNTs intertwining with PAN nanofibers, orienting the PAN nanofibers will 

align the MWCNTs, potentially improving conductivity. 

  

5.2: Alternative Electrode Materials 

  Oxygen production during electrolysis at the graphite electrode causes erosion, forming a 

carbon dioxide byproduct. As a result, the life of a graphite electrode is determined by the 

applied voltage and amount of O2 produced. Inert materials would be preferred for electrolysis 

applications. Due to high fluctuations in pH, high corrosive resistance is desired to prevent 

premature failure as well as production of by-products.  

  The electrochemical actuation of Prototype I resulted in a significant amount of electrode 

buckling due to the PAN contraction. Such a stiff material restricts actuation and requires a more 

compliant alternative. Compliant electrodes are intended for high strain applications where 

conductivity must be maintained throughout. Due to the high compliance, stiffness is minimal, 

contributing little resistance towards actuation strains.  

  Wu et. al have developed flexible, transparent electrodes for solar cell applications using 

copper nanofiber networks (See Figure 48). Electrospun copper nanofibers are shown to have 

low junction resistance across contact points. Cu nanofibers produced a sheet resistance of 11 x 

10
-3

 Ω
-1

, outperforming other transparent electrodes [52].   The benefit of metal nanofiber 

networks is the improved strain capabilities in comparison to continuous copper films. Strains up 

to 10% were applied within little degradation in performance.  
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Figure 48: Transparent Cu nanofiber network under strain [52] 

  

5.3: PAN Nanofiber Mat Properties 

  Response times and elongation rates of Prototype II is a significant improvement to 

previous works. Schreyer reported the highest rate of contraction was 27% in 10 minutes  using 

6.4 µm diameters PAN fibers intertwined with graphite [51]. Experimental results show a  rate of 

contraction of 25% in 1 minute using PAN nanofibers with an average diameter of 450 nm. 

Reduced fiber diameter as well as the composite design contributed to better response to 

produced H+ ions. A summary of PAN actuator properties is provided in Table 8. 

  Although the response was improved nearly ten-fold, it is far from competing with the 2 

msec latency period and 10-100 msec contraction period observed in muscles [10]. As predicted 

by Equation 1, smaller fiber diameters increases diffusion rates and improves reaction times. 

Fibers as small as 5 nm have been produced through electrospinning and should be considered 

[36]. Careful regulation and control of electrospinning parameters will be necessary for fiber 

production. 
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Table 8: Summary of PAN fiber actuators in comparison to natural muscle 

Summary of Electrochemical PAN Actuation properties 

Property Natural Muscle [13] PAN Fiber [51] Current Work 

Fiber Diameter - 7.0 um 470 nm 

Strain (%) >40 27 58.8 

Stress (MPa) 0.35 1.5, 5.0* 0.08, 77.1* 

Density kg/m3 1037 - 0.04 (dry) 

Strain Rate >50 %/sec 2.7 %/min 25%/min 

Cycle Life >10e9 - - 

Modulus (MPa) 10-60 1.0-3.9 0.207 

              *Elongated State, Contracted State 

 

  Data collected from chemical and electrochemical actuation shown similar % changes in 

length and width. The random orientation of collected nanofibers creates a uniform reduction in 

area during contraction. Since activated PAN nanofibers have the greatest volume change in the 

axial direction, it is preferred to orient fibers in the same direction to emphasize contraction in a 

linear fashion [51]. The use of a rotating spindle during electrospinning orients the nanofibers 

along its circumference. Aligned fibers will also improve Young’s Modulus of the material.   
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Chapter 6: Conclusion 

 The application of biomimetics on sarcomeres and myofibril function provided 

inspiration to copy certain characteristics and functionalities for artificial muscle actuators. The 

use of electrospun PAN nanofiber mats for actuation is analogous to the nanoscale actin and 

myosin filaments responsible for sarcomere contraction. The production of ions from electrolysis 

necessary to actuate activated PAN can be modeled from the controlled release of Ca
+2

 from SR 

membranes to initiate contraction. Even distribution of capillaries throughout muscle tissue 

served as a design concept to improve ion transport and solution diffusion throughout the PAN 

nanofiber networks. Unlike most EAPs used for actuation, the PAN-base actuators developed 

contract on a very similar basis as skeletal muscles do where as EAPs typically expand. 

 MWCNTs and Graphite nanofibers were introduced to the polymeric solution 

used for the electrospinning process. The produced PAN nanofiber composites then followed the 

same activation process. The composite nanofiber mats did not maintain structural integrity and 

became too amorphous to handle properly. The mechanical properties of composite nanofiber 

mats significantly decrease upon activation. Additionally, any increases in conduction were not 

significant enough to operate the PAN nanofiber composite as an electrode. Combining the 

resulting amorphous structure with the poor conductivity dissuades the concept of integrating 

conductive material to create an actuating nanofiber composite. Although this objective was not 

met, an electrolysis based actuator for PAN nanofibers was still sought after  by resorting to 

alternative electrode materials.  

Various testing was conducted to address some of the inhibiting factors of PAN fiber 

actuation performance. Changes of pH local to the electrode surface over time were observed at 

voltages ranging 5-15V. As voltage increases, water rapidly decomposes, producing high 
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concentrations of H+ ions at the anode for contraction and OH- ions at the cathode for 

elongation. The immediate increase or decrease of pH far exceeds pH thresholds necessary for 

elongation and contraction, respectively.  

 The effects of annealing times on mechanical properties for dry and activated PAN 

nanofiber mats were observed through tensile testing. Of the three materials, the activated PAN 

nanofibers in the expanded state had the lowest stiffness and strength. The contracted state 

however, had the greatest ultimate strength and maximum strain. The contraction capabilities 

reduced as annealing time increased, due to lowered availability of carboxyl ions for actuation. 

The largest achieved ultimate stress, contractile strain, and young’s modulus from the tensile 

testing was 77.1 MPa, 58.8%, and 0.207 MPa, respectively. With the exception of the young’s 

modulus, the mechanical properties surpass the necessary requirements for muscle properties. 

The best overall performance can be found for samples annealed at 2.5 hours.  

  PAN/ Graphite Sheet Composite actuators were fabricated and tested for 

contraction and elongation rates. Contact area is crucial to maximize diffusion rates and exposure 

of produced ions. Contraction rates up to 25%/min were observed. The results showed 

significant improvements over previous work done, but requires additional work to obtain 

contraction rates similar to muscle. Research into the diffusion characteristics of the material, 

taking full advantage of the nanoscale material properties, and finding methods to speed up the 

reaction rates of the electrolysis process is necessary to advance PAN-based actuators to 

performance levels similar to natural muscle. Investigations into corrosion resistant compliant 

electrodes are recommended to consider use of PAN nanofibers for high performance actuation.
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Chapter 7: Future Work  

The following recommendations are provided for future investigations towards improving the 

design and functionality of PAN composite actuators: 

1. Create aligned PAN nanofiber mats to take advantage of the unidirectional mechanical 

properties in the axial direction to improve stiffness of the material as well as maximize 

contraction strain. 

2. Successfully produce PAN nanofibers through electrospinning or through other means 

with diameters below 100 nm to take advantage of the high diffusion rates across smaller 

diameter polymer chains and increase contraction and elongation rates of the material. 

3. Integrate compliant inert electrode materials with PAN nanofibers to withstand dynamic 

and corrosive environments for improved cyclic performance and material properties. 

4. Use alternative electrolytic solution for electrolysis to prevent the formation of 

byproducts that may degrade the actuation performance of the PAN composite over time.  

5. Measure force capacity of future PAN nanofiber-based prototypes designed for 

electrochemical actuation to characterize dynamic performance 

6. Develop a model to simulate the electrochemomechanical response of the PAN nanofiber 

composites within electrolytic solution to predict the influence of multiple design and 

processing parameters on actuation performance. 
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Appendix A: Characteristics and Challenges of Dielectric Elastomers 
[17] 
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Appendix B: Summary of Current Actuator Properties [13] 
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Appendix C: Tensile Testing Data 

 C.1: Dry PAN Nanofiber Samples 
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C.2: Wet Expanded PAN Nanofiber Samples 
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C.3: Wet Contracted PAN Nanofiber Samples 
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Appendix D: Panasonic “PGS” Graphite Sheets 
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Appendix E: Sylgard® 184 Silicone Elastomer 
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Appendix F: Drawing of Graphite Spring Electrode 

 


	An Investigation of electrochemomechanical actuation of conductive polyacrylonitrile (PAN) nanofiber composites
	Recommended Citation

	tmp.1390231084.pdf.MHMrs

