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ABSTRACT

A simple, elegant and modern method of geometric description of NACA Four-digit airfoil
shapes is presented. Results are found to closely match conventionally described NACA Four
Digit airfoil shapes. The method developed allows user flexibility, and is easily adaptable to
manufacturing processes.
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1. Introduction

1.1 A Brief History of Airfoils and Aeronautical Development®

From the earliest of times, man has been enthralled with the idea of flight. From the myth of

Icarus to the first powered flight by the Wright brothers, the human spirit has longed to mingle
with the clouds.

The first manifestations of man’s attempts at flight came directly from birds. Various unnamed
persons throughout ancient and medieval times attached some sort of wings to their arms in an
always futile attempt at flight. The Renaissance period was characterized by mechanical devices
driven by arms, legs or some type of body movement. These machines are known as
ornithopters. The surviving manuscripts of Leonardo da Vinci contain over 35,000 words and
500 sketches that deal with flight'. The great majority of them were of proposed ornithopters.

In the late 1700’s, the Montgolfier brothers, French paper makers, constructed a balloon which
trapped hot air produced by a fire contained within a wicker basket hanging below it. Man was
finally airborne. Although hot air balloons actually did nothing as far as advancing the cause of
powered flight, they did prove publicly that man could rise above the surface of the earth. In
this respect, they fueled the notion that flight was indeed possible. Balloons were the only means
of flight for over one hundred years.

The first major breakthrough in aeronautics came from a now obscure English nobleman, Sir
George Cayley. In 1799, he inscribed on a silver disc the concept of a fixed wing craft which
had a separate means of propulsion. On the opposite side of the disc is an illustration of the
resultant forces on a wing, indicating clearly what are known as lift and drag today. Though this
may seem trivial today, given man’s major advances in the field of aeronautics, it was a major
breakthrough at the time. He fashioned the first emulation of a wind tunnel, a long mechanical
arm at the end of which he could attach primitive models of aircraft, although at the time he had
no inclination that after repeated revolutions the air would begin to move with the arm. In 1804,
Cayley designed, built and flew a small model glider which represented the first modern
configuration aircraft in history?. In 1809 and 1810, Cayley authored a monumental triple paper
entitled "On Aerial Navigation", published in various issues of Nicholson’s Journal of Natural
Philosophy. 1t was the first treatment of theoretical and applied aerodynamics ever published.
In these papers, Cayley’s contention was that the basic function of a flying machine is "to make
a surface support a given weight by the application of power to the resistance of air." He was
the first to realize that lift on a curved surface (airfoil) is due to a region of low pressure on the
top of the surface. Cayley built and tested a full-size airplane in 1849. During some of these
tests, a young boy rose several meters off the ground while the craft glided down an incline.
This craft was a triplane, and Cayley’s idea of using multiple wings was prevalent for quite
some years afterward. In 1852, he published a paper, "Sir George Cayley’s Governable
Parachutes" which appeared in Mechanics Magazine. This monumental paper gave illustrations
of a craft which contained nearly all necessary parts for a modern aircraft. It is unfortunate that
his works drifted into obscurity shortly after his death in 1857.

¥ Much of the material for this section was obtained from Introduction to Flight, Third Edition, reference (2).




The next great pioneer of aviation was Otto Lilienthal, a German. He recognized the fact that
in order to produce a machine capable of flight, one had to have a good grasp of the "feel" of
an aircraft. His book, entitled Der Vogelflug als Grundelage der Fliegekunst (Bird Flight as the
Basis of Aviation) was an early classic in aviation literature. In it, Lilienthal studied the structure
of bird’s wings and applied the aerodynamic information to the design of mechanical flight. In
1891, Lilienthal made his first successful flight in a glider of his own design. He made over
2500 flights in various gliders over the next five years. He experimented with slats at the end

of each wing, but these efforts result ended in failure. His death in 1896 was the result of a
crash.

Among the pioneers in America, the director of the Smithsonian Institute and distinguished
scholar Samuel Pierpont Langley began his studies of powered flight in 1887; Langley coined
the term "aerodromes" for his designs. In 1903, he attempted two highly publicized piloted
flights, the last just weeks before Wilbur and Orville Wright’s historic flights at Kill Devil Hills,
North Carolina. In both instances, his aerodromes left their launch platform and went straight
into the Potomac River. Following this public humiliation, he retired in despair.

The Wright brothers hailed from Dayton, Ohio where they ran a successful bicycle shop. Their
interest in flight was largely due to the exploits of Otto Lilienthal, whose pictures in flight were
distributed worldwide. Wilbur’s studies of birds in flight led him to the conclusion that birds
"regain their lateral balance when partly overturned by a gust of wind, by a torsion of the tips
of the wings"®. This was one of the most important developments in aviation history; ailerons
are a direct result. After much experimentation with gliders, the Wright brothers decided that
a significant portion of the aerodynamic data published by Lilienthal and Langley was in error.
They constructed a wind tunnel in their bicycle shop in Dayton and tested over 200 different
airfoils. Additionally, they designed a force balance to accurately measure lift and drag. Their
research culminated on December 17, 1903 when the Wright Flyer took to the air off the sand
dunes at Kill Devil Hills. Aviation would never look back.

The Wright brothers made numerous technical advances after that first flight, but became very
secretive until their machine was finally patented in 1906. After 1910, the Wright’s influence
declined due to legal battles between them and another aviation pioneer, Glenn Curtis. During
this time, the Europeans took the forefront in aeronautical research. In France, Gustav Eiffel
built a wind tunnel complex at the base of his magnificent tower; the French Army built a
laboratory at Chalais-Meudon and there existed also a facility at the Institut Aerotechnique de
St.-Cyr. Germany held facilities at Géttingen University, the technical colleges of Aachen and
Berlin, a government operated laboratory at Adlershof as well as numerous industrial research
sites®. Russia and Italy had advanced laboratories also. Some early work was also performed by
the British Government at the National Physical Laboratory, leading to a series of airfoils used
during World War I.

With the outbreak of war on the European continent, aircraft became more than just an item of
curiosity; leaders saw it as an effective and efficient tool of war. In 1915, the Smithsonian
Institution sponsored a resolution in the U.S. Congress to legislate a committee to explore and
continue aeronautical research. The political leaders and scientific community of America



realizeq that they had fallen behind the Europeans in this area. On March 3, 1915 the Advisory
Committee for Aeronautics was formed. At the first meeting, the word "National" was added
to the name. Thus the NACA was born.

One of the first acts of the NACA was to survey existing facilities in the military, private
industry, and educational institutions in the area of flight research. From this survey it was
concluded that a new facility was required, one that would encompass both facets of flight as
it was then known: a laboratory for small scale simulation, and facilities to study full size
aircraft in flight. It was decided that ground be broken at a site near Hampton, Virginia. This
laboratory was to be known as Langley Field, named after Samuel Pierpont Langley.?

From the wind tunnels at Langley poured tremendous amounts of data. In 1917, Lt. Col. Edgar
S. Gorrell and Major H. S. Martin presented NACA report no. 18, "Aerofoils and Aerofoil
Structural Combinations". In this report, Gorrell and Martin reported that

... we are able to design aerofoils only by consideration of those forms which have been successful,

by applying general rules learned by experience, and by then testing the aerofoils in a reliable
wind tunnel.

For the first time, the United States was able to systematically study airfoils. The research center
at Langley soon became the world leader in aeronautics. In 1933, NACA report no. 460, "The
Characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density Wind Tunnel"
was presented by Eastman N. Jacobs, Kenneth E. Ward, and Robert M. Pinkerton. It was
discovered that airfoil effects could be attributed to two geometric quantities: thickness
distribution and mean line (camber). Out of this work came the NACA four-digit airfoil series.
They are the ones researched in this paper, as they are derived from purely geometric, versus
aerodynamic, parameters. It was found that the thickness distributions of some of the early,
more efficient airfoils such as the Gottingen 398 and the Clark ‘Y’ were essentially similar to
the NACA four-digit families once the mean lines were removed and they were reduced to the
same maximum thickness.* It is important to note here that the NACA Five-digit series of
airfoils utilizes the same thickness distribution as the Four-digit series, though camber lines for
the Five-digit series rely on aerodynamic performance for their generation.

In 1949 a monumental work, Theory of Wing Sections (Including a Summary of Airfoil Data),
was published by Abbott and von Doenhoff. This work summarized the work done to that point
by NACA and included wind tunnel test results for many of the airfoil sections then in use. It
is still considered the definitive reference on wing sections. The work of Abbott, von Doenhoff
and others continued at Langley until 1958, when the Russians launched Sputnik I. NACA was
disbanded and absorbed into the newly formed National Aeronautics and Space Administration
(NASA). Very little research went into conventional airfoil design at this time, as all available
resources were utilized in the attempt to catch up to the Russians in the "space race".

With the dawn of the computer age came parallel advances in airfoil design and analysis.
Boundary Layer theory, first introduced by Ludwig Prandtl in 1904, gave future designers the
mathematical tools for airfoil analysis, but not until the advent of high-speed computers were
researchers able to exploit this theory to the fullest. Modern day airfoils are designed using a
process known as conformal mapping, where a known two-dimensional shape (in this case an



airfoil section) is algebraically transformed into a simple shape (an off-center circle) in the
complex plane and a simple flow is then analyzed around it. Results of this analysis are then
mapped back into the real plane. While this method yields results which compare quite favorably
with wind tunnel testing, the ability to slightly alter the shape with the intent of optimizing
aerodynamic performance can currently only be accomplished between successive iterations. The
speed of new computers and efficiency of new algorithms are such that one should be able to

analyze fluid flow in the real plane, "tweaking" the airfoil shape along the way to produce the
desired results.

1.2 Direction of Research

Advances in both mathematics and the ability to process calculations quickly and accurately have
radically changed technology. These advances, coupled with the rapidly growing field of
computer graphics, have revolutionized approaches to design. With these advances, it seems
logical that airfoil design should proceed along the same lines. In the case of the NACA four-
digit airfoils, it has not. As previously mentioned, the definitive reference on this important
family of airfoils was first published in 1949°. In order to facilitate geometric reproduction of
these shapes as a prelude to Computational Fluid Dynamic (CFD) analysis, it was desirable to
determine a method whereby airfoils could be emulated with a minimum of both geometric
parameters and arithmetic operations, while control over their shape and transformation are kept
relatively simple. The importance of redescribing airfoils is to be able to effectively attain local
control of the shape.

In this regard, it was first desired to determine a method whereby the aesthetically pleasing
shape of the airfoil section could be emulated, then modified. Since the concepts of flight and
airfoil sections were first influenced by nature, it seemed logical that nature would be an
appropriate starting point in the attempt to generate these shapes. This seeming "regression" of
technology -getting back to the basics - was fundamental in this research. This return to nature
begins with the Golden Section.

1.3 The Golden Section

Also known as the Golden Ratio or Golden Number, this ratio and its properties pervade nature
and has intrigued man through the ages. Its existence has been known since ancient times, and
many cultures have attempted to incorporate this proportion into aesthetically pleasing shapes.
Throughout history men have attempted to tie this number into everything from architecture to
the stock market’, and this work will attempt to make a connection with geometric forms
originally derived by other means. While a thorough treatment would encompass many volumes,
a minor overview of this fascinating relationship and numerous examples are included for
reference in Appendix A.



2. NACA Four-Digit Airfoils
2.1 Symmetric Airfoils
2.1.1 Nomenclature

As previously mentioned, the NACA four-digit families can be described in terms of geometric
parameters. The symmetric airfoils are the simplest case; they will be discussed first. Figure

2.1. provides an illustration of required geometric parameters common to all NACA four-digit
symmetric airfoil sections.

x.5,)

Figure 2.1. Typical Symmetric Airfoil Section

Given parameters are defined as:

Corvivrinnrrennennas chordlength

. maximum thickness
N leading edge radius
E i trailing edge angle

2.1.2 Thickness distribution

The NACA investigations previously mentioned (for the four-digit families) led to a unified
method for defining the thickness distribution for these symmetric airfoil sections which was
dependent only on the maximum thickness, ¢. The best-fit curve to define these experimentally
derived airfoils is

+y, = iz( 2969y/x -.126x -.3516x7 +.2843x° - .1015x* ) 2.1]

where y, is the ordinate (y-coordinate) at any chordwise position x. The chordwise position can
take any value from x=0 to x=1. Thus x and y are not actual numerical values, but ratios of
chordwise position and thickness to chordlength. Established convention dictates that the use of
x,t, or y (or in the case of cambered airfoils x, y,, m, p, ¢, y,, X,, X;, y, and y)) are assumed to
be decimal of chordlength. The use of this convention allows for ease of notation and will
prevent "notational clutter”, aiding the reader.



In order to determine the position on the chord where the airfoil attains its maximum thickness,
the root of the derivative of [2.1], given by

/_ i( .14845

*
- 2 ‘/x_

must be found.

- 126 - .7032x + .8529x> - .406x° ) [2.2]

The r-esultant value, solved using the Newton-Raphson technique, is x,_. = 0.299827878c¢. For
practical purposes, this value is assumed to be 0.3c and is independent of the value of ¢.

2.1.3 Leading Edge Radius

The leading edge radius, r, varies with the square of ¢ and is given by

r = 1.1019¢2 (2.3]

2.1.4 Trailing Edge Angle

Trailing edge angle, £ is determined by inserting a value of x=1 in equation [2.2]. At x=1,
tan¢ =y (1) = -1.16925¢ [2.4]

Prior to the advent of computers, it was standard practice to look up a table of coordinates for
these airfoils. Because [2.1] is linearly dependent on ¢, all one needed to do to reproduce a four-
digit symmetric airfoil of arbitrary thickness was to scale between ordinates of a given thickness
airfoil and the thickness of the desired airfoil. Table 2.1 is an example of published information®
from which a new airfoil could be constructed.

Table 2.1 Coordinates for 12 Percent Thick NACA Four-Digit
Symmetric Airfoil (NACA0012)

x, percent chord y, percent chord x, percent chord | y, percent chord
o5 | ... 30. 6.002
1.25 1.894 40. 5.803
2.5 2.615 50. 5.294
5.0 3.555 60. 4.563
7.5 4.200 70. 3.664
10. 4.683 80. 2.623
15. 5.345 90. 1.448
20. 5.737 95. 0.807
25. 5.941 100. 0.126




2.2 Cambered Airfoils

Cambered (asymmetric) airfoil sections are more complex in nature, requiring more geometric
parameters to define. They are assumed to be a superposition of a symmetric thickness

distribution over a curved line known as the camber, or mean, line. Figure 2.2. illustrates this
scheme.

Figure 2.2. Typical Cambered Airfoil Section

2.2.1 Nomenclature

New parameters, in addition to those listed for the symmetric airfoil, are

Py eeveeerreresnesacaces upper surface ordinate

V) ceveverereverernennes lower surface ordinate

Ve vevverenenrereneanens camber line

M oeeenininrnnenennes maximum camber in percent of chord

) /N chordwise position of maximum camber

2.2.2 Mean Line

The mean line has been defined as two parabolic arcs which are tangent at the chordwise
position of maximum camber. For NACA four-digit airfoils, these arcs are given by

Y, = = (2px - 1Y), 0<x<p

[2.5]

y, = —2 _[(1-2p)+2px -x"], p<x<c

(1 -p)

The slope of the camber line at any point x is an important quantity in generating airfoil
coordinates. For an arbitrary x (0<x<1) the tangent is determined by

yt/ = tano = _2__’:_1 (p - x) ’ 0<x Sp
p [2.6]
yc/ = tand _(12_mp)2(p —X) ’ pr<C



2.2.3 Method of Combining Thickness Distribution and Mean Line

Generatign of cambered airfoils is accomplished in the following manner. The slope of the
camber line at any arbitrary position x (0 < x < c¢) is equal to tan 6, as shown in Figure 2.3.

' G530

) :,,\93
o =
Gpyp

Figure 2.3. Detail of Cambered Airfoil Generation

Mathematically, thickness distributions are combined with the camber line by the following
method. The upper surface coordinates are computed by

X, =x -y, sinf

. [2.7a]
Y, =Y.+, cosb

The corresponding expressions for the lower surface coordinates are determined by
X, =x +Yy, sing [2.7b]

Y=Y, -, cosé

In order to generate a set of coordinates for a four-digit airfoil, a table similar to that illustrated
in Table 2.2 must be constructed.

Table 2.2 Coordinate Generation for NACA2412 Airfoil

x Y ¥, tan 6 sin 6 cos 8 y, sin @ ¥, cosé Xy Yy X Y

0 0 0 0 0 0 0 0 0

0.005 0.01221 0.00050 0.09875 0.09827 0.99516 0.00120 0.00122 0.00380 0.00172 0.00620 -0.0007

0.05 0.03555 0.00469 0.08750 0.08717 0.99619 0.00310 0.03541 0.04690 0.04010 0.05310 -0.0307
0.25 0.05941 0.01719 0.03750 0.03747 0.99930 0.00227 0.05937 0.24773 0.07656 0.25227 -0.0422
0.50 0.05294 0.00588 -0.2381 -0.2316 0.97281 -0.0123 0.05150 | 0.51230 0.05738 0.48770 -0.0456
0.75 0.03160 .0039%0 -0.8333 -0.6402 0.76822 -0.0202 0.02428 0.77020 0.02827 0.72980 -0.0203
1.00 0 0 0 0 1.00000 0 1.00000 0




It is easily seen that construction of a table similar to that shown on the previous page could be
very time consuming, given that the preferred method of calculation of the day was the slide
rule. Even with the new technology, it is estimated that airfoil coordinate generation can
consume up to sixty percent of total processing time.

2.3 NACA Designation Scheme

The four-digit airfoil section family received its name from the fact that any airfoil in the series,
whether symmetric or cambered could be described using four digits. The designation rules are
as follows: for an airfoil designated NACAwxyz, the following rules apply:

w denotes maximum camber in percent of chord
x denotes chordwise position of maximum camber in tenths of chord
¥z denotes maximum thickness in percent of chord

Thus a NACA2412 is a twelve percent thick airfoil with two percent maximum camber, located
at .4c; a NACAOQO18 is an eighteen percent thick symmetric airfoil.

2.4 Method of Manual Layout

The first item to be generated is the leading edge radius. On a cambered airfoil, the center of
the radius is assumed to lie tangent to the mean-line at a chordwise position x = 0.005c.

To correlate data as generated in Table 2.2 to a physical medium, a process known as lofiing
is used. Given specified data points, a long, narrow plastic or wooden strip, or spline, is shaped
by lead weights called ducks. By varying the number and position of the ducks, the loftsman’s
spline is made to pass through the given data points such that the curve appears "smooth, fair
or pleasing to the eye"”. In the case of the airfoil, the loftsman’s spline may be clamped at either
end in order to specify a slope. Figure 2.4. shows details of this process as applied to airfoil
layout.

Figure 2.4. Illustration of Airfoil Layout (Upper Surface) Using Loftsman’s Spline and Ducks

Considering the spline as a thin elastic beam, the shape of the spline, corresponding to the
deflection of the beam y, is obtained from the bending moment M(x) along the length of the
beam. From Euler’s equation®,

M) = EL 2.8]



Where;

E .is Young’s Modulus, determined by material properties of the beam
I'is the moment of inertia, determined by the cross-sectional shape of the beam
p(x) is the radius of curvature at any point x along the beam

For small deflections (y' <1), the radius of curvature is closely approximated by

/"

1 _ y

o o =2

Thus, according to Euler’s equation,

n o M(x)
y £7 [2.10]

Assuming the ducks act as simple supports and the spline is of uniform material and cross-
section (E and I are constant over the entire length of the spline), the bending moment is known

to vary linearly between supports®. Making the substitution M(x) = Ax + B, Euler’s equation
becomes

n_ Ax + B 2.11

Y EI 24
Integration twice yields

y =AxX + BX* + Cx + D [2.12]

Where the flexural modulus (E7) has been absorbed into the coefficients 4,B,C and D. Thus
between any two supports (data points), the geometric description of the shape of the loftsman’s
spline is a cubic real polynomial. This is used as a starting point for further research.
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3. Approximation Techniques
3.1 Polynomial Approximation

3.1.1 Cubic Spline Interpolation

As previously mentioned, the loftman’s spline can be described mathematically as a piecewise
cubic polynomial. Given n+1 data points, (x;,y) {i=0,1,...,n} , the (n-1) cubic spline segments
S{(x) that make up the set of spline interpolants S for a function f'is a function that must satisfy
the following conditions®:

a) § is a cubic polynomial, denoted S;, on the sub-interval [x;,x;,,] for each i=0,1,...,n-1;
b) S,(x)=Ax,) for each i=0,1,...,n;

©) Sir1 (i) =84x;,,) for each i=0,1,...,n-2;

d) §';41(641)=8"i(x;,) for each i=0,1,...,n-2;

€) 8”14 1(Xip) =8 "(x;,,) for each i=0,1,...,n-2;

f) one of the following sets of boundary conditions is satisfied:

i) $"(xp)=8"(x,)=0 (Free boundary)
ii) $'(xg)=f"(xp) and S'(x,)=f"(x,) (Clamped boundary)

Mixed boundary conditions are also possible, but will not be considered. A thorough treatment
of the theory of cubic splines and the mathematical derivations of both types is contained in
Appendix B.

The n+1 data points are used to generate n cubic spline segments of the form

S(x) = a(x -x) +b(x -x) +c(x -x) +d [3.1]

One of the disadvantages of natural cubic splines is that end conditions are assumed. If slopes
at the ends are specified, more useful information is used in generating the spline coefficients.

3.1.2 Discrete Least-Squares Approximations

The concept behind least-squares approximation theory is one of minimizing the square of the
error involved in fitting a polynomial to a data set. For the problem attempted in this research,
a linear fit to data corresponding to an airfoil would be ridiculous, and will not be considered.
Higher order (rational) polynomials, however will be investigated, and as such will be discussed
here’.

11
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The genc?ral objective boils down to approximating a data set {(x;, y,) | i=0,1,...,M}, with a
polynomial, P,(x), given by

P(x) =Y ax n<M
k=0

which requires finding the optimum polynomial coefficients, a;, to minimize the least-squares
error

E (y, - P(-x,'))2

i=0

E

Y y?- 220P(x,-)y,- + Y (P(x))
i= i=0

i=0

M M 2
=Yy’ -2)
i 0

i =0 i= j=0

n M n
i= j=

M n M n n M
=Y ¥’-2)¢q [E yixif‘ +3 Y aa, [Exiﬂk]
i=0 i=0 j=0k=0 i=0

i=0

For E to be minimized, it is necessary that dE/ aaj = 0 for each j=0,1,...,n. Thus for

each j,

aE M n M
0=—=-2Yyx +2Y a)y x* [3.2]
6aj i=0 k=0 i=0

This yields (n+ 1) equations in (r#+1) unknowns, called the normal equations,
n M M
Yoy xt=Yyx, j=0,1,..n [3.3]
k=0 i=0 i=o0

The solution to this set of equations is unique provided that the x;, for i=0,1,...,M are distinct.
The scope of this research entailed analyzing least-squares polynomials of orders two and three,
as it was felt that any higher-order polynomials would not add any value in reaching the final
objective; there is also a serious drawback prohibiting the use of these polynomials, which will
be explained in section 3.2.1.

3.2 Parametric Curves

In two dimensions, a curve is commonly represented as the explicit relation

y = F(x) [34]
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Fpr a si.ngle value of x, a distinct value of y is obtained. Equation [2.1] is the thickness
distribution for a NACA four-digit airfoil section in explicit form. The explicit form cannot

represent a multi-valued curve that loops over itself or a closed curve!!. An alternative in this
situation is to utilize the implicit form

G(x,y) =0 [3.5]

Finding a point on the curve G(x,y) may, however, require determining the root of an algebraic
or transcendental equation. Both the explicit and implicit forms of curve representation are axis-
dependent. Thus the choice of coordinate axes affects their ease of use. For example, if, in the
chosen coordinate system, an infinite slope is required as a boundary condition, difficulties arise.
This infinite slope cannot, therefore, be directly used as a boundary condition. Either the
coordinate system orientation must be changed (coordinate transformation), or the infinite slope
boundary condition must be represented by a very large (but finite) positive or negative value.
Furthermore, when points on an axis-dependent non-parametric curve are computed at equal
increments in either x or y, they are not evenly distributed along the length of the curve. This
unequal distribution of points affects the graphical quality of the curve'’. An alternative to this
approach is the use of parametric curves. These geometric representations use an arbitrary
parameter » to specify both x and y coordinates, such that

x =f(») [3.6]
y = 8()

There are several advantages to the parametric form over the explicit form. Each parametric
value, », defines a unique pair of coordinates, x and y, for a point on the curve. A bounded
segment on the curve can be obtained by limiting the values of » to lie within a specified range.
It is usually possible to express parametric curves as a matrix, a form that will be useful in
computer implementation of coordinates for these curves. A point P thus described can be put
into matrix form as

S

P =
) g(v)

The derivative of the curve for any value of the parameter, », is given by

x'(v)

P/(v) =
Ty

where the ' denotes differentiation with respect to ».

According to the chain rule, the slope of the curve, dy/dx, is given by

dy _ dyldv _ y'(») [3.7]
dx  dxidv  X'(»)
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NoFe that vyhen x'(v)=0, the slope of the curve is infinite. Therefore, an infinite slope can be
easily specified by making one component of the tangent vector equal to zero. In this way,

computational difficulties arising from specifying an infinite slope as a boundary condition are
easily overcome.

3.2.1 Bézier Curves

The cubic spline interpolant curves described in section 3.1 are constrained by the fact that the
curve is required to pass through existing data points. In order to efficiently reproduce a NACA
four-digit airfoil, a minimum number of function evaluations of equation [2.1] are desired (one
evaluation to determine the ordinate for a given chordwise position). The Bézier curve,
introduced by French mathematician Pierre Bézier, is a parametric curve which was developed
from both functional and aesthetic concerns. Although this ab initio design tool was initially
derived through geometric considerations, it has been shown that the result of the curve is a
special case of the Bernstein basis, or polynomial approximation function’. Given a function f
defined on [0,1], the Bernstein polynomial of degree n for fis defined’ as

Bern(x) = 3 [:] f [E] (1 -xpt [3.18]
k=0 n

In the case of the Bézier curve, f(x) = 1.

A Bézier curve is determined by a defining polygon as shown in Figure 3.1, below.

Figure 3.1 Bézier Curve and Defining Polygon

Because the Bézier curve can be derived from the Bernstein basis, several properties of these
curves are known’. Some of the more important are:

® The basis functions are real.

® The degree of the polynomial defining the curve segment is one less than the number
of defining polygon points.

® The curve generally follows the shape of the defining polygon.

® The first and last points on the curve are coincident with the first and last points of
the defining polygon.
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® The tangent vectors at the ends of the curve have the same direction as the first and
last polygon spans, respectively.

® The curve is contained within the convex hull of the defining polygon, i.e., within the
largest convex polygon obtainable with the defining polygon vertices. In Figure 3.1,
the convex hull is shown by the dashed lines.

® The curve exhibits the variation diminishing property: the curve does not oscillate
about any straight line more often than the polygon itself.

® The curve is invariant under an affine (linear) transformation.

Mathematically, a parametric Bézier curve is defined by

n

P(») = ) B, J .(») 0 <y <1 [3.9]

i=0

where B; denotes the (2x1) matrix for the ith defining polygon vertex and the Bézier, or
Bernstein basis! is

J, (») = [’: vi(1 - )yt [3.10]

with

n| _ n!
i] i'(n -i0)!

J,.{(») is the ith nth-order Bernstein basis function. In this notation, » is the degree of the defining
Bernstein basis function and also the degree of the Bézier curve. It is also one less than the
number of vertices in the defining polygon. Figure 3.2, on the following page, illustrates the
Bernstein basis functions for (a) n=2, (b) n=3.

1 17)

@) (b)

Figure 3.2 Bernstein Basis Functions

¥ The terminology J,; is consistent with the source of this material, Mathematical Elements for Computer Graphics,
reference (7), and should not be confused with similar terminology denoting Bessel functions.
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Another u.seful property of Bézier curves is the ability to specify the slope of the curve at a
predetermined point. This is accomplished by utilizing two curves and two defining polygons,

yvith the two polygons having an aggregate three consecutive collinear vertices, ABC, as
illustrated in Figure 3.3 below.

Figure 3.3 Method of Combining Two Bézier Curves

3.2.2 Matrix Formulation for Bézier Curve

The equation for a Bézier curve can be expressed in matrix form as

P(») = [F][d]

where
_BOT-
B T
[F] = [J,,,O Jn,l Jn,"] and [G] = -1
B T

Of particular interest are Bézier curves of order n=2 and n=3. Recall that previously for n=2,
the resulting curve is parabolic in nature, and the defining polygon is described by three points.
Thus

B,T
P(») =[(1 -»)? 2v(1 -») »*] |Bf
B,

Expanding the preceding into powers of the parameter », the following is obtained
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- 7 T

-1 03 -3 1 B,

3-6 30 B'

P(») =[V3 v2 oy 1] :
-3 3 0 0| |BFT

1 0 0 0
! 1B
3.2.3 Derivatives of Bézier Curve

For any point on the Bézier curve, the first derivative P'(»), is computed by
P'(v) = i BiJ’N.
i=0
The second derivative, P”(») is given by
P/0) = Y B,
i=0
By formal differentiation,

J, () = [?]{ivi—'(l S LRI (I ) WK 6 U Ly

- n i _ n-1i l _ (n - l) [3.11]
g ECREA T )
(i - nv)
v(l - V)J""( )
and
M _ G- nv)? - nv? - i(1 - 2») 7 [3.12]
Jn,i(V) V2(1 _ V)2 ""(V)
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Numerical evaluation of equations [3.11] and [3.12] at »=0 and »=1 creates difficulties. Thus
the nh derivative at »=0 is given by

P"(0 y-i [T, [3.13]
( ) - r)| E ( ) [ l ] Bx
The derivative at v=1 is

1y = " v oy [T 3.14
(D) = =t 3 (D) [Z]B [3.14]

First derivatives at both ends of the Bézier curve are therefore

P/(0) = n(B, - B)

[3.15]
P’/(1) =n(B, - B, _))

Thus the tangent vector at each end of the parametric curve segment has the same direction as
its respective polygon span. (Recall that each B, is a (2x1) matrix in itself).

Second derivatives at the ends are given as

P”(0) = n(n - 1)(B, - 2B, + B,)

P”(1) = n(n - 1)(B, - 2B, _, + B, _,) B3.16]

-1

For the cubic Bézier curves used in this analysis the first and second derivatives can be
expressed in matrix form as

BT
-3 9 -9 3 BT
P'(v) =[v? v 1] 6 -12 6 0 BT
-3 3 00 2
B,

and
B

, -6 18 -18 6 BT
/() = [ 1] 6 -12 6 o |pr
2

B,"

This method alleviates difficulties in computing slope and curvature at endpoints and will
simplify coding to determine derivatives at the endpoints of the curves.
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4. Results of Analysis

The schemes presented in the previous sections were implemented in the attempt to discover an
efficient method of reproducing the NACA four-digit airfoils. FORTRAN computer programs
for all the routines involved in the analysis are included as Appendix F, in order of appearance
in this section. Because symmetric airfoil sections are computationally less complex than their
cambered counterparts, a decision was made not to attempt to emulate cambered airfoils with
methods that proved unsuitable in the symmetric case. In the analysis that follows, symmetric
airfoil sections are discussed and a viable method for reproducing them is finally established.

4.1 Symmetric Airfoils
4.1.1 Cubic Spline Interpolation

As previously mentioned, cubic spline interpolants have some distinct disadvantages in emulating
the shape of the airfoils in question. Among these are:

® The curve must pass through the specified data points. Logically, one may infer that
the interpolant need not necessarily pass through points on the desired curve which are
not specified.

® A predefined slope at some intermediate point on the desired curve cannot be
specified.

® It is possible for the cubic spline interpolant between two consecutive data points to
possess two points of inflection'?. In effect, the cubic spline interpolant will vary along
the length of the desired shape, with error between the two curves becoming less as
the slope of the desired curve decreases. This property shall be referred to as the
oscillation phenomenon. See Figure 4.1 on the following page for an illustration.

® All the symmetric airfoils discussed possess the property of having an infinite leading
edge slope. (This is evident from equation [2.2] with x=0).

4.1.1.1 Natural Cubic Splines
The last disadvantage listed above proved to be the most limiting. From this property, a cubic
spline segment to fit the leading edge portion of the curve must possess a first-order variable

coefficient of infinity. This obstacle alone eliminates natural splines from contention in the
search for a more computationally efficient method of airfoil emulation.
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4.1.1.2 Clamped Cubic Splines

In order to bypass the infinite leading edge slope difficulty, recall from section 2.2.2 that
equation [2.1] describes a circle for the initial portion of its path. Thus it seems logical that
finding the point where the prescribed curve departs from the circle defining the leading edge
radius is a natural first step in attempting to overcome the problem of infinite slope at the
leading edge, as illustrated in Figure 4.2 below.

NACA Four-Digit Airfoil
Leading Edge Radius

Figure 4.2 Detail of Intersection of NACA Airfoil and Leading Edge Radius

Knowing the leading edge radius of the airfoil from equation [2.3], it is a simple matter to
determine the formula for a circle having this radius in Cartesian coordinates. Defining the
origin as the leading edge,

x-r+y=r

or

y = +yx(2r —x) = _t«/x(2.2038 £ - x) [4.1]

The positive and negative values of [4.1] correspond to the upper and lower surfaces,
respectively. For the upper surface, the point of intersection of the leading edge radius and
NACA thickness distribution is obtained by solving

= 51(.2969y/x - .126x - .3516x> + .2843x> - .1015x%)
_ x(2.20387 - x)

Note that [4.2] is dependent upon the thickness distribution of the airfoil section, ¢. It is obvious
from this equation that a root lies at x=0, yet this root is meaningless to the task at hand. The
FORTRAN program NEWTON.FOR was implemented in order to attempt find the root to [4.2]
for numerous values of z. Newton-Raphson did not converge to a solution, although the reason
for this was not obvious until the true root was found (this equation possesses a local minimum
between x=0 and the desired root).

[4.2]
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It should be noted here that conventionally this particular point is taken to be the airfoil
coordinate at .0005¢c. The ordinate values at x=.0005c are .003945479 for the defined shape of
the NACAO0012 airfoil, and .003951881 for the ordinate of the circle which describes the leading
edge radius of the same airfoil. This represents a relative error of .16225 percent, acceptable
at this point, but when the two slopes are computed, the relative error grows to nearly half a
percent. This may seem insignificant, however experience shows that a very minor deviation

between the true curve and the leading edge radius is greatly amplified by the cubic spline
interpolant.

The bisection method, guaranteed to provide meaningful results without regard to computational
efficiency, was then employed. A plot of chordwise position of leading edge radius and NACA
four-digit airfoil upper surface intersection points versus thickness ratio is given as Figure 4.3

for .02 <7< .40 on the following page. Additionally, tangents to the leading edge radius at these
points, given by

_(L10197 - x,, )%, (2.20382 - x,,.) [4.3]
Xy (220382 - x,,.0)
as a function of thickness ratio were also tabulated. Figure 4.4, page 29, was generated using

these results. This data is compiled in the files S_ INT.DAT and S_SLOPE.DAT, located in
Appendix G.

/
Y radius

Least-squares curve fitting techniques were used to determine if any functional relationship
existed between (a) thickness ratio and point of intersection, and (b) thickness ratio and the slope
at the point determined from (a). For the point of intersection, (x,,,y..), the least-squares
approximating function is given by

Xy = -00488874 - 190253 ¢ + 2.22379 t? - 9.96043¢° + 18.657¢* .41
Vs = Y Xy (2-2038 2 = x,,)

The slope at this point is given by the least-squares approximating function
Y e = 418408 - 2111131 + 2082, '002323632 [4.5]

Computationally, [4.5] is not nearly as efficient as desired, yet it fits very well to the data from
which it came. The fit of intersection points given by [4.4] is marginal, and not nearly accurate
enough for the purpose of this research. Regardless of efficiency, the cubic spline technique still
requires function evaluations at a number of points on the desired airfoil, which is contrary to
the objective of this research. Increasing the number of data points supplied to generate the cubic
spline interpolant did lessen the magnitude of overshoot on the leading edge, but even with 200
points supplied on the upper surface as data points, the rippling effect on the leading edge could
not be totally eliminated.
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4.1.1.3 Overcoming the Problem of Specifying Zero Slope

In order to circumvent the zero slope requirement at the point of maximum thickness, it was
decided that perhaps an effective method may be to break the airfoil into two distinct portions.
By splitting the airfoil at the x=.3 point, a clamped cubic spline could feasibly be used to fix
the slope at zero at this point. Although the cubic spline methods discussed in this section were
deemed unsuitable for the purpose, this was an important step in reaching the final objective.

The technique of splitting the airfoil at the x=.3¢ point proved vital to the eventual success
encountered in this research.

4.1.2 Least-Squares Polynomial Approximations

Least-squares curve fitting techniques were attempted for this application. Due to the fact,
however, that even with a significant number of generated data points, no great degree of
accuracy in emulation was achieved, this technique was dropped from contention as a viable
method to achieve the final objective.

4.1.3 Parametric Bézier Curves

The properties of Bézier curves seem ideally suited to fulfill the objective of this research. By
sectioning the airfoil at the chordwise position of maximum ordinate, zero slope at this point is
easily attained. In addition, by placing successive defining polygon vertices along the line x=0
(the y-axis), the heretofore troublesome problem of infinite slope at the leading edge is
overcome, while placement of a polygon vertex along the line y=t/2 somewhere between x=0
and x=.3 will ensure zero slope at the point of maximum thickness. These requirements of the
Bézier curve thus eliminate the investigation of quadratics; the lowest order Bézier curve to
accomplish the objective will be a cubic one. Further, because the Bézier curve utilizes only the
defining polygon points in its generation, the specification of large numbers of points through
which the curve must pass is unnecessary; only the points which determine the first and last
vertices of each defining polygon (and are coincident with the airfoil) must be specified.

4.1.3.1 Leading Edge Surface
The question that now arises is one of how to go about determining the optimum placement of
the two remaining defining polygon vertices to minimize error between the Bézier curve and the

true (desired) shape. Upon further inspection, it is noted from Figure 4.5 on the following page
that of the two undetermined polygon vertices, one coordinate of each is predetermined.
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‘,2 B3 -('31 ‘,2)
B,-
O, 1

" — Desired Shape
/ -— Defining Polygon
/////
B, - (0,0) 3 x

Figure 4.5 Leading Edge of Airfoil and Bézier Defining Polygon

Thus it is desired to find only two values: the y-coordinate for the vertex B, on the y-axis,
and the x-coordinate for the vertex B, on the line y=¢/2. For the initial portion of the
analysis, the NACAOQ012 airfoil was chosen as the target of the attempt to fit a Bézier curve
to the actual shape.

The matrix formulation for the Bézier curve now becomes

-1 3 -1 1 0 0

3 -6 3 0 0

Po) =[» »* v 1] 3 3 00 x. 0.06
, O

|1 0 0 ] ]03 0.06 |

There are a multitude of optimization methods that could have been employed to hone in on
the two values required, but as a first approach, it was thought that some ballpark estimates
of these values should be obtained. In order to arrive at some preliminary estimates for the
y-coordinate of polygon vertex B,, integer multiples of the leading edge radius were thought
to be good starting points. A preliminary (and purely arbitrary) assumption that polygon
vertex B, have a y-coordinate value no larger than #/2 was made. This limited possible values
of y, for the initial attempt to emulate the NACAQO012 to

r = 0.015867 (1)
y, = {2r = 0031735 (2)
3r = 0.047602 (3)
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In the matter of selecting the x-coordinate of polygon vertex B,, the interval [0,.3] (assuming

a standard chord length of unity) was divided by golden section (see Appendix A for details
of this method). Thus

_ | (1-1)(03) +7(0.0) =0.11459 (1)
2 (1 -7)(0.0) +7(0.3) =0.18541 (2)

Where, from Appendix A,

L5 - L - 0.6180339

This scheme led to six possible Bézier curves. Each of the possible combinations is plotted in
Figures 4.6-4.11, pages 33-38. They are designated as "Case (a,b), where a denotes the y,
value of vertex B, and b denotes the x, value of vertex B,. Note here the indices are in order
of the Bézier defining polygon vertices and not of the form (x,,,y;,,), Where the subscripts i
and j denote the various values of y, and x, as given above.
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Some observations on the previous plots, Figures 4.6-4.11, are in order. Varying the two
inner defining polygon vertices changes the nature of the Bézier curve that lies within the
polygon. Table 4.1 below summarizes the effects of changing y, and x, from their smallest to
largest values (intermediate values of y, are not included).

Table 4.1 Visual Effects of Variation of Bézier Defining Polygon Inner Vertices
Case y, value x, value Effect
(1,1 0.015867 0.11459 sharp nose
(1,2) 0.015867 0.18541 sharpest nose
thin leading edge
3,1 0.047602 0.11459 blunt nose
(3,2) 0.047602 0.18541 best fit

Noting the changes in Bézier curve shape attained by varying the defining polygon inner
vertices (B, and B,) will be useful should one desire to manipulate or perturb a shape
generated using Bézier curves. It should be noted here that changing only one of these inner
vertices will affect a change on the entire leading edge surface.

It is noted that case (3,2), Figure 4.11, seems to be a relatively good fit to the desired shape.
Although further refinement of the defining polygon vertices is in order, the results thus far
were checked against other airfoils in the NACAOOxy family. A number of these surfaces
(from the leading edge to the point of maximum thickness) were generated and compared
against the corresponding NACA four-digit thickness distribution (equation [2.1], shown
again for reference).

+y, = 'ti( 2969 -.126x -.3516x +.2843x° - .1015x* ) [2.1]

1t is further observed from plots generated using the Bézier curve versus the true shapes, that
the reasonably good fit obtained in the case of the NACA0012 does not carry over to airfoils
of different maximum thicknesses (see Figures 4.12 and 4.13, pages 40-41). Again the
conventionally described NACA thickness distribution has been provided for comparison.

Reflecting upon the outcome of Figures 4.12 and 4.13, it is recognized from section 4.1 that
" the curve is invariant under an affine (linear) transformation"’. Because the leading edge
radius was used to determine y, of polygon vertex B;, the relative distance from the leading
edge to vertex B, changes with thickness ratio in a non-linear manner (recall from equation
[2.3] that leading edge radius, r, varies with 7).
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Thus for the affine transformation property to hold, the defining polygon vertices must be
generated using a term that is linear in ¢ (or independent of #). Since good first approximation
results were obtained on x, using the golden section method, this was deemed a good place to
continue in the search for y,. Figure 4.14 illustrates the manual refinement that went into
determining a value of y, that would hold for any value of ¢. Because this golden section
search was performed with the aid of a hand calculator, it was possible in some instances to
select new bounds on both ends of the shortened search interval.

006
I
N 0.05125"—  0.04917
x N 5
T 0.04584 0.04790
I
A 0.03708*
L
I 3
N
T 0.02292
B
R 2
v
A
L SUCCESSIVE MANUAL
0.0 ITERATIONS . b

Figure 4.14 Steps in Golden Section Refinement to Determine y,

Prior to the first iteration above, the search interval is [0,0.06]. Because the desired value of
: is known to be in the vicinity of 0.047602, the next interval subject to golden section
search is [0.03708,0.06]. The second iteration of the golden section yields two values which
bracket the desired value, and thus both endpoints of the interval may be replaced. The
search interval then becomes [0.04584,0.05125]. The asterisk (*) in Figure 4.14 above
denotes the fact that it has replaced one of the interval bounds. It was felt that after the first
iteration y, would not be close enough to the desired value of 0.047602 to warrant plotting
the result. Successive iterations, however, bracketed the desired value on a small enough
interval to deserve a closer look.

Figures 4.15 - 4.17 (denoted cases (4,2), (5,2) and (6,2), pages 43-45) show the results of
this further manual refinement in the emulation of the NACA0012. Because the value for y,
obtained above are linear in ¢ (see Appendix A for an explanation), it is logical to assume
that employing this method to generate airfoils of varying thicknesses will provide accuracy
for all ¢. Figures 4.18 - 4.24, (pages 46-52), show the results as applied to airfoil leading
edges of various thickness ratios. It should be mentioned here that the refinement was
accomplished leaving the x-value of polygon vertex B, at x,=7(.3¢)=.1854c.
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Cubic Bézier curves were plotted against the desired curves after each iteration; it was
determined that the best fit was obtained in iteration 2, case (4,2), with

¥y, = (1 - 7)(0.06) + 72(0.06)

= (1 - 7)(0.06) + (1 - 7)(0.06)
2(1 - 7)(0.06)

2(1 —‘r)%

=(1 -7)t

Refinement of the x-value of polygon vertex B, was accomplished in a similar manner.
Figure 4.25 illustrates this refinement process.

0.0 0.3¢
L |
1 0.11459* | | 0.18541%
2 0.14164 L__1 0.15836*
3 0.168691 | 0.17508*

Figure 4.25 Refinement of x, Using Golden Section Method

Table 4.2 below will serve to clarify the iterative pro