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1. INTRODUCTION 

There are many known connections between determinants of tridiagonal matrices 

and the Fibonacci and Lucas numbers.  For example, Strang [5, 6] presents a family of 

tridiagonal matrices given by: 
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where ( )nM  is nn × .  It is easy to show by induction that the determinants ( )kM  are the 

Fibonacci numbers 22 +kF .  Another example is the family of tridiagonal matrices given 

by: 
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described in [2] and [3] (also in [5], but with 1 and –1 on the off-diagonals, instead of 

i ).  The determinants ( )kH  are all the Fibonacci numbers kF , starting with 2=k .  In a 

similar family of matrices [1], the ( )1,1  element of ( )nH  is replaced with a 3.  The 

determinants now generate the Lucas sequence kL , starting with 2=k  (the Lucas 

sequence is defined by the second order recurrence 11 =L , 32 =L , 11 −+ += kkk LLL , 2≥k ). 

 In this article, we extend these results to construct families of tridiagonal matrices 

whose determinants generate any arbitrary linear subsequence βα +kF  or βα +kL , �,2,1=k  

of the Fibonacci or Lucas numbers.  We then choose a specific linear subsequence of the 

Fibonacci numbers and use it to derive the following factorization: 
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This factorization is a generalization of one of the factorizations presented in [3]: 
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In order to develop these results, we must first present a theorem describing the sequence 

of determinants for a general tridiagonal matrix.  Let ( )kA  be a family of tridiagonal 

matrices, where  
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Theorem 1:  The determinants ( )kA  can be described by the following recurrence 

relation: 



  ( ) 1,11 aA =  

  ( ) 2,11,21,12,22 aaaaA −=  

  ( ) ( ) ( )21 ,11,, −−−= −− kAaakAakA kkkkkk , 3≥k . 

Proof:  The cases 1=k  and 2=k  are clear.  Now 
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By cofactor expansion on the last column and then the last row, 
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 ( ) ( )21 1,,1, −−−= −− kAaakAa kkkkkk . ∎  

 

 

2. FIBONACCI SUBSEQUENCES 

Using Theorem 1, we can generalize the families of tridiagonal matrices given by 

(1) and (2) to construct, for every linear subsequence of Fibonacci numbers, a family of 

tridiagonal matrices whose successive determinants are given by that subsequence.   

Theorem 2:  The symmetric tridiagonal family of matrices ( )kM βα , , �,2,1=k  whose 

elements are given by:  



 βα += Fm 1,1 , 
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2,2  

αLm jj =, , kj ≤≤3 , 

βαβα ++ −== 22,21,22,1 FFmmm  

 ( )α1,11, −== ++ jjjj mm , kj <≤2 , 

with +∈ Zα  and N∈β , has successive determinants ( ) βαβα += kFkM , . 

In order to prove Theorem 2, we must first present the following lemma: 

Lemma 1: ( ) nk
n

knnk FFLF −
+

+ −+= 11  for 1≥n . 

Proof: We use the second principle of finite induction on n to prove this lemma: 

Let 1=n .  Then the lemma yields 11 −+ += kkk FFF , which defines the Fibonacci 

sequence.  Now assume that ( ) nk
n

knnk FFLF −
+

+ −+= 11  for Nn ≤ .  Then 

 11 −++++ += NkNkNk FFF  

  ( ) ( ) 11
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Now, using Theorem 1 and Lemma 1, we can prove Theorem 2. 

Proof of Theorem 2: We use the second principle of finite induction on k to prove this 

theorem: 

 ( ) βαβαβα ++ == FFM det1, . 
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Now assume that ( ) βαβα += kFkM ,  for Nk ≤≤1 .  Then by Theorem 1, 

 ( ) ( ) ( )11 ,,11,,,, −−=+ −− kMmmkMmkM kkkkkk βαβαβα  

  ( ) ( ) ( )11 ,, −−−= kMkML βα
α

βαα  

  ( ) ( ) βα
α

βαα +−
+

+ −+= 1
11 kk FFL  

  βαα ++= kF  (by Lemma 1) 

  ( ) βα ++= 1kF  ∎  

Another family of matrices that satisfies Theorem 2 can be found by choosing the 

negative root for all of the super-diagonal and sub-diagonal entries.  With Theorem 2, we 

can now construct a family of tridiagonal matrices whose successive determinants form 

any linear subsequence of the Fibonacci numbers.  For example, the determinants of: 
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are given by the Fibonacci subsequences 24 −kF , 33 +kF  and 52 +kF . 

 

3. LUCAS SUBSEQUENCES 

We can also generalize the families of tridiagonal matrices given by (1) and (2) to 

show a similar result for linear subsequences of Lucas numbers.  We state this result as 

the following theorem: 



Theorem 3:  The symmetric tridiagonal family of matrices ( )kT βα , , �,2,1=k  whose 

elements are given by:  

 βα += Lt 1,1 , 
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 ( )α1,11, −== ++ jjjj tt , kj <≤2 , 

with +∈ Zα  and N∈β , has successive determinants ( ) βαβα += kLkT , . 

Again we begin with a lemma; its proof imitates the proof of Lemma 1. 

Lemma 2: ( ) nk
n

knnk LLLL −
+

+ −+= 11  for 1≥n . 

Proof of Theorem 3: We use induction: 

 ( ) βαβαβα ++ == LLT det1, . 
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Now assume that ( ) βαβα += kLkT ,  for Nk ≤≤1 .  Then by Theorem 1, 
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  βαα ++= kL  (by Lemma 2) 

  ( ) βα ++= 1kL  ∎  



With Theorem 3, we can now construct a family of tridiagonal matrices whose 

successive determinants form any linear subsequence of the Lucas numbers.  For 

example, the determinants of: 
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are given by the Lucas subsequences 24 −kL , 33 +kL  and 52 +kL . 

 

4. A FACTORIZATION OF THE FIBONACCI NUMBERS 

In order to derive the factorization (3) given by ∏
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consider the symmetric tridiagonal matrices:  
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By Lemma 1, mmm FLF 224 = , and � �mm FF 46  ( )� �mmm FFL 422 −=  mL2= .  Furthermore, 

� � mmmm FFFF 6446 −  mmm FFL 642 −=  mF2= , so ( ) ( )nMnB mmm 2,2=  is a specific instance 

of the tridiagonal family of matrices described in Theorem 2.  Therefore, by Theorem 2, 

( )nBm  ( )12 += nmF .   

 By using the property of determinants that BAAB = , and by defining je  to be 

the jth column of the nn×  identity matrix I , we have ( ) ( )nCFnB mmm 2= , where: 
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The determinant is the product of the eigenvalues.  Therefore, let kλ , nk �,2,1=  be the 

eigenvalues of ( )nCm  (with associated eigenvectors kx ), so ( ) ∏
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Then mkk L2−= λγ  are the eigenvalues of ( )nGm . 

 An eigenvalue γ  of ( )nGm  is a root of the characteristic polynomial ( ) 0=− IγnGm .  

Note that ( ) Iγ−nGm  ( )( ) ( )( ) ( )( )TT eeIIeeI 112112 111 −+−−+= mmm FnGF γ , so γ  is also a root 

of the polynomial: 
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This polynomial is a transformed Chebyshev polynomial of the second kind [4], with 
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(3) follows by a simple change of variables. 
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