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1. INTRODUCTION
There are many known connections between determinants of tridiagonal matrices
and the Fibonacci and Lucas numbers. For example, Strang [5, 6] presents a family of

tridiagonal matrices given by:
1
3 -, (1)

where M(n) is nxn. It is easy to show by induction that the determinants [M (k) are the
Fibonacci numbers F,,,,. Another example is the family of tridiagonal matrices given

by:

1 )



described in [2] and [3] (also in [5], but with 1 and —1 on the off-diagonals, instead of
i). The determinants [H(k) are all the Fibonacci numbers F,, starting with k=2. Ina
similar family of matrices [1], the (11) element of H(n) is replaced with a 3. The
determinants now generate the Lucas sequence L,, Starting with k=2 (the Lucas
sequence is defined by the second order recurrence L, =1, L, =3, Ly, =L +Ly, k=2).
In this article, we extend these results to construct families of tridiagonal matrices

whose determinants generate any arbitrary linear subsequence F.; OF Ly.p, k=12,...

of the Fibonacci or Lucas numbers. We then choose a specific linear subsequence of the

Fibonacci numbers and use it to derive the following factorization:
n-1 7K
Form = Fom ﬂ (LZm - 2cos—j : 3
_ n

This factorization is a generalization of one of the factorizations presented in [3]:

n-1

Fon = H (3—2005%) .

In order to develop these results, we must first present a theorem describing the sequence

of determinants for a general tridiagonal matrix. Let Alk) be a family of tridiagonal

matrices, where

A1 A2
Q7 8 dzz
A(k)= a3, azg3
A1k
A k-1 Ak

Theorem 1: The determinants |A(k) can be described by the following recurrence

relation:



|AQL) = agy

|A(2) = az0811 ~ 8180

|AKK) = ay | Alk — 1) - ay k-18k-1.x Ak = 2) , k> 3.
Proof: Thecases k=1 and k=2 areclear. Now

1 Ao
a1 Ay
' Q-3 k-2

|A(k) = det '
A-2k-3 A-2k-2 A-2k-1
A-1k-2  A-1k-1 A1k

k-1 Ak

By cofactor expansion on the last column and then the last row,

a1 A
A1 app
|AKK) = ay | Ak -1 - &,y det R D
A-2k-3 A-2k-2 Bk-2k-1
0 A k-1
= ak,k|A(k_1)|_ak—1,kak,k—1|A(k_2)| . n

2. FIBONACCI SUBSEQUENCES
Using Theorem 1, we can generalize the families of tridiagonal matrices given by
(1) and (2) to construct, for every linear subsequence of Fibonacci numbers, a family of
tridiagonal matrices whose successive determinants are given by that subsequence.

Theorem 2: The symmetric tridiagonal family of matrices M, 4(k), k=12,... whose

elements are given by:



My, =My = \/mz,sz,@ ~Fogep
mj‘j_'_l = mj+1]j :'\’(_1)0' y ZS J < k,
with a0z* and 0N , has successive determinants (M, 5 (k) = Fu s -
In order to prove Theorem 2, we must first present the following lemma:
Lemmal: F.,=L,F +(-1)""F_, for n>1.

Proof: We use the second principle of finite induction on n to prove this lemma:

Let n=1. Then the lemma yields F,,, =F, +F,_;, which defines the Fibonacci
sequence. Now assumethat F,, = L,F, +(-1)""F_, for n<N. Then
Frana = Fen * Frena
= LyFe + (C)" oy + LyaFi + ()N P
= (Ly +Lyoa)Fi + ()" (Fecnas = Feen)
= LynFie + ()N Fr-(n+1) u
Now, using Theorem 1 and Lemma 1, we can prove Theorem 2.

Proof of Theorem 2: We use the second principle of finite induction on k to prove this

theorem:

||v|,,,ﬁ(1)| =detF,, 5 =Fpup.

Fasp \/m2,2F0+ﬁ ~Fogsp

M 2) = det =F .
| a;ﬂ( X _sz‘z Fg+ﬁ - an+ﬂ ’7';2::;—} 2a+p




Now assume that (M 5 (k) = Fa., for 1<k<N. Then by Theorem 1,
Mg (k+2) = my M g s (k) = my o amy g [M g5 (k=1
= LM K]~ (-
= LaFaksp +(- 77+t Fa(k-1+p
= Fyrane (by Lemmal)
= Fa(sa)e n

Another family of matrices that satisfies Theorem 2 can be found by choosing the
negative root for all of the super-diagonal and sub-diagonal entries. With Theorem 2, we
can now construct a family of tridiagonal matrices whose successive determinants form

any linear subsequence of the Fibonacci numbers. For example, the determinants of:

10 8 6 13 -45
08 1 J6 5 i -5 3 -1
17 1 ’ i 4 i and -1 3 -1
1 7 i 4 - -1 3
: 1 S . 1
17 i 4 -1 3

are given by the Fibonacci subsequences F,,_,, Fg.3 and Fy.s.

3. LUCASSUBSEQUENCES
We can also generalize the families of tridiagonal matrices given by (1) and (2) to
show a similar result for linear subsequences of Lucas numbers. We state this result as

the following theorem:



Theorem 3: The symmetric tridiagonal family of matrices T, z(k), k=12,...

elements are given by:

L a+
ti1 = Loy oo :[ Cﬁf—‘

t;; =L, 3< <Kk,

b, =ty = \/t2|2|—a+[j’ ~Logsp
i =t :W, 2< j<k,
with a0z* and BON , has successive determinants T, 5 (k) = Ly -
Again we begin with alemma; its proof imitates the proof of Lemma 1.
Lemma 2 Ly, = Lol + (1)L, for n=1.

Pr oof of Theorem 3: We use induction:

|TM(1)| =detl,.p =Lyup-

La+/3 \/m2,2|-a+,8 - L2a+ﬂ
T, ;12) = det =L .
| “r ( X \/m2,2 La+[5’ - L2a+ﬁ ’V LZMﬁ —‘ 2ah

La+/?

Now assume that [T, 4 (k) = Lu.s for 1<k<N. Then by Theorem 1,
|Ta,[5' (k +1)| = tk,k|Ta,,8 (kX ~tekatieak |Ta,[5' (k _1)|
=L, |Ta,,8 (k)| - (_ 1)0{ |Ta,[5' (k _:q

=Llalaksp + (_ 1)a+1 Lo(k-1)+p

= Lo+ak+p (by Lemma 2)

=Lla(sayp B

whose



With Theorem 3, we can now construct a family of tridiagonal matrices whose
successive determinants form any linear subsequence of the Lucas numbers. For

example, the determinants of:

3 0 18 14 29 411
0 6 -1 VR Vi 3 1
-1 7 -1 . , i 4 i and 1 31
-1 7 - i 4 - 13 -
' o1 e T |
-1 7 i 4 1 3

are given by the Lucas subsequences L,,_,, L.z and Ly, .

4. A FACTORIZATION OF THE FIBONACCI NUMBERS

n-1
In order to derive the factorization (3) given by F,.,, =F,, H (LZm —Zcos%j, we

consider the symmetric tridiagonal matrices:

I-2m F2m Vv F2m

\[Fzm I-2m 1
1 L 1
Bn(r)= n
2m
) .1
1 Ly,

By Lemma 1, Fu,=LomFom, @ [Fen/Fam | =[Lom —(Fom/Fam)| =Lom. Furthermore,

JIFom/Fam Fam—Fem =+LamFam—Fem =+/Fam » SO Bn(n)=M 5nom(n) is a specific instance
of the tridiagonal family of matrices described in Theorem 2. Therefore, by Theorem 2,
[Bn(n) = Fanoe) -

By using the property of determinants that |AB|=|A|B|, and by defining e; to be

thej™ column of the nxn identity matrix I, we have |B,,(n) = Fon|Cr(n) , Where:



Cm(n):(l {FL-lJele;JBm(n).

2m

The determinant is the product of the eigenvalues. Therefore, let Ay, k =12,...n bethe
eigenvalues of C,(n) (with associated eigenvectors x,), SO |cm(n)|:n/1k. Letting

Gn(n)=Cpy(n)= Lol , we see that G, (n)xy = Cry (M = LomlXyc = Aexyc = LomXi = (A = Lom X -
Then y, = A, -L,, aretheeigenvaluesof G,(n).

An eigenvalue y of G, (n) isaroot of the characteristic polynomial |G,,(n)-1|=0.

Note that |G,,(n)- | :‘(| +(\/§—1)elel)(em(n)—y)(| +(]/\/§—1 1elTl, S0 y is also aroot

of the polynomial:
1 -y 1
1 —
yo1 ) =0.
1 -y
o
1 -y

This polynomial is a transformed Chebyshev polynomial of the second kind [4], with

roots y, =-2cos-2% . Therefore,

n n
Famiort) =[Bn(M) = FanlCon(0) = Fam L" M =Fpr L" (Lo 200525 ).

(3) follows by a ssimple change of variables.
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