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Abstract

We study the spectral asymptotics of the Dirichlet-to-Neumann operator A,
on a multiply-connected, bounded, domain in IR%, d > 3, associated with
the uniformly elliptic operator L, = — ZZ j=10i7ij0;, where v is a smooth,
positive-definite, symmetric matrix-valued function on §2. We prove that the
operator is approximately diagonal in the sense that A, = D,+R,,, where D,
is a direct sum of operators, each of which acts on one boundary component
only, and R, is a smoothing operator. This representation follows from the
fact that the y-harmonic extensions of eigenfunctions of A, vanish rapidly
away from the boundary. Using this representation, we study the inverse
problem of determining the number of holes in the body, that is, the number
of the connected components of the boundary, by using the high-energy
spectral asymptotics of A,.
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1 Introduction and Main Results

We study the spectral asymptotics of the Dirichlet-to-Neumann (DN) opera-
tor A, associated with a uniformly elliptic, second-order differential operator
L., on a bounded, multiply-connected region £ C IR, d > 3, with smooth
boundary. The elliptic operator L, has the form

d
L7 = — Z 6]- ')’jk Bk, (1.1)
Jk=1
where we assume that the d x d-matrix-valued function y(z) = [y;x(z)]

satisfies the following hypotheses:

H1. The real coefficients satisfy ;i (z) = y;(z) € C(Q).
H2. There exist constants 0 < A\g < A\; < oo such that for all
¢ € IR?, we have

d
XollEll” < D7 &érrin(a) < AdllEl.

Jrk=1

The DN map A, is defined as follows. Let f € C*°(99), and denote by
us(z) the unique solution of the Dirichlet problem

Lyu(z) =0, z €

uw|0=f x€d. (1.2)
We then define .
ou
pi= Y {umgt} | on (1.3)
I,m=1 Lm

where v denotes the outward normal vector on 9€)2. The DN operator A, ex-
tends to a bounded map A, : H'/2(0Q) — H~'/2(9Q). Furthermore, the DN
operator A, is an unbounded, self-adjoint operator on L?(9€) with a com-
pact resolvent (cf. [21, 23]). Consequently, the L2-spectrum of A, is discrete
with no finite accumulation point. Let {A; [ A1 =0, A\j < Aj1,5 =1,2,...}
denote the eigenvalues of the DN operator A, listed in nondecreasing order,
including multiplicity. Let A, q(z,§), for (z,€&) € T*0R, be the symbol of
the first-order, elliptic pseudodifferential operator A.,. The eigenvalues A; of
A, satisfy classical Weyl asymptotics (cf. [8], chapter XXIX, or [20], chapter
XII):
Aj ~ (§/C(09, Ay 00)) /41,



where

C(OQ, A 00) = (27)~4D Vol {(z,€) € T*ON{0} | A p0(z, &) <1}

= (2mr)~ (D) / dz de.
A'y,BQ(w)'f)Sl

The unique solution us of the Dirichlet problem (1.2) with boundary
datum f is called the y-harmonic extension of f. Our first result concerns
the localization of the v-harmonic extension of an eigenfunction of A, near
the boundary. We say that a function g decays rapidly, written g(m) =
O(m~), if lim,,, o, m*g(m) = 0, for every k € IN.

Theorem 1.1. Let ¢y, be an eigenfunction of Ay satisfying Aydm = Apmdm,
with ||¢mllz290) = 1, and let uy, be the y-harmonic extension of ¢ to 2.
For any compact K C €, ||um||g1(x)y = O(m™).

This result reflects the fact that the eigenfunctions of the DN operator
A, become highly oscillatory as the eigenvalue increases, and hence the 7-
harmonic extensions decay rapidly away from the boundary. We believe
that the decay is actually of order e~ dISHEIDIm| iy the case of an analytic
boundary and analytic coefficients, but we have not been able to prove this.
The localization result in Theorem 1.1 is the basis of our other results.

We are interested in the situation when 02 consists of £ mutually dis-
connected components, 0€};, with each boundary component 0€2; a smooth,
connected, compact surface: 9Q = U;?:lBQj. We label the boundary com-
ponents so that 9 is the boundary of the unbounded component of IR%\ (2.
We note that the regions Int(0€2;), bounded by the other boundary compo-
nents 0§2;, are disjoint. They are contained in the bounded region interior
to 0. It follows that L?(09) = GB;?ZILQ (0925). We write ¢ € L?(09) as the
k-tuple ¢ = (¢1,¢2, ..., ¢k), where ¢; = ¢ | 9Q;. The DN operator A, is a
map between k-tuples of functions defined on the boundary. For each bound-
ary component, we define the restriction operator R; : L?(9Q) — L%(0Q;)
by Rj¢ = ¢j, and the extension operator E; : L2(8Q;) — L2(09) by
Ej¢ = v, where ¢; = 0, when 7 # j, and ¢; = ¢. It is easy to check
that C; = E;R; is an orthogonal projection on L?(89). The family of op-
erators {C; | j = 1,...,k} satisfies C;C; = 0;,C}, and Id = Ele Cj, on
L?(09). A pseudodifferential operator P on a smooth manifold X is said to
be smoothing if P: H~%(X) — H*(X), for all s,t € IRT.

Theorem 1.2. The DN operator A, admits a decomposition into two self-
adjoint operators A, = Dy + Ry, where D, = Z?Zl C;ACj, and R, is a
smoothing operator.



Viewed as a map between k-tuples of functions on 0f2, the DN operator
A, can be represented as a k x k-matrix. Theorem 1.2 indicates that, in
this representation, the DN map A, is diagonal up to a smoothing error.
The fact that A, and D, differ by a smoothing operator indicates that their
spectra have the same asymptotics.

Theorem 1.3. Let {y; | | € IN} be the eigenvalues of D., written in
nondecreasing order, including multiplicity, and let {\, | | € IN} be the
eigenvalues of A, written similarly. Then, we have A\; = p; + O(17>°).

We can make precise the nature of the operators C;A,C; composing the
diagonal operator D.. We define operators A; on the boundary component
Q; by Aj = R;jAE; : L?(0%);) — L*(8Q;). Since R;E; = 1 on L?(89;), it is
clear that the eigenvalues of C; A, C}; coincide with those of A;. Although the
operator A; involves the other boundaries through A, we will show that the
effect of the other boundary components is small in the high-energy limit.
One result in this direction is the following (see section 5 for more details).
We extend 7;; € C*°(Q) to be a smooth function on all of IR%. We assume
that the extended matrix of functions v = [y;;] remains symmetric and
uniformly elliptic so that H2 remains valid for some constants 0 < Ay <
A1 < 0. Furthermore, we assume

H3. There exists 0 < R < oo so that @ C Bg(0), and v;;(z) =
5ij7 for ||£E|| > R.

It follows from section 5 that the difference of two DN operators associ-
ated with various connected components of 02, and constructed with two
different extensions of +y, is a smoothing operator.

We introduce operators Af that involve only the j**-boundary com-

ponent as follows. For 921, we denote by Q# the bounded component of
IR\ 0. For the other boundary components with 1 < j < k, let Qj’& be the
unbounded component of IR%\92;. We define operators A;-éﬁ : L2(09;) —
L*(89;), acting on a single boundary component, by A;’Ef =v- nyu?\an,
where u7 is the unique y-harmonic extension of f to Q}#, that decays at

infinity for 1 < j < k (see the appendix, section 8), and v is the outward
normal to that region.

Theorem 1.4. The difference Aj — A;'&, on L?(0%;), is a smoothing op-

erator. Consequently, the difference of the mth

operators vanishes like O(m™°).

eigenvalues of these two



We now discuss the application of these results to the inverse problem
of determining the connectivity of a body € from the high-energy asymp-
totics of the DN operator A,. By the weighted measure of the boundary
component 0Q;, we mean the constant, C'(9€;, A, sq), similar to the one
appearing in the Weyl eigenvalue asymptotics, given by C(aﬂj,AWgQ) =
(2r)~(@=1) Vol {(z,¢) € T*00;\{0} | Ayo0(z,&) < 1}, where A, sa(z,§)
is the symbol of A,. In the case that ;; = d;;, we have C(08;, A1 50) =
09| (T((d = 1)/2 + 1) (4m) (@ D/2) =1,

Theorem 1.5. The high-energy spectrum of A, determines a lower bound
on the number of connected components of R4\, and also determines the
weighted measure of each boundary component (not counting multiplicities).

The phrase “not counting multiplicities” means that the asymptotics of
o(A,) may not indicate the existence of more than one boundary component
with the same weighted measure.

This result is outside the domain of nondestructive evaluation since in
order to determine the asymptotics of the eigenvalues of A, boundary data
on the interior surfaces 0€2;,j # 1, must be specified. In order to model a
more realistic situation for which the methods of nondestructive evaluation
can be applied, we can modify the problem as follows. We assume that
the voids Int(0Q;), for j # 1, are filled with perfectly insulating material.
This implies that the normal component of the current across each interior
boundary component 0€2;, for j # 1, satisfies v - yVu | 0Q; = 0. We further
suppose that boundary data on the outer surface 92, is specified. We can
then define a corresponding DN operator for this mixed-problem on L2(02;),
and ask if the high-energy asymptotics of the spectrum of this operator allow
us to determine the number of interior components. However, we prove that
a result similar to Theorem 1.1 holds in this case also. That is, we prove that
the y-harmonic extensions of the eigenfunctions of the DN operator for the
mixed-problem localize near 9€2;. Consequently, the number of connected
components of 02 cannot be determined from the high-energy asymptotics
of the spectrum of this DN operator.

The results of this initial investigation for nondestructive evaluation are
negative in that the high-energy asymptotics of the spectrum, obtained by
measurements external to the body, are not sufficient to determine the con-
nectivity of a body. It might be possible, however, to use all the eigenvalues
in order to determine the connectivity. One result in this direction is due
to J. Edward [1]. Using the zeta function associated with the eigenvalues
of the DN operator, Edward proved that the disk in IR? of radius 1 is de-
termined by the spectrum of the DN operator in the sense that any other



simply-connected, bounded region in the plane with boundary measure 27 is
isomorphic to the disk under Euclidean motions. (In fact, a stronger result
is known in this two-dimensional case. The first eigenvalue of the DN oper-
ator determines the disk [24] among all simply connected regions with the
same boundary measure). Quite recently, another approach has been taken
by Lassas and Uhlmann [11] who proved that the DN map, restricted to a
nonempty, open, real-analytic subset of the boundary, determines a compact,
connected, real-analytic Riemannian manifold in dimensions d > 3, and the
conformal class of a smooth, connected, compact Riemannian surface. This
result was refined by Lassas, Taylor, and Uhlmann [12] who proved that for
d > 3, the DN operator, restricted to a nonempty, open, subset of the bound-
ary determines the complete, connected, real-analytic Riemannian manifold
(not necessarily compact, but with compact, nonempty boundary). Con-
sequently, the DN map restricted to Dirichlet data supported on a piece
of the boundary determines the connectivity in the real analytic case. The
methods of these papers, however, do not indicate how to determine the con-
nectivity from the DN map acting on functions supported on a piece of the
boundary. In this paper, we show that the spectral asymptotics of the DN
map (employing Dirichlet data on the entire boundary) do determine the
connectivity, and that a lower bound on the connectivity can be calculated
from these asymptotics.

We mention some related works concerning the location of discontinuities
within a body by measurements on the exterior surface. Isakov [9] proved
that one can locate a discontinuity (supported on an open set) in the scalar
conductivity within a body using the DN map associated with the exterior
surface. There is some similarity between the contents of section 7 and
the work of Friedman and Vogelius [4]. These authors consider, for the
case of scalar conductivity, the question of locating small inhomogeneities
of extreme conductivity in a conducting body using the DN operator.

The classic inverse problem of determining the scalar conductivity from
the DN operator has been studied extensively, see, for example [10, 17, 19].
For a general discussion of inverse problems for isotropic and anisotropic
materials, we refer the reader to the lecture notes of Uhlmann [22, 23].

Acknowledgments. We thank R. M. Brown, P. A. Perry, Z. Shen, and G.
Uhlmann for many valuable remarks.



2 Preliminaries

We review some basic material needed in the proofs of the main theorems.
The results on solutions to the Dirichlet problem can be found in many
texts, cf. [2]. A nice account of the Dirichlet-to-Neumann operator can be
found in [23]. We always assume that the boundary components are smooth
and that the matrix ~ satisfies hypotheses H1 and H2. We are concerned
with the Dirichlet problem (1.2) for L., and Q. The trace onto the boundary
of Q plays a key role.

Lemma 2.1. Suppose s > 1/2. The restriction map Tu = u|pq, for u €
H*(Q) N C(Q), extends to a bounded linear map T : H*(Q) — H*1/2(5Q).
The kernel of T is exactly H§(2).

We next need an estimate on the H'-bound of a function on € in terms
of its boundary value and the L?-norm of its derivatives.

Lemma 2.2. Suppose I' C 0N is a set of positive (d-1)-dimensional mea-

sure. Then there exists a constant C, dependent upon I', so that for any
u € HY(Q),

2

} . (2.1)
L2(9)

We recall the main theorem on the solvability of the Dirichlet problem,
which we write in its nonhomogeneous version. Let f € H'/ 2(0Q), and
F € H™'(Q). We say that uy is a solution to the Dirichlet problem in the
weak sense if for any ¢ € C§°(2), we have,

d

llul 710y < {lTu||L2 Z

=1

Tj

/ oy = | Fo. (2:2)

Tu; = f. (2.3)

7,k=1

Theorem 2.1. The mapping F, : H'(Q) — H~'(Q) x H'/2(09) defined by
Fyu = (Lyu,Tu) is an isomorphism. Further, if Fyu = (F, f), the function
u satisfies the estimate

lull iy < € {I1Fl -1y + 1l 2gomy } - (2.4)



The unique function uy that solves (2.2) with F' = 0 will be called the
v-harmonic extension of f into (2. Under the smoothness assumptions, the
y-harmonic extension of f € H'/2(9Q) is actually in C*(Q).

Given Theorem 2.1, the DN operator can be defined as follows. Initially,
we define A, on H 3/2(9Q), to insure that the trace of the outward normal
derivative of the y-harmonic extension of f exists. We have

d
A’yf = Z Vl'Ylmamuf'aQa (25)

Iy,m=1

where uy is the y-harmonic extension of f. To simplify the notation, we will

write
d

vV =Y Wi (26)

l,m=1

The domain of A, can be extend through a duality argument.

Theorem 2.2. The linear operator A, defined by (2.5) extends to a bounded
map A, : H'/2(9Q) — H/2(9Q).

As an operator on the Hilbert space L?(012), the DN operator is a non-
negative, self-ajoint operator with compact resolvent. Consequently, the
spectrum of A, as an operator on L?(09), is discrete, and consists of eigen-
values \j, with A\; — occ. We mention that in the simple case v;; = d;;, the
DN operator is, roughly, the operator /—Agq, where —Ayq is the Laplace-
Beltrami operator on 02, with the induced metric. We refer the reader to
[21] and [13] for additional information about this representation.

Extensions of boundary data into unbounded sets containing 2 will be
of interest. We extend v;; € C®() to be a smooth function on all of
IR?. We assume that the extended matrix of functions v = [v;;] remains
symmetric and uniformly elliptic so that H2 remains valid for some constants
0 < A < A\ < 0. Furthermore, we assume

H3. There exists 0 < R < oo so that Q C Bg(0), and v;j(z) =
(5ij, for ||ZI?|| > R.

We will always assume this extension has been taken in later sections when
we consider y-harmonic functions outside of, and into the interior of, the
region (). It follows from the analysis in section 5 that the main results of
this paper are independent of the choice of this extension in the following
sense. Suppose that v; and v, are two smooth extensions of «y satisfying H1,



H2, and H3. Then, the differences of the DN operators, Af(fyl) - Af (72),
and Ago; (1) — Asq; (72), associated with 0€2;, and defined with y-harmonic
extensions to the exterior, respectively, interior, regions (see section 5), are
smoothing operators. Hence, each pair of DN operators has the same high
energy spectral asymptotics.

Representation formulae for solutions of Dirichlet problems will play a
central role in this analysis. For this, we need information on the Green’s
function G, corresponding to the extended, elliptic operator L, on IR?, and
on the Dirichlet Green’s function G q, corresponding to the (extended) el-
liptic operator L, on an open domain (bounded or unbounded) 2 C R d >
3, with 9Q # (. Consequently, we state the following theorem for a gen-
eral, open region Q C IR% for d > 3. The proof of parts of this theorem
for real, symmetric ;; is contained in the paper of Littman, Stampacchia,
and Weinberger [14]. Their results hold for v;; € L*®(IR?), although we
will state them here only under conditions H1-H3. The results of [14] were
generalized to not necessarily symmetric +,;; by Griiter and Widman [5]. In
their paper, Griiter and Widman construct the Dirichlet Green’s function
for L*-coefficients on bounded, open domains. In a separate note [6], we
show how this proof can be extended to general open regions (including
Q = IR, d > 3) with, or without, smooth boundary. In the following the-
orem, the local Sobolev space H llo’j(ﬂ%d) consists of those measurable func-
tions f so that for any bounded, open region Q C IR?, we have f € H*(Q).
The local Sobolev space H, llo’g’O(Q), for an unbounded region Q C IR%, with
00 € C*, consists of those functions g € H llo"g(Q) for which T'g = 0, where
T : H*(Q) — L5(09Q) is the trace map.

loc

Theorem 2.3. Let Q C IR be an open subset of IR%,d > 3, with smooth
boundary. We assume that the coefficients of the uniformly elliptic operator

L., satisfy hypotheses H1, H2, and H3. There is a nonnegative function
Gy0:QxQ— RTU{oo}, such that, for any s € [1,d/(d — 1)),

1. If Q@ = RY, we have G(z,y) € H"*(IR%), for each fized y € IR%;

loc

2. If 0Q # 0, with Dirichlet boundary conditions, we have G qo(z,y) €
H*%(Q), for each fized y € Q.

loc

For all ¢ € C}(R), this function satisfies,

/Q Vo yVGyals, ) dy = §(x). (2.7)

Furthermore, Gy o has the following properties:



(a') When z 7é Y, G’Y,Q(xay) = G’Y,Q(ya'r)'
(b.) The function G, q(z,y) is smooth for x # y.

(c.) There is a finite constant K > 0 such that
K~z -yl < Gyale,y) < Kllz -yl (2.8)

(d.) There is a finite constant K1 > 0 such that
VG, alz,y)| < Killz —y|' 7. (2.9)

(e.) For the case when 02 # 0, we have the Dirichlet boundary conditions:
Gy olw,y) =0, for we 0N and y € Q.

In the following, we will write dy for the volume measure, do for the
induced surface measure, and dw for the surface measure on the unit sphere

s,
3 Rapid Decay of the v-Harmonic Extensions

The Green’s function G, for IR% d > 3, described in Theorem 2.3 allows us
to write a representation formula for the solution to the Dirichlet problem
(1.2) with boundary data f € H/2(0Q). This representation formula will
be the basis of the proof of Theorem 1.1.

Proposition 3.1. Suppose w; is the y-harmonic extension of f € HY2(59)
into 0, and G is the function from Theorem 2.3 for IR%,d > 3. Then

wr(z) = /BQ {Gy(z, )Ayf — fv-4VG,y(z,-)} do. (3.1)
PROOF: Fix z €  and choose a function n € C§°(IR?) that is identically one
in a neighborhood of = and vanishes near 0Q2. Then wy = nwy + (1 — n)wy.

Because wy lies in the kernel of an elliptic operator with smooth coefficients,
it is smooth away from 052, so nw; € C§°. We use Theorem 2.3 to write

wil@) = (@) = [ VG,(z,)7Vimoy) dy
= | {@iv{G @ 17V ()} = G ) ()} dy

= —‘/QG,Y(.’L', )Ly (nwy) dy (3:2)

9



according to the Divergence Theorem, since V(nwy) is compactly supported
away from 0. We also know, because of (2.7) and part (b.) of Theorem
2.3 that

/G —nwy dy
/ (1= mws LGy (a,") = Gy, )Ly (1 = )y} dy
= | = nwpy g VG, (@,) = Gy(@,Jv -4V = mwys} do
- /6 VG, (@) = Golw, I} do (3.3)

since 7 vanishes near J€). Adding equations (3.2) and (3.3), we obtain

wp(z) = /G Y(nwy) dy — /G L, (1 —n)wy dy
+/ {Gy(z,- - fv-4VG,(z,-)} do

= | {6 @IS = v 9VG, (@, )} do,

since wy is y-harmonic in 2. |

We can now prove Theorem 1.1. Let us recall that the eigenvalues
XA =02 < Aji1,5 =1,2,...} of A, form a nondecreasing sequence of
nonnegative real numbers, and that \; ~ g1/(d=1),

Theorem 1.1. Let ¢, be an eigenfunction of A, satisfying Aydm = A,
with ||¢ml||r200) = 1, and let up be the y-harmonic extension of ¢ to €.
For any compact K C Q, [lum| g1y = O(m™°).

PROOF: Because 02 € C®, its outward normal vector is smooth. This
fact, in conjunction with the regularity of G(z,")|sq for z € K, and the
self-adjointness of A, allows us to use Proposition 3.1 to write

up(z) = / {Gy(z, ) Aypm — pmv - YV G,y (z,-)} do
R / (G (@ )AL b — M- YV Gy (2,1} do

= /a Q{¢mA§’“G7(x,-)—¢mA’;u-vv07(a;,-)} do. (3.4)

10



We now use Holder’s inequality to write (3.4) as

1
Clz;p
(A : ) (3.5)

Because the singularity of G,(z,-) depends only upon the distance from
z to 09, there is a finite constant C, > 0 so that |u,(z)| < CpAP, for
every € K. A similar inequality for ||Dun||2(k) is obtained by passing
differentiation through the integral in Proposition 3.1. The classical spectral
asymptotics, Ay ~ mP/(@1) and the fact that p was chosen arbitrarily,
complete the proof. ]

4 Approximate Diagonalization of A,

The rapid decay asserted by Theorem 1.1, in conjunction with the rep-
resentation formula developed in Proposition 3.1, allows us to prove the
decomposition theorem, Theorem 1.2. We recall that R; is the restriction
operator from L?(0Q) onto L?(99;), and that E; is the extension opera-
tor from L?(9%);) into L?(0R2). The operator C; = E;R; is an orthogonal
projector on L2(99Q).

Theorem 1.2. The DN map A, admits a decomposition into two self-
adjoint operators, A, = D, + R, where D, = Z?:l CiA,Cj, and R, is a
smoothing operator.

PROOF: The decomposition follows from the orthogonality and completeness
properties of the operators C;. For any function f € D(A,),

k k
Af =3 MCif =Y CiACif =Dy f + Ry f,

j=1 gl=1
where \
D,f = Z CiACif,
j=1
and

k
R, f= >  CjACH.
Hl=1l#g

11



Since the projections C; preserve the domain of A, it is clear that both
operators D., and R, are self-adjoint. In order to prove that R, is smoothing,
we prove the following result in Lemma 4.1. Let ¢, be an eigenfunction of
A, satisfying A, ¢, = Apdp. The rapid decay of the y-harmonic extension
of ¢, away from the boundary implies that for all 5,1 =1,...,k,

RlAnyjRngSn = )\néljquSn + O(’nfoo) (4.1)

We prove in Lemma 4.2 ahead that this result implies that both ALR,
and R,A’ extend to bounded operators on L?(0R), for any p € Z. This
immediately proves that R, is a bounded operator. To show that R, is
smoothing, we note that

1

=—— ((14+A,)°R,) : L*(8Q) — H*(dQ), 4.2
Ry = oy (AR - D200) » 00, (42)
is bounded for any s > 0, and that
1
_ A = 2
R, =(R,(1+A,) )(1 A H7(09) — L*(09), (4.3)
is bounded for any ¢ > 0, so R, is smoothing. ]

Lemma 4.1. Let ¢, be an eigenfunction of A, satisfying Ay, = Ay, and
|pnllL2o0) = 1.. For all j,l =1,...,k, we have

RlAnyjRngSn = )\néljquSn + O(’nfoo) (4.4)

PROOF: We need to compute the image of E;R;¢, under the DN map A,.
Let u, be the y-harmonic extension of ¢, to 2. We denote by w, the ~-
harmonic extension of E;R;¢, to Q. This is computed from u, as follows.

Let & € C*(2), with {; = 1 in a neighborhood of 09, and {; = 0 in a
neighborhood of 92\0€2;. The -harmonic extension w, of E;R;¢, to Q
can be written as

wp, = Ejun — Ho(Ly&jun), (4.5)
where Hq denotes the solution operator of the inhomogeneous Dirichlet
problem with Dirichlet boundary data. That is, Hqo(F') is the function
which solves

Lwu = FinQ (4.6)
u = 0 on 0.

12



One can easily check that wy, is y-harmonic and satisfies the proper boundary
conditions. This representation of w, greatly simplifies our calculation of
the outward normal derivative at the boundary. Because {; = 1 near 0(2;,

v-yVuw, |0 = [v-yVup, —v-yVHqo(L&uy)| | 09,
— MRjn — v VHa( L) | 095, (47)

Using the Green’s function G, o of Theorem 2.3 to solve (4.6), we may write

Ho(Lgu)(@) = | Ly(6u)Grala,) dy

= un(Ly;)Gr 0z, ) dy
/supp(Vﬁj) e
d
2 3 [ (0 m(Onun)Graa ) dy.
1m=1"SUPP(V§;)
(4.8)
Thus, we rewrite (4.7) as
v-yVuwy, | 09; (4.9)
= )\nRj(isn - [/ Un, (L’yfj) v: ’vaG'y,Q(a:a ) dy] | 8Qj
supp(V¢;)
d
#2 [ 3 [ (0t (Omn) v 1V aGra(a, ) dy| | 09
1;m=1"SUPP(V&;)
(4.10)

Recall that &; is constant in a neighborhood of 0}; so, for x near 09,
the local Green’s function G o(z,y) is smooth as y ranges over supp(V¢;).
Since both &; and V,G,q(z,-) are smooth functions on supp(V¢;), and
supp(V¢;) is a compact subset of €, there is a constant C(§;;y;2) such

that
d
[ lnllag) =2 Y @) m O] v 9V aCra(a, ) dy
supp(V¢;) Lm=1
<O [ (ual + [ Vua]) dy. (4.1)
supp(V¢;)

Since supp(V¢;) C €2, we can apply Theorem 1.1, to conclude that the right-
hand side of (4.11) is O(n=%°), that is, AjR;j¢, = A\yRjdp + O(n=>°). On
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the other hand, when we restrict to 9€;, 7 # j, equations (4.5), (4.7) and
(4.10) imply

v(z) - Vwy(x)|0Q;
d
= _~/Supp(V§j) [un(L’yfj) —2 Z (alé.j)')’lm(amun) V"Yva'y,Q(-Ta ) dy |8Qi-

I,m=1

(4.12)

Since z near 0€); is disjoint from supp(V¢;), the second summand of (4.12)
is O(n™%°). [

Lemma 4.2. For anyp € IN, the operators RyAY and AYR., can be extended
to bounded operators on L?(09).

PROOF: Suppose that 9 is in the domain of A%, with |[4||2(9q) = 1. Because
{¢n} is an orthonormal basis of eigenfunctions of A, for L?(89), we can
write ¢ = 3=, Bnédn, where B, = (¥, ¢n)12(50)- Using the Cauchy-Schwarz
inequality for sequences in £2(IN) and the linearity of AL and R,, we see
that

VAN

IR APl 200) < D 1Bnl Mol Bnll2(a0)

VAN

1/2
(Z )\%pHR'yd’nH%?(aQ)) = C(p). (4.13)

The constant C(p) is finite since, by Lemma 4.1, |Ryén|lr2(a0) = O(X,%),
for every k € IN. This bound, and the fact that the domain of A¥ is dense
in L2(692), allow us to extend Ry A% to a unique bounded operator on all of
L?(09). Turning to the second operator, ALR,, for any ¢ € D(A%), and for
any ¢ € L2(09), we have

[(A4h, Ry )| = (R, A9, £)] < C(p) 19l L2 (00) €llL2(80)- (4.14)

We conclude that R,¢ is in the domain of Af. Since the domain of A% is
a dense set in L*(0Q), it follows that AR, : L*(9Q) — L*(9Q) can be
extended to a bounded operator (see [7]). [
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5 Spectral Asymptotics

In this section, we show that the approximate diagonalization formula for A,

of Theorem 1.2 allows us to approximate the spectrum of A, by that of the
k
diagonal operator D, = Z C;A,Cj. We then study the operator C;A,C;
j=1
in detail and prove that its spectrum is asymptotically close to the spectrum
of a DN operator A; associated only with the j*"-boundary component.

Theorem 1.3. Let {y; |l € IN} be the eigenvalues of D, listed in nonde-
creasing order, including multiplicity, and let {\; | | € IN} be the eigenvalues
of Ay, listed similarly. Then, we have A\; = p + O(17°).

PRrROOF: Let {#;,7 =1,...} be an orthonormal basis of eigenvectors of D.,.
We denote by M; the eigenspace spanned by the first j eigenvectors of D, .
We use a variational formula (cf. [18], section XIII.1) to calculate Aj41:

Ajp1 = a2 <fevlg%11(A7){<A7faf)L2(an) I f 200y = 1}>

dim(VL1)=j \ fEVND(A,)

—  max ( min  {(Dyf, f)r200) + (Byfs Frzea) | 1fllz2e0) = 1})

> ' _
2 5 se VI%I%(AV)ﬂvaa Preeat ‘e 151}1&%(/\7){“}27]0’ Drzeo)l}
Il =1 IIfll =1
> ' D _
= fe MJT%HD(AW)“ vfy Freea)t e M?%XD(AW){KRJ, Fr2eo)l}
Il =1 lIfll =1
= pit1—  max  {|(Ryf, frza0)l | [1fr200) = 1} (5.1)

feMjLnD(Av)

Note that, according to Lemma 4.2, R,D{ = R,(A, — R,)? is a bounded
operator for any g € IN. It follows that, for any eigenfunction 6; of D, there
is a constant C(g) = ||R,DY||, independent of the eigenvalue index j, such

that || R,0;|l12(00) < C(q)u;q. For any p € IN, we choose ¢ = ¢q(p) € IN
sufficiently large so that, recalling the classical eigenvalue asymptotics, we
have {4~} € £2(IN). Tt follows from this and Lemma, 4.2 that

1Ry D0l 2 60) = 151 By0; I 1200) < Cla)uy 7, (5.2)

where the constant C(q), because of the way in which we choose ¢, de-
pends on p, but is independent of j. Thus, the sequence, indexed by j,
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{I[RyDE0;||12(00)} € £*(IN), for any natural number p.
Now we can estimate the second summand on the right of (5.1). We
may write any vector f € M jJ-, IfIl = 1, in terms of its Fourier coefficients,

[ =2 k>; fbk so that,

Tk
IR, fllzz00) < D 1“5 1Ry D20kl 1200
k>] k
< Z (H]H) f‘ [|[Ry DYOk|[ 12 50)
it k>j
1/2
< {ZHR D¥ 9k||L2 aQ) }
J+1 k>j
. 1/2
< P ZHR DY 9k||L2 Q) }
Fijt
) (5.3)
,Uj-|-1

where we used the Cauchy-Schwarz inequality for sequences in £2(IN), the
fact that ||f|| = 1, and the nondecreasing nature of the sequence {y;}.
Inequality (5.3) allows us to rewrite (5.1) as

Aj+1 2 pjp1 — O(™).

Similarly, by reversing the role of A, and D,, we find that p;j 1 > A\j11 —
O(37°°) and the result follows. n

Having shown that the asymptotic behavior of the spectrum of A, is
determined by D,, we next describe the nature of the spectrum of the op-
erator D, = Ele C;jA,Cj. The operator C;A,C; on L?(9$2) depends
on data on the other boundary components through A,. Due to the lo-
calization of the «-harmonic extensions of the eigenfunctions, though, this
dependence is very weak at high-energy. Let us note an obvious fact. We de-
fine A; = RjA,E; : L?(09;) — L?(89;). Then, it is clear that the spectrum
of CjA,C; and A; coincide. Given a boundary component 0€);, we want to
define a DN map associated solely with this surface. There are two natural
ways to do this since the surface 0€2; partitions IR into two regions. We
can consider either the y-harmonic extension to the bounded region interior
to the surface 0f1;, or the extension to the ezterior, unbounded region.
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In order to maintain the sense of the normal derivative used in the defini-
tion of A, we distinguish the boundary 0€; from the other boundary com-
ponents. For 021, we denote by Qf& the bounded component of IR%\08;.
For 1 < j <k, let Qjﬁ be the unbounded component of IR%\0(;. We de-
fine Af : L2(0Q;) — L*(89;) by A;’Ef =v- 7Vuj?|agj, where ujf is the
~-harmonic extension of f to Qf decaying at infinity. We assume hypothe-
sis H3 so that we have chosen a smooth extension of v to IR¢ that coincides

with the identity matrix outside a sufficiently large ball. The existence of

such a y-harmonic extension for the unbounded regions BQ;'E, 1<j <k

is verified in the appendix, section 8. The vector v is the outward normal
to the region. Consequently, the outward normal is the same as was used
in the definition of A, on each surface 0€2;, 1 < j < k. This allows us to
understand one y-harmonic extension as an approximation of the other.

Lemma 5.1. Suppose gb%j) is a normalized eigenfunction of A}# satisfying
A;#q&%j) = )\nqﬁ?(zj). We then have,

(69, 8569) 12(50,) = Anbnm + O(A;%°) - O,

where the symbol on the right means rapid decay in each eigenvalue sepa-
rately.

PRrOOF: Consider the inner product,
<¢%)aAj¢g))L2(anj) = Anbnm + (85, (A — Af)qs(nj))m(anj)-

Using the Divergence Theorem, with u, as the «-harmonic extension of
qussf) to Q, we have

G 28D o0y = [ 4Py Vun do= [ (B¢ Vun do
a0; oQ

/ UV - YVu, do = / Vi, - YVu, dz.
a0 Q

Let uf denote the 7-harmonic extension of the eigenfunction ¢${ ) to Qf&
Because of the decay estimates on the y-harmonic solutions to the exterior
region Q;#, given in Theorem 8.1, we may use the Divergence Theorem with

the functions u} on the unbounded region Qj# to write

(o, AF o) = [

ultv - yVult do = /#Vuﬁ-'qu# dz.
082 Qj
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Therefore, combining these two equations, we obtain,

(69 (A —Af)q&ﬁlj)) = / (Vum AV, — Vul, -nyu#) dz
Q

—/ Vul, - yVull da. (5.4)
o\
Using the Divergence Theorem again, we see that the second integral of (5.4)
can be rewritten as

/ ultv - yVull do. (5.5)

a(0F\)
In Corollary 8.1, we derive the following representation formula for u},
uf () = [ 69 ()G (x,y) do(y)
3Qj J

where G «(+,-) is a smooth function away from the diagonal. Consequently,
Fih g

we can apply the techniques of Lemma 1.1 to conclude that ||u} || HI(K) =
O(A, ), for any compact set K C Qf In particular, since 8(9#\9) is
removed from 0Q;, we can conclude that the integral in (5.5) is of order
OA*) - O(A>)-

To address the first integral of (5.4), we add zero:

/Q (Vum YV, — Vul, - 'qu#) dz
= /Q (Vui‘i&z A(Vp — Vull) + (Vg — Vult) -'qun) dz
_ /Q (div((um — u)YVun) + div((un — uf)yVeut)) da
= — /69\89]- (uﬁl/ AV + ufv - 'qu#l) do, (5.6)

since (u, — u}) vanishes on 8Q;. Because 02\0); is a compact subset of
Qj# that is removed from 89#, as in the analysis of (5.5), we have that
[uZh || () = O(m ™). To estimate A,uy, restricted to 9Q\0Q;, we use the
method of proof of Lemma 4.1. Recall that u,, is the y-harmonic extension

of quﬁ?(lj) to . As in the (4.5), we have the representation
un = &ul — Ho(Ly&jul), (57)

where §; is 1 in a neighborhood of 9€);, and Hg is the solution operator for
(4.6). For [ # j, we compute

Ayuy, | 09 = —v - YV Hq(L,&ull) | 09 (5.8)
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We express the solution operator Hq in terms of the Green’s function as in
(4.8) to arrive at the analog of (4.12) with w,, there replaced by wu,, and u,
there replaced by uj. Since supp(V¢;) is disjoint from 8, for [ # 7, the
decay for the y-harmonic function v}, away from 09);, establishes that the
right side of (5.8) is O(A,*°). As a consequence, the last term in (5.6) is
O(A, ) - O(A;°). This completes the proof. [

Lemma 5.1 tells us the action of A, on functions f € D(A,), with
supp f C 01}, is very similar to the action on R;f of the Dirichlet-to-
Neumann operator defined by way of a y-harmonic extension to the exterior
region Q;#, 1 < j <k, or to the interior region Qf& We make that statement
somewhat more precise with the following lemma.

#

o is a smoothing opera-

Lemma 5.2. The operator difference Aj = Aj — A
tor.

PROOF: Let {(f),(f )} be the eigenfunctions of A?& with associated eigenvalues

nt- Let Y € i) be 1n the domain o )P, for some arbitrary but
{Mn}. Let 9 € L?(89;) be in the domain of (A¥)?, f bi b
fixed p, and |[¢||12(a0,) = 1. We expand 7 as

=" Bug), where B = (1, 8{") 12(90,)-

n>0

Using the linearity of A; and (Af)p , we see that

1/2
145 (APl n2(a0;) < D Badbl| 48 |[1200,) < (Z /\i”llAj#f)II%z(anj)) )
n>0 n>0
(5.9)
where the final inequality of (5.9) arises from the Cauchy-Schwarz inequal-
ity for sequences in ¢2(IN), and the fact that |[1)|| = 1. Let us attend to

114568112200, :

148912200, = D 1(4;65), 6172

m>0
and, according to Lemma 5.1, |<Aj¢$,{), (nj))|2 =0(N,®) - O(\,>®). Thus,

14,691 2200,y = 32 000%) - 00) = O(A, ),

m2>0

whence the right-hand side of (5.9) converges, independently of 1. That
is, Aj(A;%)p is a bounded operator on the domain of (Af)p , which is dense
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in L?(05);). We extend the operator to all of L?(9);) and denote this
extension, also, by A; (Af) . As a bounded operator, we know Aj(Af)p has
a bounded adjoint, (4;(A¥)?P)* = (A¥)PA;. Tt follows that (A¥)P +1)4; :
L%(89;) — L%(89;) is a bounded operator and, thus,

1
= —————((AF)P 1 1)4; : L2(89Q;) — HP(99).
J ( A;z,e)p PR J J J
The fact that p is arbitrary concludes the proof. ]

One might naturally ask if the spectral asymptotics depends on the
choice of the extension to the exterior of the regions bounded by 0f};, for
1 < j <k, and the interior of 0€2;. To answer this, we now consider ex-
tensions to the interior of the region bounded by 025, for 1 < j <k, and,
similarly, the extension to the exterior region bounded by 0€};. We denote
by Asq; the Dirichlet-to-Neumann operator on L*(8€2;) that is defined using
a y-harmonic extension to the bounded region enclosed by 02;, 1 < j <k,
and to the unbounded region exterior to 02;. We will show that, up to
smoothing, it does not matter which operators, A;ﬁ or Apq;, we choose to
model the boundary. The next result constitutes the final step of this section.
It will be used in the next section in order to extract geometric information
concerning 0f2 from the DN operator.

Lemma 5.3. For any 1 < j <k, the operator A;# —Asq;, on L%*(0%), is a
smoothing operator.

PRrROOF: In [13], Lee and Uhlmann express the ambient Riemannian metric
of IR% in boundary local coordinates, and proceed to calculate the full symbol
of the DN operator in terms of the induced metric tensor on 02. Let us
suppose that the outward normal vector to IRd\Qj’E (the bounded region
enclosed by 0€);), written in boundary normal coordinates, is v = —8‘9—%.
To choose v = 8‘9—“, instead, is to define the DN operator by way of a -
harmonic extension to Qf and, as one might expect, a factor of negative one
is introduced into the symbol. However, we cannot use the same alternating
(d-1)-form in our representation of the DN operator as defined with an
extension into Qf as was used when our extension was into ﬂ%d\Qf because
this form induces an orientation on the manifold 89;# under which it is not

the boundary of Qj’e To properly orient BQ?E, we commute the differentials
of the alternating form and, thus, the negative sign that arose from our
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choice of outward normal is absorbed. The conclusion follows from fact that
the symbols of Af and Aagj agree to all orders. ]

Corollary 5.1. Suppose the specirum of Npq, is denoted by {An}, and the
spectrum of Aj is written as {un}. Then, Ay = pn + O(n™°).

PROOF: We can write

Aog, = {(Aog; — AF) + (AF — Aj)} + 4
= Aj+ R, (5.10)

where R; is a sum of smoothing operators, and so is a smoothing operator.

Consequently, if we write eigenfunctions of Apq; as </>7(zj ), we have
IR;¢DN = I1R;ASq,Azh 691 < Cp)AP. (5.11)

That is, we have |[(Asq; — Aj)¢$f)||Lz(3Q) = O(n™>°). We have a similar

estimate if gb,(f ) is replaced by an eigenfunction of A;. The proof of Theorem
1.3 can now be applied, and the result follows. ]

6 Splitting of o(A,) and Geometric Interpretation

Let us summarize of our analysis up to this point. The Dirichlet-to-Neumann
operator A, was first approximated by a diagonal operator, D, = 22?21 C;A,Cj.
While the operators C;A,C; depend only on the boundary data on 0€);, they
still depend on the other boundary components 0€), k # 3, through A,. We
first replaced C;A,C;j, acting on L%(99), by A;, acting on L?(92;). The op-
erator A; has the same spectrum as C;jA,C}, but still depends on the other
boundary components. However, each A; is closely approximated by a simi-
lar operator A;'& that is defined by way of a y-harmonic extension to a region

with only one boundary component. These operators A}#, or, equivalently,
the operators Agg,, have the same spectral asymptotics as the CjA,C}, and
are independent of 9€);, for ¢ # j. In each step, we have moved toward a
simpler approximation of A, while maintaining the asymptotics of its spec-
trum. It is this sequence of approximations that lead us to the following
assertion.

Theorem 6.1. The spectrum of A, determines a lower bound on the number
of components of R\Q and, further, also determines the weighted measure
of each boundary component (not counting multiplicities).
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In the statement of this theorem, the phrase “not counting multiplici-
ties” is intended to say that the asymptotics of o(A,) may not indicate the
existence of more than one boundary component with the same weighted
measure.

PROOF: Theorem 1.3 tells us the asymptotics of o(A,) are determined by
o(D,), and we know o(D,) = Ule o(CjACy) = U§:1 o(A;). Because
Af = Aj— A;, where |( g),quﬁgf))Lz(anﬂ = (A,,;*°), for eigenfunctions qb(nj)
of Af, the proof of Theorem 1.3 gives us that U(A;%) ~ o(A;). It follows
from Corollary 5.1 that O'(A;L#) ~ o(Aaq,). Let o(Agg;) = {M,}, listed in
nondecreasing order. The classical eigenvalue asymptotics give us

1/(d-1)
Moo~ ___m )
" C(BQJ’ A’y,aﬂ)

where,
C (09, Ay,00) = (2m) ™ Vol {(z,€) € T*092,\{0} | Ay p0(z,€) < 1}.
Thus, we have the following equivalence:
o(A,) ~0(Dy) = U 10(A;) and o(A;) ~ o(AF) ~ o(Aan,)-

That is to say, asymptotically, o(A,) splits into at most & disjoint sets, each
of which is asymptotic to (m/C(89;, A 50))* @V, for some j, 1 < j < k.
From this behavior, we can determine whether there are voids in  and, if
so, bound the volume of each from above. However, if ¢« # j, and 0€); and
09, have the same (d — 1)-dimensional weighted measure, the asymptotics
of o(A;) and o(A;) are the same. Because of this, o(A,) may not indicate
the existence of both holes, but only that there is some part of 02 with the
appropriate weighted measure. ]

Let us remark that this theorem implies that the high energy asymptotics

of the spectrum of the DN map A, clearly indicate if the region is simply-
or multiply-connected.

7 Perfect Insulators

The problem of the previous chapter was geometric in nature, because the
DN map A, is defined by the voltage to current mapping on the entire
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boundary, including the interior boundaries. Clearly, if our goal is to detect
imperfections in the interior of €2, that is to say, if we do not already know
such defects exist, then we surely cannot take measurements to help us
calculate the spectrum based on fixing potentials on the inaccessible, interior
boundaries. The following section reformulates our question so that only
measurements on the outer boundary, 9€;, are required for calculation.
This is more in keeping with the methods of nondestructive evaluation.

Suppose the body (2 is interrupted not by voids but by a finite collection
of smoothly bounded perfect insulators. As in the previous section, 02y
is understood to be the boundary of the reference region Qf&, the bounded
component of IR\, and 09Q;, 1 < j <k, will denote the boundary of an
insulator. In this setting, no current will pass through 0Q;, 1 < j < k. We
maintain hypotheses H1 and H2 in this section and, as before, write L., for
the divergence form operator L, = —V-yV. We model the potential that is
induced throughout €2 by a voltage f, imposed on 0y only, as the solution
to the mixed boundary-value problem

Lou = 0inQ
u = fond (7.1)
v-yVu = 0on 09, for 1 <j <k.

We now prove the existence of weak solutions to the mixed problem (7.1).
We write L,[g] for the quadratic form associated with L., that is,

L,[g) = /QVg-'ng dz. (7.2)

Suppose that a solution, vy € C?(Q) exists. Let w be any other extension
of f in H*(Q). Writing w = vy + (w — vy), we see that

Ly[w] = / Vw - yVw dz = L,[w — vf] + 2/ Vs -4V (w —v5) + Ly[vg].
Q Q
But, because vy solves (7.1) and (w — vy) vanishes on 0€};, we know that
/ VoryV(w—vy) = / div((w—vys)y-Vuy) de = / (w—vy)vyVosdo =0,
Q Q 80

from which is follows that L.,[w] > L,[vf]. Thus, we search for a solution
to (7.1) by minimizing the energy functional L,[w], defined in (7.2), over a
set K}(Q), defined as follows.

Definition 7.1. For any s > 1/2, we define K}(Q0) = {w € H*(Q) | w =
f on 0Q in the trace sense}.
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Theorem 7.1. The mized problem (7.1) has a unique solution in the weak
sense for any f € HY2(0Q,).

PROOF: The hypothesis that f € H'/?(9Q) allows us to assert that K}(Q)
is not empty, since the Dirichlet data E; f on 0 has a unique y-harmonic
extension. It is not immediately obvious that the energy functional L.
achieves a minimum on K}(Q) However, it is bounded from below by H2
so an infimum exists. Let A be this infimum. Then there is a sequence of
functions {v;} C K}(Q) such that L,[v;] > L[vj41] and ]lggo Lyvj] =X Tt

is easy to check that

L, [u+w

u—w

] +L7[ 2 ] = %{Lv[u] + Ly[w]}, (7.3)

whence

Vj — Vg vy + Uk:| ' (74)

1
Ly [B5%] = STy loi) + Lol - L [
Because (vj +vi)/2 € K}(Q), we know that L, [U”LT%] > \. Consequently,
(7.4) implies that

Ly |95 %] < ST o)+ Loforl} 0 (7.5)

Clearly, the right-hand side of (7.5) tends to zero as j and k tend to infinity.
It follows from Lemma 2.2 that {v;} is a Cauchy sequence in H'(Q) so
there is a function v € H'(Q) to which it converges. The continuity of the
trace operator ensures that Tv = f, as desired and, for any ¢ € K}(), the
functional L,[v + t¢] takes its minimum at ¢ = 0. Therefore,

d
0=%

/ V(o + 1) -V (v + t¢) do = 2/ VoAV dr,  (7.6)
t=0/Q Q

0 v is y-harmonic in the weak (or distributional) sense. According to elliptic
regularity (cf. [2]), the weak solution v is smooth in 2, and L,v = 0 in the
classical sense. Therefore, for any ¢ € K;(9),

/ div(py - Vo) do = / (Vé-7Vo+ $Lv) da. (7.7)
Q Q

The first summand of the right-hand side of (7.7) is zero according to (7.6)
and the second vanishes because L,v = 0 in §). So we write, formally,

/ (T)v-yVv do = / (Td)v -yVv do = / div(¢ - yVv) dz = 0.
\0 o9 Q
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Because the range of the trace map, T, is dense in L?(992), we conclude that
the outward normal derivative of v on 0€;, 1 < j <k, is zero as defined in
this weak sense.

Finally, we prove the solution to (7.1) is unique in H!(Q). Suppose,
to the contrary, that two solutions exist in H'(Q), v and w. Then, the
difference (v — w) € K} (), so from the Divergence Theorem,

L,y[v—w]:/QV(U—w)-’vad:v—/QV(v—w)-'wadwzo.

Therefore, (v — w) is constant as a function in L?(2). Because v = w on
09, it follows that v = w over all of 2. ]

We will denote the solution to (7.1) by vs. Though we know already
that vy € H'(Q), because we are interested in the Dirichlet-to-Neumann
operator, we must determine minimal conditions under which the existence
of an outward normal derivative of vy is guaranteed to exist at 02y, if not
classically, at least as a function in L2(0€)).

Theorem 7.2. If f € H3/2(8Q1), then the function %vf exists in L?(08).

PROOF: Let & € C°(IRY) such that ¢ vanishes in a neighborhood of 89,
1 < j7 <k, and is identically one in a neighborhood of 0€2;. Then

vp = &uy + (1= &Evy +E(vy — uy),

where uy is the y-harmonic extension of E;f to €2. The outward normal
derivative of u; has been established under the given hypotheses, and the
outward normal derivative of (1 — &)vy is trivial since 1 — ¢ is identically
zero near 0€);. It remains to establish the existence of the outward normal
derivative of wy = &(vy — uy). This function wy solves

Lyw = L,¢(vy—&uy) = Lywy in Q
w = 0on oy, 1<5<Ek.
(7.8)
Because £ is identically one in a tubular neighborhood of 91, the function
L,wy is supported in a neighborhood of 2 disjoint from 0€};. Using the

Dirichlet Green’s function from Theorem 2.3, we can represent the function
wy as

wi@) = [ Grale,)(Laé (o —up)@) dy.

25



The existence of the outward normal derivative of w for each z* € 0€}; now
follows from the smoothness properties of the Green’s function away from
the diagonal. ]

Theorems 7.1 and 7.2 allow us to define the Dirichlet-to-Neumann op-
erator Aky : H3/2(09,) — HY?(0) by All,f = v - yVu|0Q;. In fact, we
may extend its definition to H'/2(9Q) and assert its self-adjointness (on the
appropriate domain) with only minor adjustments to the previous proofs. It
seems only natural to ask whether the results of the previous section extend
to this new setting.

The main result of this section is that the asymptotics of a(Af’y) give us
no information regarding the existence of perfect insulators in the interior
of Q. This will follow from the previous arguments and from Lemma 7.2.
This result asserts the rapid localization of the eigenfunctions of A',’y near
the boundary of €21, and away from the other boundary components 0€2;,
for 5 = 1,...,k. This is interesting because the definition of Abv, through
the mixed problem (7.1), does involve the other boundary components.

7.1 The Green’s Function for the Case of Perfect Insulators

In order to apply the techniques of the previous section, we must provide
an appropriate Green’s function G, o(z,y) for (7.1). We begin with Green’s
identity which, for a y-harmonic function u, can be written

u(z) =/aQ (G2, y)v -y Vuly) —uly)y - 7VGy(z,y)) do(y),  (7.9)

where G, (z,y) is the Green’s function for IR%,d > 3 of Theorem 2.3. As it
stands, (7.9) is unhelpful because we have no a priori knowledge of u| 09 5
for 1 < j <k, or of v-yVu on 0Q2. To resolve this problem, we appeal to
the following technical Lemma (whose proof we will postpone):

Lemma 7.1. Suppose that f € H'/?(09) and g; € H'/?(09;), for 1 <
j < k. Then there exists a solution in H' () to the mized problem

Lyow = 0inQ
w = f on 0 (7.10)
v.-yVu = g;jondQ;, 1<j<k.

We take h, to be the solution of (7.10) with f = G,(z,*) and g; =
v-yVG,(z,")| o, 1t follows from the Divergence Theorem that, for a -
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harmonic function u,
0 =/ (uv - yVhy — hyv - yVu) do. (7.11)
0N
If we add (7.11) to (7.9) we get

u(z) = - fv-9VGya(z,-) do, (7.12)

where G o(z,y) = ha(y) — G,(z,y). Hence, we have proved the following
result.

Proposition 7.3. The Green’s function for (7.1), G, a(z,y), can be repre-
sented as

G'y,Q ('Ta y) = hw(y) - G’Y(xa y)a (713)
where hy solves (7.10) with f = Gy(z,+) and g; = V-'yVGy(:c,-)ij.

This Green’s function enables us to prove the existence theorem for solutions
of (7.1).

Theorem 7.4. The solution of the mized problem (7.1) is given by (7.12),
where G q is the Green’s function for Q as described in Proposition 7.3.

It remains only to prove Lemma 7.1.

PROOF (of Lemma 7.1): We solve (7.10) by splitting it into two problems
whose solutions will sum to the desired function:

Law = 0inQ
w f on 0 (7.14)
v-yVw = 0ond;, 1<j<Ek

and
Lyw = 0inQ
w = 0on o : (7.15)
v-yVw = gjondQ;, 1<j<k

Problem (7.14) has already been addressed in Theorem 7.1, so we focus our
attention on (7.15). Restricting ourselves once again to w,¢ € K} (), we
rewrite (7.15) in its weak formulation:

Ly[¢,w] = f(4), (7.16)
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where L,[¢, w] = [, Vw - yV¢ dz, is the bilinear form associated with L.,
and f(¢) = [509T(¢) do. Because of H2, and the fact that functions in
K} () vanish on 07, Lemma 2.2 implies that there is a constant C' for
which

Ly w] > €Yol gy,

for any w € K} (). Further, it follows from H2 and Holder’s inequality that
Lyw,v] < |lwllgiq) ||v|lg1(q)- These two bounds imply that the bilinear
form L., over K{ () satisfies the hypotheses of the Lax-Milgram Theorem.
Consequently, there exists a function w € K} (£2) such that (7.16) is true for
all ¢ € K§(Q). Thus, (7.15) has a solution in the weak sense. [

Proposition 7.5. For any x € Q, the Green’s function for (7.1), Gy a(z,y),
is a smooth function of y € 0.

PrOOF: Since G, q(z,y) = G(z,y) — he(y), and G,(z,-) is smooth on
04, for any x € 2, we need only consider the function h; and its behavior
near 0. Suppose £ € C(‘)’O(IRd) is identically one near €1y, vanishes in a
neighborhood of 09, 1 < j < k, and whose support contains the point z.
Then

hy = fG’y(w’ ) - RQ(L’YEG’y(x’ ))a

where Rq(F') solves
Lyw = FinQ
w = 0on Y (7.17)
v-yVw = v-yVGy(z,:), on 0Q;, 1 <j <k.

The function Rq(F') can be constructed as the sum of the solution to (7.10),
where we take f = 0 and g; = v - YVG,(z,")[s;, and the solution to

Lw = Fin{
w = 0ondY (7.18)
v.yVw =0 onodQ;,1<j<Ek.

Equation (7.18) is solved in K§(£2) by applying the Lax-Milgram Theorem
to sesquilinear form L,[u,v] = [, Vu-yVv dz, with f(v) = [ Fv dz, as
above.

Because ¢ is identically one near 921, there is a tubular neighborhood
of 00 in which L G (z,-) = 0. It follows from elliptic regularity that
Ro(£G(z,+)) is smooth on 0€; and, consequently, that hz|sn, is the sum
of smooth functions. |
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7.2 Rapid Localization Revisited

In the previous subsection, we realized the solution of (7.1) as
’Uf(.’E) = 99 fG%Q(.’L', ) do = <fa G’y,Q(a"a ')>L2(3Q1) ) (719)
1

where G, o is the smooth Green’s function for (7.1). We are now prepared
to pass behaviors addressed in previous sections to this new setting.

Lemma 7.2. Suppose that the eigenvalues of AE’Y are {A\p}, indexed so that
An < Apt1, with associated eigenfunctions ¢, satisfying ||¢n| = 1. Let
K C Q\0 be a compact set. If v, solves (7.1) with boundary data ¢, on
8, we have ||vn || g1 (k) € O(n™°).

ProoOF: We follow the proof of Proposition 3.1. Using the representation
formula (7.19), we have

n(@)] = [{¢n, Gralz,")) |
= A7 () ¢, Gl )]
= N (60, (A3 Gra(x, )]
< XA Grale )leon), (7.20)
by the Cauchy-Schwarz inequality. Notice that ||(AEY)jG%Q(:1:, z2(a0) de-
pends only upon z (i.e., it is independent of n). In fact, the dependence upon
z lies in the singularity of G, which, in turn, is dependent upon the distance

from z to 0Q2;. Because K is compact, all of its members are removed from
091 by some minimal distance, which results in a uniform constant. Thus,

lva (z)| < C(K, 5)A,7.

The standard Weyl eigenvalue asymptotics [8, 20] allow us to assert the
polynomial growth of ), in n, for sufficiently large j, and this completes
gives the estimate on v,. As for Vu,, it follows from (7.19) that

Vo (z) = (én, VaGyal(z, ),
and the same argument yields the decay of |Vu,,|. This completes the proof.m
Lemma 7.2 says that «-harmonic extensions of eigenfunction of Aky, as

defined in this setting, localize rapidly near the boundary 0€21, as the eigen-
value index increases. This is important for the following reason: suppose
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that f € H'/2(094) and v; solves (7.1). Using the eigenfunctions of AEY as
a basis for L?(0€1), we can write

F=3" f(n)pn, where f(n) = (f, én)r2(501)-

n>0

It follows from the definition of v,, that

vf = Z f(n)v,. (7.21)

n>0

At high energy, the y-harmonic extensions v, of the eigenfunctions of Akr
are localized near the boundary 0Q;. Since f € L2(0%;) implies that
f(n) € 2(IN), we infer from equation (7.21) that information concern-
ing the existence of perfect insulators inside €2 cannot be extracted from
the high-energy asymptotics of the spectrum of Akr' This is observation is

restated mathematically by the following theorem. Recall that Qf is the
bounded component of IR\ 39, and that the DN operator Af& is defined
on 0{2; using the y-harmonic extension to Q:f&

Theorem 7.6. The operators AI,’Y and Af’& differ by a smoothing operator.

PROOF: Suppose the eigenfunctions of A# are {¢1(11)} with associated eigen-
values {\,,}. We will prove the theorem by showing that

<(Alr7y - A#)qﬁg), ¢%)>L2(391) =0(n">)-0(m™>) (7.22)

and applying the proof of Lemma 5.2. Let u} be the y-harmonic extension

of </>£l1) to Q#, and let v, be the v-harmonic extension of ¢$}) to © as in
Lemma 7.2. We begin, as before, by writing

(AY bn, bm) 22(000) = /Q# Vull - AVull dr,
1

and
<Aky¢na¢m>L2(aQI) = /vin - YV, dz.

The difference can be expressed as

<(A?y - A#)QIS”, ¢m>L2(891) = /Q (V'Un “ YV, — Vu# : 'YV'U'#L) dz

—/Q#\Q Vaul - yVul dz. (7.23)
1
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Because QF\Q is a compact subset of Q¥ the second integral of (7.23) has
the desired rate of decay by Lemma 7.2. We address the first integral of
(7.23) by adding zero:

/ (V'un - YV, — Vu# . 'qu#L) dr
Q
= / {an AV (U — ult) + V(v — ulf) - 'qu#z} dz
Q
= [ {aiv((vm — w)yVoa) + div((on - uf)yVu)} da
Q

= / (v, — u v - yVul do.
89\001

Because 0Q\09; is (clearly) removed from 99, we know that |uf(z)| and
|%($)| are O(A;>°) for each z € 9Q\09Q;. Further, beginning with the
representation of v, as described by (7.12), we apply the techniques of the

proof of Lemma 7.2 to conclude that ||v,||2(a0\00,) = O(n~°°). This proves
(7.22), and the result follows. [

8 Appendix: Existence of y-harmonic Extensions
to Unbounded Domains

Let Q C IR%, for d > 3, be an unbounded region such that 9 is smooth,
and its complement )¢ is a compact region. In this section, we give a proof
of the existence of a unique solution to the boundary value problem

Lo = 0inQ

u f on 09, (8.1)

and
lu(z)| = O(||=]|>~%), as ||| — oo. (8:2)

This result is used in section 5.

Let L, be the second-order, uniformly elliptic operator defined in (1.1)
with coefficients «;; satisfying H1, H2, and H3 with Q replaced by Q°¢. We
use Theorem 2.3 on the existence of the Dirichlet Green’s function G, o for
unbounded regions €, with 9Q # (), and for bounded, open regions. By
using this Green’s function, we prove the following theorem on the existence
of solutions to the boundary-value problem (8.1)—(8.2) (cf. [15]).
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Theorem 8.1. Suppose ) is an open, unbounded region in IR*, d > 3,
with a smooth, nonempty boundary, whose complement Q€ is a compact set.
Assume that the coefficients satisfy hypotheses H1-H3 (with Q replaced by
Q° in H3). Then, for any f € C(0N), there is a unique function uy € H' ()
satisfying

Lyu = 0in}

u = f ondQ (8.3)
o (@) = O(llz]> 9,
Vu(z)| = O(lz]). 8.4)

as ||z]| — oo.

PrOOF: We construct the solution u by combining the solution to two
boundary-value problems that we already know have solutions. First, we
counsider the boundary-value problem on Qo = Byr(0)\Q°, given by

L7w = 0Oin QQR
w = f on 00 (8.5)
w = 0 on 0B3r(0).

The unique solution to this problem is constructed using the Dirichlet Green’s
function G, q,, of Theorem 2.3 for the bounded region {2>r. By the method
of layer potentials, we have

wy(z) = /8 @A) V() do(w)

Next, we consider the boundary-value problem on IR%\ Br(0),

Av = 0 in IR\ Bg(0)

v = w on 0Bg(0) (8.6)
o — % on §BR(0),
with v(z) satisfying
[v(2)] = O(l|z[*"9). (8.7)

The unique solution to this problem can be constructed explicitly, cf. [3].
Let Gr(z,y) be the Green’s function for the Laplacian on IR%\ Bg(0), with
Dirichlet boundary conditions on Bg(0), and decaying at infinity like ||z||~(4=2),
for fixed y € IR%\ Bg(0). This function can be constructed using the Kelvin
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transform and the Green’s function for the Laplacian on IR?. The solution
to the second problem (8.6) can be represented by

v(z) = /{)BR(O) [Gr(z,w)0,w(w) — w(w)d,Gr(z,w)] do(w). (8.8)

Note that the decay property (8.7) is explicit from this representation and
the decay property of the Green’s function.

Finally, we combine these two solutions. Let 7 > 0 be a smooth cut-
off function having the properties that n|Br(0) = 1, and supp |Vn| C
Bsr(0)\Bgr(0). Let us define a function ¥ = nw + (1 — n)v. This func-
tion v satisfies

L’Y"p = _[A’ 77]“’ + [A7 7]]'0 =F, (89)

since y;; = 6;; for ||z|| > R. The function F' has compact support in the
interior of Bar(0)\Br(0). From Theorem 2.3, there exists a Green’s function
Gya(z,y) for L, on the region (2, with Dirichlet boundary conditions on
the boundary 012, and decaying at infinity. Using this Green’s function, we
construct a function

z(z) = Gy alz,y)F(y) dy. 8.10
@= [, oo GV (8.10)
This function satisfies

Lyz=F, inQ, andz|9Q =0. (8.11)

Consequently, the function © = 9 — z is a solution to the boundary-value
problem (8.1). The manner in which u is constructed, and Theorem 2.3,
allow us to compute the decay rate of the solution u. For ||z|| > 2R, the
solution is

u(z) = v(z) — z(x). (8.12)

It is clear from parts (c.) and (d.) of Theorem 2.3, and the properties of G,
that (8.4) holds. It remains only to prove that this function is unique among
all those that vanish at infinity. To the contrary, suppose there is another
such function, v, solving (8.1) and vanishing at infinity. Then ¢ = (u — v)
is y-harmonic in €2, satisfies ¢ | 92 = 0, and vanishes at infinity. It follows
from Moser’s form of Liouville’s Theorem [16] that ¢ = 0. m

Given the existence of a unique solution to (8.1) decaying at infinity as
in (8.2), we can now prove a representation formula for the solution.
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Corollary 8.1. Suppose Q C IR% d > 3 is an open region in IR® with
smooth, nonempty boundary whose complement is a compact set. Then,
there is a function G, q : Q X 00 — IR such that

uz) = | Gralew)fw) do(w)
1s the unique solution to

Lou = 01inQ

U f on 09, (8.13)

for f € C(09), among all functions that tend to zero at infinity. Further-
more, the solution satisfies the decay estimate (8.2).

PROOF: Let us be the unique solution to (8.1) constructed in Theorem 8.1.
Using the Dirichlet Green’s function for €2, as given in Theorem 2.3, we
derive a representation formula for the solution to (8.1). Let R >> 0 be
chosen. An application of the Divergence Theorem to the region Bgr(0)\Q2¢
yields

u@) = [ @@ VG a(w,2) dow)
+ [w(Rw)v - VG 0(Rw, z) — Gy a(Rw,z)v - Vu(Rw)] R4 dw,
0Br(0)
(8.14)

where dw is the measure on the sphere 4!, and v = 1 for R large enough.
We now use the decay estimates on G, o and VG, g, given in Theorem 2.3,
parts (c.) and (d.), and the decay estimate on u; and Vuy in (8.2), to prove
that the integral over Bg(0) vanishes as R — oo. As a result, we obtain

ur@) = [ @) 1(@) VG a(w,0) dofw), (8.15)
so that Go(z,w) = v - 7(w)VGy a(z,w). n

We can now define the Dirichlet-to-Neumann operator for 02 by way of
~-harmonic extensions to the unbounded region 2.

Proposition 8.2. Assume () and L, satisfy the same properties as in The-
orem 8.1, so that Q° is compact. If uy and ug are the y-harmonic extensions
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of f,g € C(ON) to Q, as in Theorem 8.1, and v is the outward normal to
Q, then

(9:800) 2oy = (020 -7V up)dz2ga0) = | Vg7V do.

PrOOF: Choose R >> 0 so that R1\Q¢ C Bg(0), and write Qr = QNBg(0).
We use the Divergence Theorem on this smoothly bounded region to write

Vug - yVuy dr = / gv -yVuy do +/ ugv - YVuy do, (8.16)
N o]

Qg Br(0)

where v is the outward normal to Qg. Properties (8.2) of the y-harmonic
extensions uy and Vu, show that the second integral in (8.16) vanishes as
R — oo. |
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