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Abstract. We describe a method for automatically classifying
image-quality defects on printed documents. The proposed ap-
proach accepts a scanned image where the defect has been local-
ized a priori and performs several appropriate image processing
steps to reveal the region of interest. A mask is then created from
the exposed region to identify bright outliers. Morphological recon-
struction techniques are then applied to emphasize relevant local
attributes. The classification of the defects is accomplished via a
customized tree classifier that utilizes size or shape attributes at
corresponding nodes to yield appropriate binary decisions. Applica-
tions of this process include automated/assisted diagnosis and re-
pair of printers/copiers in the field in a timely fashion. The proposed
technique was tested on a database of 276 images of synthetic and
real-life defects with 94.95% accuracy. © 2007 SPIE and
IS&T. �DOI: 10.1117/1.2761920�

1 Introduction
Image quality stands among one of the most important at-
tributes of image acquisition and printing devices. In the
past decade, we have seen a tremendous improvement in
the quality of printed documents due to significant techno-
logical advances in non-impact printing. Present-day print
engines are required to meet consistent and stable image-
quality requirements as measured by various metrics and
ultimately evaluated by customers. The current marketplace
demands the best image quality at competitive costs with
minimum downtime. Hence, the ability for print engine
vendors to reliably achieve the highest levels of quality will
ensure them a leadership role in the printing industry.

Even though the quality of printed documents has im-

proved significantly over the past decade, current print en-
gines still produce a variety of image defects and artifacts.
Figure 1 illustrates sample defects that often result from
faults or degradations in the underlying image development
and electrophotographic processes. These artifacts are
manifested in a variety of ways and can occur in different
locations on the printed document. Therefore, current print
environments �e.g., Print shops� utilize trained quality as-
surance personnel �QAP� to visually inspect a subset of the
output documents to “ensure” that customer hard copies are
free of defects. Once a defect has been spotted, the QAP is
required to render an initial classification �i.e., deletion,
spot, debris centered deletion �DCD�, etc.�. This is usually
done in a visual fashion and as such is prone to errors and
subjective judgments. Based on the QAP’s assessment, the
artifact’s signature is then utilized to search the diagnostic
documents for potential corrective actions �i.e., clean the
charge devices, replace the developer, etc.�. This is expen-
sive, and time-consuming and occasionally results in false
actions due to incorrect assessments. Hence, algorithms
that are capable of identifying artifacts in an objective fash-
ion in order to render appropriate actions by QAPs or less
experienced operators are needed.

One approach for tackling this problem is by utilizing
Content-Based Information Retrieval �CBIR� techniques. In
an effort to subdue manual annotations of large image da-
tabases, research interests in this area have abounded since
the early 1990s.1,2 CBIR employs visual properties of a
query image—color, shape, texture, frequency, and regions
of interest (ROI)—to traverse image databases according to
user’s interests. This is achieved by utilizing highly de-
scriptive multidimensional feature vectors that can be ex-
tracted from global or local positions within the image us-
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ing one or more of the above visual content properties.
Some applications require features that are minimally sen-
sitive to changes—affine, reflections, perspective, deforma-
tions, or luminance3—in the image. For instance, shape fea-
tures can be represented with moment invariants,4 Fourier
descriptors,5 or chain-codes.6 Similarity measures between
the feature vector of a query sample and archived features
corresponding to database images are then computed using
distance metrics such as Euclidean,6,7 Minkowski,8

Mahalanobis,9 and Kullback–Leibler �KL� divergence.10

The decision of a “matched” image is achieved by search-
ing through the similarity values. This can be performed
using an exhaustive search or more efficiently via indexing
schemes. Popular indexing schemes include R*-trees,11

quad-trees,12 or self-organizing maps �SOMs�.13,14 Thus, an
automatic defect identification system can be devised to
compare a defective sample with images in an already ex-
isting online database from which top matches can be se-
lected. Additionally, the system can be designed to dynami-
cally perform updates when new defects are encountered.

Some systems counteract the defect recognition problem
via a series of image processing and pattern classification
steps. Iivarinen and Visa14 employed unsupervised SOMs
for the classification of base paper surface defects such as

holes and spots. Their classification is based on features
extracted from the internal structure, shape, and texture
traits of the defective areas. Segmentation and morphologi-
cal operations are among the preprocessing steps carried
out prior to feature extraction and classification. Addition-
ally, weld defect detection has been accomplished by Li
and Liao15 via Gaussian distribution functions of horizontal
line profiles from the defect images. They also employ
background removal, dark image enhancement, and image
normalization before properties of the profiles are exploited
as features. Mery and Berti16 used textural features from
co-occurrence matrices and two-dimensional Gabor func-
tions. Prior to the feature extraction stage, they explore La-
placian of Gaussian edge detection to segment “key” defec-
tive areas. More recently, Ng17 proposed a novel histogram-
based thresholding scheme to assist in the segmentation of
“smallsized” sheet metal defects. In general, the algorithms
described above are designed to handle defects that possess
a high-level contrast to the surrounding background and
are not well suited for recognition of artifacts in printed
documents.

In this paper, we propose a new classification algorithm
for identifying artifacts resident on scanned copies of
printed documents. The proposed algorithm utilizes prima-
rily size-, shape-, and/or region-based features to effec-
tively classify local artifacts. These artifacts tend to have
large intraclass variations, possess low contrast, and/or ex-
hibit illumination non-uniformities. The classes of interest
�see Figs. 1�a�–1�h�� include deletions, DCDs, debris-
missing DCD, and mottle. Hence, our proposed technique
employs appropriately designed image processing steps
such as de-screening, gray-scale conversion, and local nor-
malization to ensure uniformity among samples of the same
class and to facilitate subsequent shape, size, and region
feature analysis. The effectiveness of our algorithm is dem-
onstrated on a large database of scanned electrophoto-
graphic and synthetic images. These images possess signifi-
cant variations within each class that serve to thoroughly
test the sensitivity of the method to intraclass differences.

The advantages of our proposed algorithm lie in its abil-
ity to objectively classify a given artifact, once localized by
a QAP or more importantly a less experienced operator in a
practical print shop environment. To this effect, once a de-
fect has been visually detected, the operator/QAP scans the
region of interest and proceeds to classify/identify the de-
fect using our proposed algorithm. Once identified, a set of
correctives actions is subsequently followed to eliminate
the culprit and place the device back into operation as
quickly as possible, thereby minimizing downtime and
maximizing profits. The remainder of this paper is orga-
nized as follows. Section 2 provides a brief description of
the defects. Section 3 describes the proposed artifact analy-
sis and classification algorithm. Experimental results are
presented in Section 4, and conclusions are drawn in Sec-
tion 5.

2 Overview of Image-Quality Defects
Image defects are undesirable qualities of an electrophoto-
graphic copy produced by a printer or copier. Even though
print engines have been thoroughly tested during the manu-
facturing process, the occurrences of defects remain inevi-
table due to the volume and diversity of printed material.

Fig. 1 A sample manifestation of defects of interest: �a� and �b�
deletion; �c� and �d� debris centered deletion; �e� and �f� debris-
missing DCD; �g� and �h� mottle.
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Among the most common are deletions, mottle, DCD,
streaks, bands, and moiré patterns. Deletions �Figs. 1�a� and
1�b�� are usually manifested as elliptical regions containing
a localized group of pixels lighter than the uniform back-
ground and are, in general, a result of an error in the charg-
ing process. DCDs �Figs. 1�c� and 1�d��, on the other hand,
resemble a deletion with the added presence of a central-
ized collection of localized dark pixels �called debris�. A
special case of DCDs exists, where the debris is missing
due to accidental “rub off” by the electrophotographic pro-
cess revealing the paper color �see Figs. 1�e� and 1�f��. This
yields abnormally bright gray-level values compared to its
immediate neighboring pixels. Mottle defects �Figs. 1�g�
and 1�h�� refer to non-uniformity in the perceived print
density �i.e., reflectance� and can be gauged by the relation-
ship between light and dark regions. The ISO-13660
standard18,19 defines mottle as non-uniformity occurring on
a spatial scale between 1.27 mm and 12.7 mm. It charac-
terizes it as large-area print-quality attributes possessing
aperiodic fluctuations of density at a spatial frequency less
than 0.4 cycles per millimeter in all directions. Even though
mottle has received quite a bit of attention in the industry, a
quantifiable universal measure has yet to be developed. The
best achieved benchmark so far has been introduced in the
ISO-19751 image-quality standards for systems.20,21 Other
image defects �e.g., streaks and bands� are certainly of sig-
nificant interest but are not handled in this paper, since their
shape properties differ greatly from the elliptical shapes
identified by the proposed method.

3 Proposed Artifact Analysis and Classification
Algorithm

Our proposed method is summarized in Fig. 2. It is com-
posed of two major steps: image preprocessing for de-
screening and normalization, and ROI identification and
classification. The input to the algorithm is a scanned color
sample �i.e., digital image� containing the defect. The flow-
chart, shown in Fig. 2, represents a classification approach
based on the expected statistics of the ROI in the images. It
depicts five leaf nodes and four decision nodes that are used
to represent the classes and decisions, respectively. Each of
the decision nodes employs size and/or shape features to
classify the defect by utilizing empirically selected thresh-
olds. These procedures are described in the following sub-
sections, starting with the preprocessing steps.

3.1 Image Preprocessing
Locating ROIs involves applying a segmentation routine to
separate the image into foreground and background seg-
ments. The foreground region consists of pixels that repre-
sent the defective areas. However, direct thresholding of
the images without preprocessing generally leads to inac-
curate ROI selections. Scanned images tend to contain half-
tone screens �or marking screens� used to produce the im-
age on the substrate during the electrophotographic, ink-jet,
or lithographic marking process. Researchers have devel-
oped de-screening procedures to counteract this problem.
Dunn and Mathew22 treated the halftone screens as textures
capable of being extracted using a single circularly sym-
metric filter. Sharma23 developed a process responsible for
determining the identity of the underlying marking process
by analyzing the power spectra of a digital image for the

presence of significant energy at high frequencies. This in-
formation is then utilized for scanner or copier recalibra-
tions in order to produce a high-fidelity document with
minimal screens.

We adopt the same general frequency-domain de-
screening approach to minimize the effect of the screens on
the classification process. In particular, we analyze the im-
age power spectrum to determine the existence of pertinent
high-frequency energy content that represents the signature
of the underlying halftone screens. The peaks correspond-
ing to the halftone structure are quite distinguishable in the
Fourier domain. Hence, the effect of the screen is signifi-
cantly reduced via a repetitive “notch” frequency-domain
filtering operation to yield a sufficiently smooth image for
further analysis. In every iteration, the high energy content
in the frequency domain is located and filtered out. This
process is performed individually on each channel for a
predefined number of iterations using a Butterworth notch
filter5 of order n=15 given by

Fnotch =
1

1 + � D0
2

D1�u,v�D2�u,v��n , �1�

where

• D0�radius of filter,

• D1�u ,v�=��u−M /2−u0�2+ �v−N /2−v0�2,

• D2�u ,v�=��u−M /2+u0�2+ �v−N /2+v0�2.

The variables u and v are the frequency-domain coordi-
nates. The origin of Fnotch has been shifted to the center
frequency coordinates �i.e., Fnotch�0,0� is located at u
=M /2 and v=N /2�. Thus, the notch locations are sym-
metrically located at �u0 ,v0� and �−u0 ,−v0�. The radius of
the notch filter is chosen, through empirical testing, as the
minimum of �M /5 ,N /5�. The order is selected as n=15 in
order to preserve the contrast of debris pixels in DCD and
debris missing samples.

An illustration of this application on a DCD image is
shown in Fig. 3. Figure 3�a� shows a halftone scanned im-
age that contains a DCD. The frequency spectrum �Fig.
3�b�� shows significant energy �outlined by the boxes� at
high frequencies that correspond to the halftone screens.
The black spots �Figs. 3�c�–3�e�� are indications of succes-
sive frequency-domain filtering operations. The final de-
screened image shown in Fig. 3�f� is thus obtained from the
inverse Fourier transform of the filtered versions of all
three channels.

Special instances arise where the “debris” is only visible
in one channel. Hence, multiple channel processing �i.e.,
3-channel processing of the image� is not desirable due to
the added computational complexity and potential for inac-
curate results. We therefore transform the image to a single
gray-scale channel. There are numerous RGB to gray-scale
methods used in the computer vision literature. Some sim-
ply employ the average of the RGB channels as a corre-
sponding gray-scale image. A better approximation of the
brightness can be derived by summing weighted versions of
the R, G, and B channels.24 Other methods handle the prob-
lem via de-saturation,25 i.e., removal of the saturation infor-
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mation of the image. In particular, Matlab’s26 gray-scale
conversion �rgb2gray� computes a gray-scale image by
summing weighted versions of the R, G, and B channels
using the coefficients 0.2989, 0.5870, and 0.1140, respec-
tively. For our data set, these conventional methods often
fail to preserve the saliency of the centered debris. Rather,
they tend to be successful when applied to normal images
�e.g., portraits, landscape scenes, road scenes, etc.� that
have an appreciable contrast and exhibit a multimodal his-
togram property. To avoid this limitation, we perform a
principal component �PC� analysis on the RGB image in
order to convert it to a single channel in an optimum fash-
ion. Figure 4 illustrates the advantages of utilizing a PC-

based conversion versus a weighted standard summation26

of channels. The DCD image �Fig. 4�a�� bears “question-
able” debris, which is only visible in the blue channel �Fig.
4�d��, and is more appropriately “highlighted” in the first
principal component �see Fig. 4�f�� as compared to a stan-
dard RGB-to-gray conversion �see Fig. 4�e��.

Principal component analysis27 is a linear data reduction
approach that optimally projects a d-dimensional data set
onto a lower-dimensional subspace in a mean-squared error
sense. It does this by performing a coordinate rotation that
aligns the transformed axes with the directions of maxi-
mum variance of the data. Let �1 ,�2, and �3 represent the

Fig. 2 Defect detection and identification framework.
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R, G, and B channels in lexicographic ordering and �
= ��1 �2 �3�T be the corresponding 3�MN concatena-
tion. The mean vector m= �m1 m2 m3�T and covariance ma-
trix C are computed as follows:

��k

2 = E���k − mk�2� =
1

MN − 1�
l=1

MN

��k�l� − mk�2, �2�

C = 	 ��1

2 ��1
��2

��1
��3

��2
��1

��2

2 ��2
��3

��3
��1

��3
��2

��3
2 
 , �3�

where

• ��k

2 =E���k−mk�2�=1/MN−1 �
l=1

MN

��k�l�−mk�2, and

•
��j

��k
=E��� j −mj���k−mk�T�

=
1

MN−1
�
l=1

MN

�� j�l�−mj���k�l�−mk�.

C is a real, symmetric matrix that can be expressed as

C = U�UT, �4�

where U is a 3�3 orthonormal matrix of eigenvectors cor-
responding to the ordered eigenvalues �1��2��3 con-
tained in the diagonal matrix �=diag��1 ,�2 ,�3�. The prin-
cipal components of � are calculated by

Y = UT� = �Y1 Y2 Y3�T. �5�

Hence, the variance of the original information is distrib-
uted among the eigenvalues, with the first eigenvalue ��1�
representing the largest variance along the corresponding
PC Y1. The first PC is selected as the medium for classifi-
cation under the hypothesis that the corresponding eigen-
values bears more than 75% of the overall variance. In the
rare cases where this is not true, the channel with the high-
est variance is chosen. Sample re-ordered versions of Y1,
Y2, and Y3 are shown in Figs. 4�f�–4�h�.

Once a high-contrast gray-scale image has been ob-
tained, a local normalization �LN� procedure is employed
to compensate for non-uniform background situations. The
LN process is designed to handle large illumination varia-
tions �see Figs. 5�a� and 5�c�� characteristic of a number of
samples in the database. This approach is given by

Fig. 3 De-screening process: �a� original scanned document; �b�
frequency spectrum of red channel showing presence of abnormally
high energy at high frequencies; �c�–�e� successive notch filtering;
�f� de-screened version of Fig. 3�a�.

Fig. 4 Comparison of PCs with alternative gray-scale method: �a�
original DCD image with “invisible” debris; �b�–�d� corresponding R,
G, and B channels, respectively; �e� Matlab’s rgb2gray procedure;
�f� first PC; �g� second PC, �h� third PC.
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g�i, j� =
f�i, j� − mf�i, j�

� f�i, j�
, �6�

where

• f�i , j� is the selected/transformed gray-scale image,
• mf�i , j� is an estimation of the local mean of f�i , j�,
• � f�i , j� is an estimation of the local standard deviation,
• g�i , j� is the output image.

The above-outlined approach efficiently removes variations
in the image �see Fig. 5�b��. The block diagram in Fig. 6
depicts the implementation of the LN procedure. An esti-
mation of the image’s local mean is obtained by filtering
with a 70�70 spatial Gaussian low-pass filter, h1�i , j� of
standard deviation, �1=21. The �·�2 and ��·� symbols �see
Fig. 6� represent the “square” and “square root” operations,
respectively, and are used to complete the computation of
the standard deviation. The second smoothing filter, h2�i , j�
is equivalent to h1�i , j�.

3.2 ROI Identification and Defect Classification

3.2.1 ROI identification
We process g�i , j� by utilizing a median-based thresholding
approach to select the ROIs. Other thresholding schemes
tend to immediately separate the debris without providing
any deletion boundary. The median threshold was observed
to be more robust to noise and outliers within the image

when compared to a mean-based thresholding. If the me-
dian is given by TM, then the binary image b�i , j� is com-
puted as

b�i, j� = �1, if g�i, j� � TM ,

0, if g�i, j� � TM .
�7�

The images in Figs. 5�c� and 5�d� were obtained by utiliz-
ing Eq. �7�.

An opening morphology operation28 is then employed to
remove noisy objects from the binary image, b�i , j�. Figure
7 depicts a comparison of typical morphologically
“opened” images obtained from a deletion, DCD, and
mottle images, respectively. The opening morphological
operations yield a binary image, where the pixels that differ
from the specified shape and size of the 2�2 structural
element are assigned the value of 1 and are displayed as
“white.” The corresponding largest group of connected
white pixels is selected as the ROI. The relationship be-
tween the largest region and its neighbors is employed as a
discriminatory feature. Note that the size of the largest re-
gion is not necessarily equivalent to the area of the defect
but is utilized to provide its corresponding location for clas-
sification purposes. Specifically, the ratio of the root mean
square �RMS� of the largest ROI to the RMS of other ROIs
is employed as the feature of interest. This feature is there-
after compared to an empirically determined threshold T0 to
yield class decisions �at the first decision node� between
mottle and deletion-type �or non-mottle� images. Figure 8
shows typical distributions of the number of pixels in each
region for a mottle type and a non-mottle type. If the signal
of interest is given by the major ROI, then we expect a
large signal-to-noise ratio �SNR� for the non-mottle image
and a low SNR for a mottle image.

In order to ensure that only defects bearing a deletion-
type signature are considered for further processing, we
impose a shape contour test by utilizing the Hausdorff
distance.29 In particular, the contour of the major ROI is
compared to a fitted ellipse’s contour, which is created us-
ing a similar approach to that found in Saber et al.30 Addi-
tionally, the rectangularity31 of the major ROI measured by
the ratio of the area of the region to the area of its minimum
bounding rectangle �MBR� is employed as another feature.

Fig. 5 Local normalization: �a� non-uniform background sample; �b�
local normalized version of Fig. 5�a�; �c� binarized result of Fig. 5�a�;
and �d� binarized result of Fig. 5�b�.

Fig. 6 Local normalization block diagram.

Fig. 7 ROI feature extraction for �a�–�c� deletion, DCD, and mottle
images, respectively; �d�–�f� respective morphologically opened
images.
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These two features �i.e., Hausdorff distance and rectangu-
larity� ensure that only defects exhibiting an elliptical shape
configuration are regarded for further processing. They are
compared with the thresholds T1 and T2 to separate un-
known defects from deletion-type samples. This completes
the second decision node.

3.2.2 Outlier processing (deletion vs. DCD)
The first step toward processing only deletion-type images
utilizes the convex hull of the major ROI as a mask �Fig.
9�a�� for the replacement of potential missing debris pixels.
To obtain these pixels, a threshold is automatically com-
puted and applied to the masked region. Let p represent a
given gray level. This threshold is obtained by first gener-
ating the histogram h�p� for pmin� p� pmax, as shown in
Fig. 9�b�. Then, the set containing possible bright outlier
pixels within the mask is defined by

R1 = �p:h�p� 	 0 and p 	 pmin + 0 . 75*�pmax − pmin�
 ,

�8�

where the constraint p	 pmin+0.75*�pmax− pmin� is de-
signed to limit the desired threshold to only 25% of the
bright pixel values. Let RD be a new set of elements, which
are backward differences between adjacent elements of R1.

The desired threshold can thus be obtained as

RT = �R1:RD 	 

, Outlier threshold = min�RT
 , �9�

where 
=5 �i.e., minimum number of pixels� for our pur-
pose. To avoid conflicts �i.e., two or more bright outlier
regions�, the largest region is simply chosen. An outlier
factor �OF� �i.e., a measurement of how significantly a
group of pixels deviates from other neighboring pixels� is
compared with a threshold T3 as

OF � T3 and OF = median�OG
 − median�NP
 , �10�

where OG�potential outlier group and NP�neighborhood
pixels contained in a bounding box around OG. This helps
to quantify the outlier measure of the region in question in
order to determine its significance to its neighbors. Figure 9
shows a successful identification of the missing pixels,
where the OG region �Figs. 9�c� and 9�d�� has been obtained
via thresholding with the desired outlier threshold value.
The NP region �Fig. 9�d�� is created from a 1-pixel bound-
ary around OG.

To efficiently differentiate between deletion and DCD
defects, we exploit the major difference—the presence of a
group of dark pixels in an approximate center of the ellip-
tical region. This is a difficult task, as demonstrated in our
previous procedure,32 wherein information from the histo-
gram was utilized to devise a threshold that localizes pos-
sible debris pixels. Due to the noisy nature of deletion
samples, additional steps involving the acceptance or rejec-
tion of segmented dark pixels are needed. For the low-
contrast DCD images, the debris pixels are not successfully
identified after thresholding. Figure 10 shows intermediate
results obtained by applying several thresholding mecha-
nisms to pixels within the created mask �Fig. 10�b�� for a
DCD sample. The best result �Fig. 10�e�� is achieved by a
hole-emphasizing routine, which utilizes morphological re-
construction to “fill holes” in the image and thereafter com-
pute a difference image. This was shown to provide supe-
rior results when compared with standard thresholding
techniques such as Otsu’s method,33 as illustrated in Figs.
10 and 11. Otsu’s method �Fig. 10�c�� does not provide a
desirable outcome, while the modified Otsu’s approach17,33

�Fig. 10�d�� is close to the ground-truth result but is noisier

Fig. 8 Study of SNR of �a� typical mottled image; �b� typical non-
mottle type.

Fig. 9 Missing debris identification procedure.
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compared to the morphological reconstruction approach.
Figure 11 illustrates a similar situation with a noisy deletion
image.

The “fill-hole” process is a special morphological
transformation28 �called a geodesic transformation� that ac-
cepts two images—a marker and a mask. The mask is used
to restrict the growth �or decay� of the marker image during

regular morphological operations. For this process, the
marker is set to the maximum value of the image except
along its border, where the values of the original image are
kept, while the mask is represented by the image itself. An
erosion of the marker is then iteratively performed until a
stable result is achieved. The final eroded marker consti-
tutes the filled image, and the holes can be obtained by
subtracting the input image from the filled one �see Ref. 28
for a detailed explanation�. This morphological reconstruc-
tion ensures only prominent dark pixels are emphasized, as
shown in Fig. 12. The gray-scale SNR of the difference
image is used to quantify the disparity between DCD and
deletion samples. If the peak points denote the debris of
interest, then the DCD are expected to possess a higher
SNR level when compared to the deletion. A low SNR is an
indication that no further processing is required and there-
fore that no prominent outliers exists.

The number of pixels representing the debris is utilized
as the discriminating feature between deletion and DCD
samples. The Mahalanobis distance,8 in a normalized range
�0,100� of the segmented debris from the center of the
mask �i.e., convex hull of major ROI as in Fig. 9�a��, is
employed for classification between DCDs and deletions.
This results in a final classification of the artifact into one
of five possible categories.

4 Experimental Results
We tested the performance of our proposed algorithm on a
database of 276 images of artifacts �see Fig. 1 for a repre-
sentative sample� that consists �1� 264 scanned images of
RGB format provided by Xerox Corporation with accom-
panying ground-truth labels provided by a QAP, and �2� 12
non-defective and synthetic images �Fig. 13� comprising
logos and “rectangular” shape defects. The scanned images
were comprised of 68 DCDs, 23 debris-missing DCDs, 80
deletions, and 93 mottle images �see Table 1�. The synthetic
images were introduced to test the algorithm’s robustness
and to ensure that only regions satisfying the “elliptical”
ROI property are processed as deletion-type defects. The
region of interest portraying the artifacts is scanned at 600
dots per inch �dpi� using a flat-bed scanner typical to the
one available at any print shop to ensure high quality and
sufficient pixel detail. The thresholds utilized in our classi-

Fig. 10 Within-mask segmentation: �a� original image; �b� masked
image; �c� Otsu’s thresholding; �d� modified Otsu’s thresholding;17,24

�e� morphological reconstruction approach.

Fig. 11 Within-mask segmentation for noisy image: �a� original im-
age; �b� masked image; �c� Otsu’s thresholding; �d� modified Otsu’s
thresholding; �e� morphological reconstruction approach.

Fig. 12 Difference images: �a� DCD, SNR=22 dB; �b� deletion,
SNR=15 dB.
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fication were T1=25, T2=0.8, and T3=0.158. These were
obtained by empirical testing. Of the 23 debris missing
DCD images, a few samples exist that are very challenging,
due to their manifestation, and as such can easily be mis-
classified as deletions by an operator or QAP.

The performance of our proposed algorithm is docu-
mented in Table 1. The classification accuracy of the DCD
class is 86.76%. The misclassified samples are a result of
low-contrast images �see Figs. 14�a� and 14�b��, where the
bead is barely visible or missing entirely, resulting in a low
signal-to-noise ratio. Given the lack of contrast, it is en-
tirely possible that these samples would also be misclassi-
fied by operators and/or QAPs in a production-type
environment.

Deletion classification yields 97.5% accuracy. Misclas-
sified samples appear to possess a potential missing debris
group of pixels �Figs. 14�c� and 14�d�� and thereby are
classified as debris-missing DCDs by our proposed algo-
rithm. Once again, this misclassification can be attributed to
potential confusion from the ground-truth information. The
results for the remaining categories are also shown in Table
1, where the mottle and arbitrary images were classified
with 99% and 100% accuracy, respectively. The total cor-

rect classification rate is 94.95%, which is obtained from a
weighted average of the given individual accuracies.

The effectiveness of the principal component transfor-
mation for gray-scale conversion is also demonstrated.
Table 2 shows the resultant classification obtained using a
standard RGB-to-gray conversion, similar to the one found
in Matlab26 �see rgb2gray function�. It can be seen from
Table 2 that the Matlab rgb2gray function results in lower
classification accuracy especially for the case of debris-
missing DCDs.

The robustness of the algorithm against varying degrees
of random Gaussian noise was tested. First, the noise
present in the normal images was quantified by selecting
random samples and extracting arbitrary-sized cropped re-
gions from various locations in the image. We found the
images to have an intrinsic noise level with standard devia-
tion ��0.04; thus, any additional noise tends to further
deplete the contrast. Repeated tests with white Gaussian
noise ��=0.01, 0.02, and 0.05� are summarized in Fig. 15,
from which it can easily be seen that the classification ac-
curacy is inversely proportional to the level of noise added,
due to a significant drop in contrast. Mottle tends to hold up

Fig. 13 Synthetic samples: �a� DCD; �b� deletion; �c� and �d� logos.

Table 1 Classification results using our proposed method.

Classification results

True Class

Number
of

Images DCD

Debris
Missing

DCD Deletion Mottle Unknown Accuracy DCD

DCD 68 59 3 5 1 86.76%

Debris-missing
DCD

23 2 21 91.3%

Deletion 80 2 78 97.5%

Mottle 93 1 92 99%

Other 12 12 100%

Fig. 14 Misclassified samples: �a� DCD with low contrast; �b� DCD
with an invisible bead; �c� and �d� deletions with possible debris-
missing regions.
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well against the noise due to its inherently noisy nature.
The misclassified deletion images are classified as Mottle
and tend to worsen with increasing noise. As the level of
noise is increased from �=0.01, 0.02, and 0.05, the total
classification �average of all the classifications� is reduced
from 93.51%, 86.22%, and 78.68%. Since the acquisition
of the images will normally take place under non-noisy
conditions, this does not represent a major limitation of the
algorithm.

5 Conclusions
In this paper, an algorithm for automatically classifying a
specific set of image-quality defects in printed documents is
proposed. The algorithm accepts scanned versions of de-
fected printed media, where the defect has been localized a
priori by a customer service engineer, and provides accu-
rate classifications of defect type �deletion, DCD, debris-
missing DCD, or mottle�. Due to large variations between
elements of the same class, several preprocessing tech-
niques were carried out on each image to attain some level
of uniformity among the samples. Using a custom tree clas-
sifier, binary decisions were made by employing simple
shape and size constraints at each node. The use of princi-
pal component analysis to obtain a gray-scale image pre-
serves the contrast of the original RGB sample. Addition-
ally, the use of local normalization procedures helps to

avoid misclassifications by making the background illumi-
nation uniform wherever possible. An accuracy of 94.95%
was still attained despite the noisy nature and low contrast
of several samples. However, this accuracy tends to depre-
ciate with increasing noise levels. Since this procedure has
proved to be quite successful, the next step involves an
automation of the defect localization process by possibly
incorporating the original electronic document along with
an online scan of the printed output to help in automatically
localizing and classifying the artifact.
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