
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Presentations and other scholarship Faculty & Staff Scholarship

11-1-2019

On the Distribution of Test Smells in Open Source Android On the Distribution of Test Smells in Open Source Android

Applications: An Exploratory Study Applications: An Exploratory Study

Anthony Peruma
Rochester Institute of Technology

Khalid Saeed Almalki
Rochester Institute of Technology

Christian D. Newman,
Rochester Institute of Technology

Mohamed Wiem Mkaouer
Rochester Institute of Technology

Ali Ouni
University of Quebec at Montreal

See next page for additional authors

Follow this and additional works at: https://repository.rit.edu/other

Recommended Citation Recommended Citation
Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem Mkaouer, Ali Ouni, and Fabio
Palomba. 2019. On the distribution of test smells in open source Android applications: an exploratory
study. In Proceedings of the 29th Annual International Conference on Computer Science and Software
Engineering (CASCON '19). IBM Corp., USA, 193–202.

This Conference Proceeding is brought to you for free and open access by the RIT Libraries. For more information,
please contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/other
https://repository.rit.edu/facstaff
https://repository.rit.edu/other?utm_source=repository.rit.edu%2Fother%2F982&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Authors Authors
Anthony Peruma; Khalid Saeed Almalki; Christian D. Newman,; Mohamed Wiem Mkaouer; Ali Ouni; and
Fabio Palomba

This conference proceeding is available at RIT Digital Institutional Repository: https://repository.rit.edu/other/982

https://repository.rit.edu/other/982

On the Distribution of Test Smells in Open Source Android
Applications: An Exploratory Study

Anthony Peruma1, Khalid Almalki1, Christian D. Newman1, Mohamed Wiem Mkaouer1, Ali Ouni2, Fabio Palomba3
1Rochester Institute of Technology, Rochester, NY, USA

2ETS Montreal, University of Quebec, Montreal, QC, Canada
3University of Zurich, Zurich, Switzerland

axp6201@rit.edu,ksa8566@rit.edu,cnewman@se.rit.edu,mwmvse@rit.edu,ali.ouni@etsmtl.ca,palomba@ifi.uzh.ch

ABSTRACT
The impact of bad programming practices, such as code smells, in
production code has been the focus of numerous studies in soft-
ware engineering. Like production code, unit tests are also affected
by bad programming practices which can have a negative impact
on the quality and maintenance of a software system. While sev-
eral studies addressed code and test smells in desktop applications,
there is little knowledge of test smells in the context of mobile
applications. In this study, we extend the existing catalog of test
smells by identifying and defining new smells and survey over 40
developers who confirm that our proposed smells are bad program-
ming practices in test suites. Additionally, we perform an empirical
study on the occurrences and distribution of the proposed smells
on 656 open-source Android apps. Our findings show a widespread
occurrence of test smells in apps. We also show that apps tend
to exhibit test smells early in their lifetime with different degrees
of co-occurrences on different smell types. This empirical study
demonstrates that test smells can be used as an indicator for neces-
sary preventive software maintenance for test suites.

1 INTRODUCTION
The test code, just like production source code, is subject to bad
programming practices, also known as anti-patterns, defects, and
smells. Smells, being symptoms of bad design or implementation
decisions/practices, have been proven to be one of the primary
reasons for decreasing the quality of software systems; making
them harder to understand, more complicated to maintain, and
more prone to changes and bugs [1]. In this context, several studies
on code smells focus on identifying and detecting what practices,
designs, etc should be considered smells [2–4] or prioritizing smell
correction based on severity with respect to deteriorating the qual-
ity of software [5, 6].

The concept of test smells was initially introduced by vanDeursen
et al. [7]. Further research in this field has also resulted in the identi-
fication of additional test smell types [8], analysis of their evolution
and longevity [9, 10], and patterns to eliminate them [11]. However,
as described in Section 6, studies around test smells are limited to
traditional Java systems. Several studies have designed strategies
on how to detect these smells [12–15] or show how the existence
of code smells deteriorate the quality of software designs [16, 17],
but there are no existing studies that analyze the existence and
distribution of bad testing practices in Android applications (apps).
This is in the context of how prolific mobile apps have become to
every day life; as of the last quarter of 2018 there were roughly 2.6
million apps available on Google Play [18]. Both users, and develop-
ers whose job it is to construct and maintain these programs, would

benefit from such a study; users will see an increase in their usage
experience and developers will have an easier time maintaining
apps in the long term. To this end, we have extended the set of
existing smells to cover violations of xUnit testing guidelines [19].

To analyze the lifecycle and impact of these smells, we conducted
a large-scale, empirical study on test suites utilizing JUnit [20]
for 656 open-source Android apps. Further, we defined a series of
research questions to support and constrain our investigation to
better understand the existence and distribution of test smells, and
more precisely to investigate whether the existence of test smells
is an indicator of poor testing quality.

Our broad goal is to gain a stronger qualitative, and quantitative
understanding of test smells in Android apps; to understand how
they are similar to and where they diverge from traditional Java
systems. In particular, we want to support developers in creating
and maintaining high-quality apps while avoiding increased project
cost ultimately introduced when developers must manually detect
and remove smells. We take steps to achieve this by: (1) Expanding
on the set of existing test smells by proposing additional bad test
code practices that negatively impact the quality of the test suite,
(2) validate our proposed smells by open-source developers, and (3)
comparing Android apps with traditional Java systems.

Our main findings show that: (1) almost all apps containing unit
tests contained test smells introduced during the initial stages of
development. The frequency of these smells differs per smell type,
while their occurrence is similar to traditional Java systems; (2)
test smells, once introduced into an app, tend to remain in the app
throughout its lifetime; (3) majority of the developers in our survey
confirmed our proposed smells as bad testing practices.

2 TEST SMELLS
Test smells are a deviation from how test cases should be orga-
nized, implemented, and how they should interact with each other.
This deviation indicates potential design problems in the test code
[21]. Such issues hurt software maintainability and could also hurt
testing performance (e.g., flaky tests [22, 23]). In the subsequent
subsections, we provide definitions of our proposed unit test smells
and summarize the feedback received from developers on the prac-
ticality of the proposed smell types in real-world projects. It should
be noted that test smells, like general code smells, are subjective
and open to debate [24]. We welcome feedback and extensions to
the detection logic for the proposed smells.

2.1 Literature test smells
We now provide a brief introduction to the smells that were part of
our study, with more details on each smell available in the work of
van Deursen et al. [7]:
Assertion Roulette: Occurs when a test method has multiple non-
documented assertions.
Eager Test. Occurs when a test method invokes several methods
of the production object.
General Fixture: Occurs when a test case fixture is too general,
and the test methods only access part of it.
Lazy Test: Occurs when multiple test methods invoke the same
method of the production object.
Mystery Guest: Occurs when a test method utilizes external re-
sources (such as a file or database).
Resource Optimism: Occurs when a test method makes an opti-
mistic assumption that the external resource (e.g., File), utilized by
the test method, exists.
Sensitive Equality: Occurs when the toString method is used
within a test method.

2.2 Proposed test smells
We extend the existing test smells defined in literature by including
a new set of test smells inspired by bad test programming practices
mentioned in unit testing based literature [11, 25–27], as well as JU-
nit, and Android developer documentation [28]. It should be noted
that other than for the Default Test smell, the set of proposed test
smells apply to both traditional Java and Android apps. For these
newly introduced test smells, we provide their formal definition, an
illustrative example, and our detection mechanism. The examples
associated with each test smell were obtained from the dataset that
we analyzed in this study. Where possible, we provide the entire
code snippet, but in some instances, due to space constraints, we
provide only the code statements relevant to the smell. Complete
code snippets are available on our project website [29].

2.2.1 Conditional Test Logic. Test methods need to be simple and
execute all statements in the production method. Conditions within
the test method will alter the behavior of the test and its expected
output, and would lead to situations where the test fails to detect
defects in the production method since test statements were not
executed as a condition was not met. Furthermore, conditional code
within a test method negatively impacts the ease of comprehension
by developers. Refer example in Listing 1.

/* ** Test method contains multiple control statements ** */
@Test
public void testSpinner () {

/* ** Control statement #1 ** */
for (Map.Entry <String , String > entry : sourcesMap.entrySet ()) {

.....
/* ** Control statement #2 ** */
if (resultObject instanceof EventsModel) {

EventsModel result = (EventsModel) resultObject;
/* ** Control statement #3 ** */
if (result.testSpinner.runTest) {

.....
/* ** Control statement #4 ** */
for (int i = 0; i < spinnerAdapter.getCount (); i++) {

assertEquals(spinnerAdapter.getItem(i), result.testSpinner.
data.get(i));

.....
}

Listing 1: Example - Conditional Test Logic.

2.2.2 Constructor Initialization. Ideally, the test suite should not
have a constructor. Initialization of fields should be in the setUp()
method. Developers who are unaware of the purpose of setUp()
method would enable this smell by defining a constructor for the
test suite. Listing 2 illustrates an example of this smell.
public class TagEncodingTest extends BrambleTestCase {

private final CryptoComponent crypto;
private final SecretKey tagKey;
/* ** Constructor initializing field variable ** */
public TagEncodingTest () {

crypto = new CryptoComponentImpl(new TestSecureRandomProvider ());
tagKey = TestUtils.getSecretKey ();

}
@Test
public void testKeyAffectsTag () throws Exception {

for (int i = 0; i < 100; i++) {
.....
/* ** Field variable utilized in test method ** */
crypto.encodeTag(tag , tagKey , PROTOCOL_VERSION , streamNumber);
assertTrue(set.add(new Bytes(tag)));

.....
}

Listing 2: Example - Constructor Initialization.

2.2.3 Default Test. By default Android Studio creates default test
classes when a project is created. These template test classes are
meant to serve as an example for developers when writing unit
tests and should either be removed or renamed. Having such files in
the project will cause developers to start adding test methods into
these files, making the default test class a container of all test cases
and violate good testing practices. Problems would also arise when
the classes need to be renamed in the future. Example in Listing 3.
/* ** Default test class created by Android Studio ** */
public class ExampleUnitTest {

/* ** Default test method created by Android Studio ** */
@Test
public void addition_isCorrect () throws Exception {

assertEquals (4, 2 + 2);
}
/* ** Actual test method ** */
@Test
public void shareProblem () throws InterruptedException {

.....
Observable.just (200)
.subscribeOn(Schedulers.newThread ())
.subscribe(begin.asAction ());
begin.set (200);
assertEquals(beginTime.get(), "200");

.....
}

Listing 3: Example - Default Test.

2.2.4 Duplicate Assert. This smell occurs when a test method tests
for the same condition multiple times within the same test method.
If the test method needs to test the same condition using different
values, a new test method should be created. As a best practice, the
name of the test method should be an indication of the test being
performed. Possible situations that would give rise to this smell
include (1) developers grouping multiple conditions to test a single
method, (2) developers performing debugging activities, and (3) an
accidental copy-paste of code. Refer to the example in Listing 4.
@Test
public void testXmlSanitizer () {

.....
valid = XmlSanitizer.isValid("Fritz -box");
/* ** Assert statements are the same ** */
assertEquals("Minus is valid", true , valid);
System.out.println("Minus test - passed");

valid = XmlSanitizer.isValid("Fritz -box");
/* ** Assert statements are the same ** */
assertEquals("Minus is valid", true , valid);

System.out.println("Minus test - passed");
.....

}

Listing 4: Example - Duplicate Assert.
2

2.2.5 Empty Test. Occurs when a test method has no executable
statements. Such methods are possibly created for debugging pur-
poses without being deleted or contain commented-out test state-
ments. An empty test method can be considered problematic and
more dangerous than not having a test case at all since JUnit will
indicate that the test passes even if there are no executable state-
ments present in the method body. As such, developers introducing
behavior-breaking changes into production class, will not be no-
tified of the alternated outcomes as JUnit will report the test as
passing. An empty test example is presented in Listing 5.

/* ** Test method without executable statements ** */
public void testCredGetFullSampleV1 () throws Throwable{
// ScrapedCredentials credentials = innerCredTest(FULL_SAMPLE_v1);
// assertEquals (" p4ssw0rd", credentials.pass);
// assertEquals (" user@example.com",credentials.user);
}

Listing 5: Example - Empty Test.

2.2.6 Exception Handling. This smell occurs when the passing or
failing of a test method is explicitly dependent on the production
method throwing an exception. Developers should utilize JUnit’s
exception handling features to automatically pass/fail the test in-
stead of custom exception handling code or exception throwing.
An example is provided in Listing 6.

@Test
public void realCase () {

.....
/* ** Fails the test when an exception occurs ** */
try {

a.compute ();
} catch (CalculationException e) {
Assert.fail(e.getMessage ());
}
Assert.assertEquals("233.2405", this.df4.format(a.getResults ().get(0).

getUnknownOrientation ()));
.....

}

Listing 6: Example - Exception Handling.

2.2.7 Ignored Test. JUnit 4 provides developers with the ability to
suppress test methods from running. However, these ignored test
methods result in overhead with regards to compilation time and
an increase in code complexity and comprehension. Refer example
in Listing 7.

@Test
/* ** This test will not be executed due to the @Ignore annotation ** */
@Ignore("disabled for now as this test is too flaky")
public void peerPriority () throws Exception {

final List <InetSocketAddress > addresses = Lists.newArrayList(
new InetSocketAddress("localhost", 2000),
new InetSocketAddress("localhost", 2001),
new InetSocketAddress("localhost", 2002)

);
peerGroup.addConnectedEventListener(connectedListener);
.....

}

Listing 7: Example - Ignored Test.

2.2.8 Magic Number Test. This smell occurs when a test method
contains unexplained and undocumented numeric literals as pa-
rameters or as values to identifiers. These magic values do not
sufficiently indicate the meaning/purpose of the number. Hence,
they hinder code understandability. Consequently, they should be
replaced with constants or variables, thereby providing a descrip-
tive name for the value. Listing 8 shows an example of this smell.

@Test
public void testGetLocalTimeAsCalendar () {

Calendar localTime = calc.getLocalTimeAsCalendar(BigDecimal.valueOf (15.5D),
Calendar.getInstance ());

/* ** Numeric literals are used within the assertion statement ** */
assertEquals (15, localTime.get(Calendar.HOUR_OF_DAY));
assertEquals (30, localTime.get(Calendar.MINUTE));

}

Listing 8: Example - Magic Number Test.

2.2.9 Redundant Print. Print statements in unit tests are redundant
as unit tests are executed as part of an automated. Furthermore, they
can consume computing resources or increase execution time if the
developer calls an intensive/long-running method from within the
print method (i.e., as a parameter). Refer example in Listing 9.
@Test
public void testTransform10mNEUAndBack () {

Leg northEastAndUp10M = new Leg(10, 45, 45);
Coord3D result = transformer.transform(Coord3D.ORIGIN , northEastAndUp10M);
/* ** Print statement does not serve any purpose ** */
System.out.println("result = " + result);
Leg reverse = new Leg(10, 225, -45);
result = transformer.transform(result , reverse);
assertEquals(Coord3D.ORIGIN , result);

}

Listing 9: Example - Redundant Print.

2.2.10 Redundant Assertion. This smell occurs when test methods
contain assertion statements that are either always true or always
false. A test is intended to return a binary outcome of whether the
intended result is correct or not, and should not return the same
output regardless of the input. Listing 10 highlights an instance of
this smell.
@Test
public void testTrue () {

/* ** Assert statement will always return true ** */
assertEquals(true , true);

}

Listing 10: Example - Redundant Assertion.

2.2.11 Sleepy Test. Developers introduce this smell when they
need to pause execution of statements in a test method for a cer-
tain duration (i.e., simulate an external event) and then continuing
with execution. Explicitly causing a thread to sleep can lead to
unexpected results as the processing time for a task differs when ex-
ecuted in various environments and configurations. Refer Listing 11
for an example.
public void testEdictExternSearch () throws Exception {

.....
assertEquals("Searching", entry.english);
/* ** Forcing the thread to sleep ** */
Thread.sleep (500);
final Intent i2 = getStartedActivityIntent ();
.....

}

Listing 11: Example - Sleepy Test.

2.2.12 Unknown Test. An assertion statement describes an ex-
pected condition for a test method. By examining the assertion
statement, it is possible to understand the purpose of the test. How-
ever, It is possible for a test method to be written without an asser-
tion statement, in such an instance JUnit will show the test method
as passing if the statements within the test method did not result
in a thrown exception when executed. Such programming practice
hinders the understandability of the test, like in Listing 12.

3

/* ** Test method without an assertion statement and non -descriptive name ** */
@Test
public void hitGetPOICategoriesApi () throws Exception {

POICategories poiCategories = apiClient.getPOICategories (16);
for (POICategory category : poiCategories) {

System.out.println(category.name() + ": " + category);
}

}

Listing 12: Example - Unknown Test.

2.3 Practicability of proposed test smells
To confirm that our list of proposed smells is indicative of problems
in the test suite, we surveyed developers that either own or con-
tribute to open source systems that exhibited these smells. From
our corpus of systems (described in Section 3), for each proposed
smell type, we selected ten random unit test files that were smelly.
In total, these 120 unit test files spanned across 200 unique systems.

We conducted the surveywas over email, and in total, we reached
out to 120 developers. We personalized each email to the extent of
mentioning the file in the project repository (via the URL of the
file hosted on GitHub) and (where applicable) the method name
in the file exhibiting the smell. The email also informed partici-
pants that the questions were part of an educational (non-profit)
research study to understand certain programming practices used
by developers when implementing JUnit based unit tests. As partic-
ipants in this survey were not compensated, we had to ensure that
the amount of effort required from each participant was kept to a
minimum. To this extent, we limited each participant to a single
test file and smell type. Further, we also limited the number of
questions to at most three. To prevent bias in the responses, we
did not mention negative terms/phrases such as ‘smell’ and ‘bad
programming practice’ in the email. As each smell type is unique, it
was not feasible to have the same question repeated for each smell
type. However, within each smell type, the questions were the same.
For example, a question on code readability/understandability is ap-
propriate for the smell Conditional Test Logic but not for Redundant
Print. In general, we asked: 1) if the developer could recall as to
the reason for implementing a certain construct, 2) if they feel that
an alternative (i.e., non-smelly) means of implementation would
help improve maintenance and quality, and 3) (where applicable) if
certain constructs in their implementation is unnecessary.

We received 49 responses, which approximates to 40.83% of all
the developers we contacted. We received responses for each of
the proposed smell type except for Exception Handling. In most
cases, developers confirmed that the programming constructs we
highlighted in their code are examples of test smells. It was also
interesting to note that some of the developers expressed willing-
ness to rectify the identified smells in their code. However, there
were instances where developers would disagree with our findings
and prefer to stick to their methodology. As the questions were
open-ended, we performed a thematic analysis on the developer
responses. In the following subsections, we provide the results from
our survey for each smell type. Please refer to our project website
for the test files included in our survey.
Conditional Test Logic: While respondents did agree that develop-
ers should write unit tests that are easy to comprehend, they could
not agree to the outright removal of conditional statements from
the test methods. However, they did mention that troubleshooting

a failure that occurs within a loop would be problematic if the
assertion statement does not provide enough information. They
prefer to consider it being smelly or not on a “case by case basis”.
We also had a scenario where a developer reported that our code
snippet was indeed a piece of bad code: “I actually have no idea
why that for loop is there. It doesn’t do anything but run the test
1000 times, and there’s no point in that. I’ll remove it.”
Constructor Initialization: Interestingly, we observed that the
developers who responded to this smell types indicated that they
were aware of JUnit fixtures and the common reason for using a
constructor over fixtures is “laziness”. The respondents also stated
that using a constructor is “sloppy” and results in ”unexpected
behavior”. They also unanimously agree that developers should use
text fixtures. Once again, based on our finding a respondent made
the necessary corrections to the code: “ I have already made this
change since you pointed it out so the code is clearer now” [30].
Default Test: All respondents agreed that the default tests “serves
no concrete purpose” and that it may lead to confusion. We also
had a respondent mention that developers should follow a test first
approach so that they will be forced to remove the default tests
from the onset. Again, we had instances of developers removing
these files from their repository due to our survey [31, 32].
Duplicate Assert: We obtained mix responses to this smell; it
comes down to personal preference - some developers preferred to
split the assertion statement into separate methods while others
did not. However, developers that prefer the latter do mention that
they might consider using separate methods depending on the size
and complexity of the test. For example, “I might enforce it on
some bigger projects.” Developers agree that comprehensibility and
maintainability are important and believe that adding more infor-
mation into the assertion text would help. Looking at the theme
in the responses, we observed that having all assertions within a
single test method is convenient during implementation (e.g., “It is
possible to split that single test into 4 different ones but I’d have to
come up with a name for each different case”). They prefer to deal
with this smell only when debugging (e.g., “Someone’s attention
would be drawn to this test case if it failed, and they would look to
understand it, potentially including changing it”).
Empty Test: Respondents were unanimous that such test methods
should be removed from the test suite. However, at the same time,
they also feel that such methods can be used to verify the testing
framework. Furthermore, a respondent indicated that test coverage
is good mitigation for such smells.
Ignored Test: This smell type too had a set of mixed reviews. We
had developers mention that “would not tolerate to have ignored
tests in the code” and such tests “should be commented out or re-
moved from a test file”. However, some respondents felt ignored
tests permit developers to investigate problems or serve as a means
for new developers “ to understand behavior ” and should remain
in the codebase. Developers do agree about the overhead in compi-
lation time, but feel that this can be ignored depending on the size
of the test suite. Like some of the other smells, this smell too boils
down to developer preference.

4

Magic Number Test: In theory, respondents agree that use of con-
stants instead of magic numbers improve code readability/under-
standability, but feel that it should not be a blanket rule. For instance,
if a numerical value has a “deeper meaning”, then a constant should
be used so that its “name adds useful information”, but not in sit-
uations where the meaning of the number is apparent and hence
the constant becomes “superfluous”. The respondents pointed out
specific areas in their test code that could be improved by replacing
the numeric values with constants and other instances where such
an action is not necessary. So, in summary, if the correctness of the
numeric value can be verified by looking only at the method, then
no constant is needed.
Redundant Assertion: A common reason for the existence of this
smell is due to developer mistakes, and the respondents did confirm
that such code “is not needed”, ”bad style” and “should probably
be removed”. We did encounter a respondent who mentioned that
as part of their teams test-driven development, they create a “ca-
nary test” [33] “as a sanity test, or for purposes of warming up”.
These tests can be removed after serving their purpose, but in this
instance, the developer opted not to. Interestingly, there were a few
respondents that indicated that the code is required for their tests
to execute (possibly to support an extreme edge case). Again, we
had a respondent report back the instance we highlighted will be
marked for removal.
Redundant Print: Not surprisingly, all respondents were unani-
mous in agreeing that print statements are redundant and do not
belong in test suites. Developers primarily utilize such statements
for debugging purposes (e.g., “I wanted to check the signature of
an object...”), and then forget to remove them. We also had a re-
spondent who confirmed that these statements result in “a waste
of resources (cpu+disk space)” and took steps to update their tests
to remove such instances [34].
Sleepy Test: From our set of responses, developers pause execu-
tion to simulate/handle animations, load times, and delays between
events/activities. It was interesting to note that almost all respon-
dents confirm that there are risks (i.e., inconsistent results) involved
with causing a thread to sleep and provided possible instances
where their code might fail (e.g., “transition between activities”,
“machine is slow for whatever reasons” and “run test on real de-
vice”). While knowingly admitting the possibility of failure of their
test, sometimes developers have no other choice, or the alterna-
tive “requires more code”. Even setting a high sleep duration is not
recommend as it will increase test execution time.
Unknown Test: The majority of the developers are in favor of hav-
ing assertion statements in a test method, but there are some minor
exceptions which fall under edge cases. The respondents confirmed
that the missing assertions in their methods were mistakes and
blame it on “sloppy coding”. We also have an instance where the
developer made the necessary correction to the test method based
on our survey email [35].

Summary: Our survey has shown that a majority of the de-
velopers in our survey confirmed our proposed smells as bad pro-
gramming practices in unit test files. However, these smells can be
subjective and may not apply to all systems. Some of these systems
are well established in the community, and correcting these smells

Table 1: Overview of phase-wise data breakdown.

Phase Item Value

Co
lle
ct
io
n

Total cloned repositories 2,011
Cloned apps hosted on GitHub 1,835
Total commit log entries 1,037,236
Total Java files affected by commits 6,379,006
Total volume of repositories cloned 53.8 GB
Total volume of test files collected 3.63 GB

D
et
ec
tio

n

Apps containing test files 656
Candidate test files detected 206,598
Test files with a production file 112,514
Test methods analyzed 1,187,055

Test smells
Test files not exhibiting any test smells 5,915
Test files with 1 or more smells 175,866
Test files with only 1 type of smell 22,927
Test files with 2 to 5 types of smells 95,565
Test files with 6 to 10 types of smells 33,898
Test files with over 10 types smells 3,317
Average number of smell types in a file 3

might not be feasible. However, we did encounter instances where
developers made (or plan to make) the necessary corrections to
their test suite based on our findings.

3 METHODOLOGY
We investigate the design of unit tests by studying the occurrence
of test smells in Android apps and their impact on the overall
quality of the apps through a set of quantitative, comparative and
empirical experiments. We discuss how we collected data for these
experiments below. Information about how we separate test from
production files is available via the project website [29].

We conducted a two-phased approach that consisted of: (1) data
collection and (2) smell detection. In the first phase, we collected
datasets from multiple sources, while in the second phase, we an-
alyze the collected datasets to detect test smells, along with the
project metadata, needed later for the experiments. Table 1 provides
an overview of the data collected in each phase. The details of each
phase are described in the following subsections.

3.1 Data Collection Phase
Similar to prior research [36, 37], for this study we utilized F-
Droid’s [38] index of open-source Android apps and narrowed our
selection to only repositories hosted in publicly accessible Git-based
version control systems. Our dataset only consisted of repositories
that were not duplicated or forked; we did this by ensuring that
the source URL’s and commit SHA’s were unique. For each of the
cloned repositories, we retrieved: (1) the entire commit log, (2) list
of all files affected by each commit, and (3) the complete version
history of all identified test files and their production files.

3.2 Smell Detection Phase
To detect test smells in our corpus, we implemented an AST-based
tool, tsDetect. The tool is open-source and currently supports the
detection of the 19 test smells we described in Section 2. tsDetect
is able to correctly detect test smells with a precision score ranging
from 85% to 100% and a recall score from 90% to 100% with an

5

Start
Cloned

repositories Detect test files

Successful
AST parsing

Candidate test files

Select files hav-
ing at least 1

unit test method

Detect associated
production file

Successful
AST parsing

Test & production files

Detect test smells

Detected test smells

Stop

yes

yes

Figure 1: Overview of the Detection Phase process.

average F-score of 96.5%. More details about tsDetect is available
on our website [29].

4 ANALYSIS & DISCUSSION
4.1 RQ1: How likely are Android apps to

contain unit test smells?
We address RQ1 through a three sub-RQs, related to various aspects
of test smells such as their existence, co-occurrence, and distribu-
tion among traditional and mobile software systems. By running
tsDetect on the version history of all unit test files (identified
by enumerating over the app’s git commit log), we were able to
obtain the history of test smells occurring during the lifetime of
the app. We then utilized this data in the following sub-RQ’s when
formulating our analysis.

RQ1.1: Are Android apps, that contain a test suite, prone to test
smells?

Out of the 656 apps, which contained unit tests, only 21 apps
(approximately 3%) did not exhibit any test smells. We observed
that non-smelly apps contained significantly less unit test files,
over the lifetime of the app, than the smelly apps. The low count
of unit test files in the non-smelly apps cannot be attributed to
the size of the project since the count of Java files occurring in
the lifetime of smelly and non-smelly apps were similar. Hence, a
possible explanation for the absence of the test smells in the 21 apps
is that these apps had low unit-testing coverage. Table 2 reports on
the statistics of the distribution of production test and source code
files in smelly and non-smelly apps.

A typical train of thought concerning smells is that as the test
suite of an app increases in size, so do the occurrences of smells
due to the addition of more test methods (i.e., test cases) to exercise
new production code. We verify this claim via a hypothetical null
test where we define the following null hypothesis:

Table 2: A five number summary of the distribution of
source code files in apps

Item Min. 1st Qu. Median Mean 3rd Qu. Max.

Non-Smelly Apps

Distinct Test Files 1 1 1 1.1 1 2
Distinct Java Files 37 154 183 332.1 276 1255

Smelly Apps

Distinct Test Files 1 1 3 18.3 10 510
Distinct Java Files 1 28.5 106 325 330 5780

Null Hypothesis 1. The existence of test smells, in an app, does
not change as functionalities of the app continues to grow over time.

Based on a Shapiro-Wilk Normality Test on our dataset of unit
test files and test smell occurrence, we observed that the dataset is
of a non-normal distribution. Therefore, we performed a Spearman
rank correlation coefficient test to assess the association between
the volume of test smells and test files occurring throughout the
history of the apps. Not surprisingly, we obtained a strong posi-
tive and statistically significant (p<0.05) correlation value of 0.90
between the two variables. Therefore, we can reject the Null Hy-
pothesis 1 and statistically confirm that test smells exhibited by an
app increase as the volume of unit test files in the app increase.

RQ1.2:What is the frequency and distribution of test smells in Android
apps?

To aid our discussion on the occurrence of test smells, we calcu-
lated the distribution of each test smell type from the total quantity
of detected test smells (Figure 2); the volume of apps and unit test
files that exhibit each smell type (Table 3); and the co-occurrence of
test smells (Table 4). We observed that the smell Assertion Roulette
occurred the most when compared to the other smells. Further, we
also observed that this smell also occurred in over approximately
50% of the analyzed apps and unit test files. As claimed in [39], one
reason for the high occurrence of the Assertion Roulette could be
due to developers verifying the testing environment prior to the
behavior of the testing class. The high occurrence of the Excep-
tion Handling smell could be attributed to developers using IDE
productivity tools to auto-generate the skeleton test methods. For
example, IntelliJ IDEA provides the ability to auto-generate the
skeleton for test methods based on a pre-defined template. As such,
developers might be utilizing templates in which the test method
throws a general exception. Since an Eager Test smell is attributed
to a test method exercising multiple production methods, a high
occurrence of this smell can also be due to developers either testing
the environment or initiating/setting-up the object under test. This
phenomenon is further evident by the high co-occurrence (over
80%) of the Eager Test smell with the Assertion Roulette smell. An-
other smell with a high distribution is theMagic Number Test smell.
Typically, test methods utilize assertion statements to compare the
expected result returned by a production method against the actual
value; therefore justifying the high occurrence of this smell. Further-
more, it also shows that developers tend to favor using numerical
literals as parameters in the assertion methods. Further evidence of
this is the high co-occurrence of this smell with the smell Assertion
Roulette (approximately 88%).

6

Table 3: Volume of apps and files exhibiting each smell type.

Smell Type Smell Exhibition In
Apps Files

Assertion Roulette 52.28% 58.46%
Conditional Test Logic 37.32% 28.67%
Constructor Initialization 20.47% 11.70%
Default Test 42.20% 0.32%
Duplicate Assert 31.81% 31.33%
Eager Test 42.99% 38.68%
Empty Test 16.38% 1.08%
Exception Handling 84.57% 49.18%
General Fixture 25.51% 11.67%
Ignored Test 15.28% 3.00%
Lazy Test 39.06% 29.50%
Magic Number Test 77.01% 34.84%
Mystery Guest 36.38% 11.65%
Redundant Assertion 12.91% 3.87%
Redundant Print 14.02% 0.92%
Resource Optimism 15.75% 9.79%
Sensitive Equality 21.10% 9.19%
Sleepy Test 12.60% 2.04%
Unknown Test 47.09% 34.38%

0 5 10 15 20

Unknown Test

Sleepy Test

Sensitive Equality

Resource Optimism

Redundant Assertion

Redundant Print

Mystery Guest

Magic Number Test

Lazy Test

Ignored Test

General Fixture

Exception Handling

Empty Test

Eager Test

Duplicate Assert

Default Test

Constructor Initialization

Conditional Test Logic

Assertion Roulette 15.79

7.74

3.16

9 · 10−2

8.46

10.45

0.29

13.28

3.15

0.81

7.97

9.41

3.15

0.25

1.04

2.64

2.48

0.55

9.28

16.55

7.89

0.48

0

4.87

9.84

0.32

17.1

2.86

3.26

8.86

10.59

2.12

2.57

0.88

3.07

1.61

0.89

6.25

Percentage (%)

Android Traditional Java

Figure 2: The distribution of the different test smell types in
traditional Java and Android applications

Interestingly, the smell Unknown Test shows a moderate-to-high
value in the distribution of smells and occurs in nearly half of the
analyzed apps. This means that developers tend to write unit test
methods without an assertion statement or utilizing JUnit’s excep-
tion handling features. However, we noticed that this smell has a
high co-occurrence (over 55%) with the smell Exception Handling;

a possible reason for this event is that developers determine the
passing/failing of a test method based on the exception thrown
by the called production method. The other smells that show a
moderate distribution include Duplicate Assertion, Lazy Test, and
the Conditional Test Logic smells. These three smells also occur in
less than half of the analyzed apps.

The remainder of the detected smells has a low distribution. We
observed that theMystery Guest and Resource Optimism have a sim-
ilar distribution occurrence and also share a similar co-occurrence
with each other. This means that even though developers do not
frequently utilize external resources, they tend to assume that the
external resource exists when they do consume the resource. Not
surprisingly, the Default Test smell has an exceptionally high co-
occurrence with the Exception Handling and Magic Number Test
smells. This phenomenon can be explained by examining the default
unit test files automatically added by Android Studio; the default file
contains a single exemplary test method that contains an assertion
method with numeric literals as parameters and throws a default
exception. However, the minor co-occurrences with other smells
imply that developers also tend to update the default files with cus-
tom test cases. Even though the distribution of the Redundant Print
smell is low, it has a high co-occurrence with the Conditional Test
Logic smell. A possible reason for this behavior can be attributed
to developers utilizing the print methods for debugging purposes
when building/evaluating the conditional statements contained in
the test methods.

RQ1.3: How does the distribution of smell types in Android apps
compare against traditional Java applications?

Prior research on test smells has mostly focused on test smells
exhibited by traditional Java applications, and has shown that such
systems are not test smell-proof. In this context, we are interested
in understanding the degree to which the distribution of the dif-
ferent test smell types differ between Android and traditional Java
applications. Similar to our Data Collection Phase, we retrieved
a random set of popular (based on stars, subscribers, and forks)
traditional Java systems (details available on our website). Next, we
ran tsDetect on the version history of all detected unit test files.

Figure 2 shows the distribution of the different smell types in
both environments. The graph shows the ratio of occurrence a smell
type in an environment when compared against the occurrence of
all smell types. Using a percentage instead of actual count values
provides a better means of comparison due to size differences of
the systems in the experiment. For example, when compared to
all smell types, the occurrence of Assertion Roulette was 15.79% for
Android apps and 16.55% for the traditional Java systems.

It is interesting to note that most smells have a similar distribu-
tion in both environments. Further, smells such as Exception Han-
dling, Assertion Roulette, Magic Number Test, Lazy Test and Eager
Test are occurring the most in both environments. This phenom-
enon is not surprising as these types of smells are not associated
with specific API’s, but are more of how developers write general
unit testing code. On the other hand, smells such as Sleepy Test,
Mystery Guest and Resource Optimism, are mostly associated with
some specific action (such as database/file access or thread manip-
ulation) and hence might only be present when such an action is
only required. We did observe a noticeable difference in occurrence

7

Table 4: Co-occurrence of test smells.

Smell Type ASR CTL CNI DFT EMT EXP GFX MGT RPR RAS SEQ SLT EGT DAS LZT UKT IGT ROP MNT

ASR 31% 9% 0% 1% 49% 13% 13% 1% 3% 11% 2% 54% 46% 37% 23% 3% 13% 52%
CTL 62% 18% 0% 2% 58% 14% 25% 2% 7% 9% 5% 44% 39% 33% 46% 6% 20% 40%
CNI 43% 44% 0% 1% 84% 12% 22% 1% 3% 3% 6% 32% 24% 24% 57% 2% 12% 18%
DFT 0% 0% 0% 1% 99% 0% 23% 1% 0% 0% 0% 0% 0% 0% 2% 0% 0% 76%
EMT 69% 45% 10% 0% 42% 28% 8% 0% 0% 4% 1% 35% 32% 18% 100% 2% 2% 47%
EXP 58% 34% 20% 1% 1% 15% 19% 1% 5% 6% 4% 35% 32% 32% 40% 3% 18% 39%
GFX 66% 35% 12% 0% 3% 63% 10% 1% 1% 10% 3% 49% 42% 47% 43% 3% 8% 38%
MGT 67% 61% 22% 1% 1% 79% 10% 1% 3% 5% 4% 42% 40% 29% 46% 2% 63% 42%
RPR 46% 74% 7% 0% 1% 46% 19% 6% 1% 9% 1% 25% 22% 21% 61% 2% 5% 32%
RAS 45% 50% 8% 0% 0% 70% 4% 10% 0% 2% 3% 46% 14% 40% 4% 8% 7% 40%
SEQ 71% 28% 4% 0% 0% 34% 13% 6% 1% 1% 2% 48% 44% 35% 20% 3% 3% 52%
SLT 60% 67% 36% 0% 0% 100% 18% 20% 0% 5% 9% 48% 38% 31% 53% 5% 14% 26%
EGT 82% 33% 10% 0% 1% 45% 15% 13% 1% 5% 11% 3% 46% 61% 19% 1% 11% 49%
DAS 86% 36% 9% 0% 1% 51% 16% 15% 1% 2% 13% 2% 57% 44% 26% 3% 13% 60%
LZT 72% 32% 10% 0% 1% 53% 19% 11% 1% 5% 11% 2% 79% 47% 26% 1% 9% 47%
UKT 39% 38% 19% 0% 3% 57% 15% 16% 2% 0% 5% 3% 21% 24% 22% 7% 14% 25%
IGT 50% 53% 7% 0% 1% 49% 10% 6% 1% 10% 8% 3% 19% 32% 13% 75% 6% 35%
ROP 77% 60% 15% 0% 0% 92% 10% 75% 0% 3% 3% 3% 44% 41% 26% 48% 2% 45%
MNT 88% 33% 6% 1% 1% 55% 13% 14% 1% 4% 14% 2% 55% 54% 40% 25% 3% 13%

Abbreviations:
ASR = Assertion Roulette | CTL = Conditional Test Logic | CNI = Constructor Initialization | DFT = Default Test | EMT = Empty Test | EXP = Exception Handling |

GFX = General Fixture | MGT = Mystery Guest | RPR = Redundant Print | RAS = Redundant Assertion | SEQ = Sensitive Equality | SLT = Sleepy Test |
EGT = Eager Test | DAS = Duplicate Assert | LZT = Lazy Test | UKT = Unknown Test | IGT = Ignored Test | ROP = Resource Optimism | MNT = Magic Number Test |

for Constructor Initialization, Ignored Test and Redundant Print. The
difference in proportion for Redundant Print can be attributed to
some Android tests being instrumentation based tests and hence
developers avoiding the use of print statements. However, further
research would be required to explain the differences in the other
two smells. Given that native Android apps are Java-based and also
utilize the same JUnit framework along with best practices, the
similarity in the distribution of test smells in both environments is
not surprising. Furthermore, when compared to [9] we observed
that our findings, for the common set of test smells, are also similar.

Summary for RQ1: Test smells are widespread in the test suites
of Android apps with Assertion Roulette being the most frequently
occurring smell and also having the highest number of co-occurrences
with other smell types. Furthermore, when compared to traditional
Java systems, the top four test smells occurring in both environ-
ments are the same and exhibit similar distribution ratios.

4.2 RQ2: What is the general trend of test
smells in Android apps over time?

We break down this RQ into two sub-research questions.

RQ2.1: When are test smells first introduced into the project?
Our study on the introduction of test smells into a project in-

volves the analysis of commits to identify when the first commit of
a smelly test file occurs and the number of smells introduced when
a unit test file is added to the project.

For each app in our study, we identified the very first instance of
a smelly unit test file was first introduced (i.e., committed) into the
apps’ project repository. Given the vast diversity of the analyzed
apps, we used a ratio based calculation to ensure a standardized
means of comparison. In this context, we defined the First Smelly
Commit Position (FSCP) as the ratio of the commit position of

when the first smelly instance of the file was introduced to the total
commits of the app. Formally, we define the First Smelly Commit
Position FSCPf of a file f as follows:

FSCPf =
Cf

N
(1)

where, Cf is the position in the commit log where the first smelly
instance of file f was introduced; and N is the total number of
repository commits.

As shown in Table 5, we observed that developers, on average,
introduce smelly files earlier on in the project’s lifetime– approx-
imately 23% of the way through the total app commits. We also
observed that, on average, a unit test file is added to a project with 3
test smell types. Furthermore, when a non-smelly file turns smelly,
developers tend to introduce 3 smell types.

Table 5: A five number summary on the introduction of the
1st smelly commit

Item Min. 1st Qu. Median Mean 3rd Qu. Max.

1st Smelly
Commit Position (percentile) 0 1.5 9.1 23.6 39.7 98.3

Smell Types in
1st Commit of a Test File 0 2 3 2.9 4 7

Smell Types in
1st Commit of a Smelly Test File 1 2 3 3.1 4 7

An analysis of the smell types occurring in the first smelly in-
stance of a file showed that Assertion Roulette is the frequently
occurring smell, followed by the Exception Handling; both smells
occurring in over 50% of the identified smelly files. Table 6 shows
the frequency distribution of each smell type occurring in the first
smelly commit of the test files.

8

Table 6: The type of smell occurring in the 1st commit of
smelly test file

Smell Type Occurrence in 1st commit
Assertion Roulette 54.66%
Conditional Test Logic 17.43%
Constructor Initialization 8.78%
Default Test 3.85%
Duplicate Assert 18.47%
Eager Test 37.08%
Empty Test 2.04%
Exception Handling 52.10%
General Fixture 14.67%
Ignored Test 3.66%
Lazy Test 30.64%
Magic Number Test 31.91%
Mystery Guest 7.14%
Redundant Assertion 2.95%
Redundant Print 2.02%
Resource Optimism 3.59%
Sensitive Equality 6.07%
Sleepy Test 1.56%
Unknown Test 25.37%

RQ2.2: How do test smells exhibited by Android apps evolve over
time?

To investigate the trend of test smells we measured how fre-
quently smells increase, decrease or remain at a steady level during
the lifetime of an app and for each instance of a smelly unit test
file. For each unit test file, we first, in chronological order, obtained
the total number of smells that the file exhibited every time it was
committed to the repository. Next, we compared the difference in
smell counts between each version of the file, again in chronological
order. When calculating the difference, we recorded the number of
times the smells in the file increases, decreases or remains the same
(i.e., steady). Our finding show that the number of smells exhibited
by a file remains constant throughout all updates to the file.

Next, we calculated the cumulative totals of each type of smell
trend for all unit test files of an app. Using this data, we were able to
obtain a view of how frequently smells in an app change over time.
As shown in Table 7, on average (i.e., 14 times), when a smelly test
file undergoes updates during its lifetime, the smell count remains
constant. Similarly, the test smells exhibited by the app as a whole,
remains steady during the lifetime of the app.

Table 7: A five number summary of the trend of smells in
app and unit test files

Item Min. 1st Qu. Median Mean 3rd Qu. Max.

Smell trend in apps

Steady State 0 0 2 239.1 22 38650
Smell Increase 0 0 0 10.76 2 1451
Smell Decrease 0 0 0 9.474 1 1403

Smell trend in unit test files

Steady State 0 0 2 14.77 6 1933
Smell Increase 0 0 0 0.71 0 292
Smell Decrease 0 0 0 0.64 0 291

Summary for RQ2: Test smells tend to be introduced early in an
Android app’s lifetime, and they are likely to remain steady during

the lifetime of the app. Assertion Roulette and Exception Handling
are the most common smell types first introduced into a project.

5 POTENTIAL THREATS TO VALIDITY
The task of associating a unit test file with its production file was
an automated process (performed based on filename associations).
This process runs the risk of triggering false positives when devel-
opers deviate from JUnit guidelines on file naming. However, our
manual verification of random associations and the extensiveness
of our dataset acts as a means of countering this risk. Further, the
random selection of files/data performed at different stages in the
study (either as a means of quality control verification or as sup-
port for answering research questions) may not be representative
selections. Our detection process can still contain false negatives,
which constitutes a threat to our findings, especially given that we
aimed to assess the relevance of the newly introduced smell types
by measuring their impact on maintenance in general through var-
ious empirical experiments. However, our findings have confirmed
the usefulness of these introduced smell types. In the future, we
will continue to refine the definition of these smells to increase
detection accuracy. The detection rules utilized by tsDetect was lim-
ited to JUnit based unit tests. tsDetect, at present, does not support
other testing libraries/frameworks. The analysis was limited to only
open-source, Git-based repositories indexed on F-Droid. However,
we were still able to analyze 656 apps that were highly diverse in
age, category, contributors, and size.

6 RELATEDWORK
Test smells were initially introduced by van Deursen et al., in the
form of 11 unique smells [7]. Test smells originate from bad devel-
opment decisions ranging from the creation of long and hard to
maintain test cases to testing multiple production files using the
same test case. The same authors found that refactoring test code
is different from refactoring production code [7]; demonstrating
the value of studying test code apart from production code.

Van Rompaey et al. [40] proposed a set of metrics for the de-
tection of the General Fixtures and Eager Test smells. They aimed
to find out the structural deficiencies encapsulated in a test smell.
The authors extended their approach to demonstrate that metrics
can be useful in automating the detection of test smells [41] and
confirmed that test smells are related to test design criteria. Simi-
larly, Reichhart et al. [12] represented test smells using structural
metrics in order to construct detection rules by combining metrics
with pre-defined thresholds. In other studies, Greiler et al. [14]
introduced the General Fixture, Test Maverick, Dead fields, Lack of
cohesion of test methods, Obscure in-line setup and Vague header
setup smells. Palomba et al. [42] proposed the use of textual analysis
for detecting instances of General Fixture, Eager Test, and Lack of
Cohesion of Test Methods, showing that it can be more powerful
than structural one.

The impact of test smells has been also shown by researchers.
Palomba et al. [22, 23] investigated the impact of test smells on
flaky test cases. The experiments confirmed that test flakiness can
be caused by test smells in almost 75% of the cases. Spadini et al.
[43] investigated how test smells impact the fault-proneness of

9

production code, showing that classes tested by smelly tests tend
to be more fault-prone over their history.

Bavota et al. [16] conducted a human study and proved the
strong negative impact of smells on test code understandability
and maintainability. Another empirical investigation by the same
authors [44] indicated that there is a high diffusion of test smells
in both open-source and industrial software systems with 86% of
JUnit tests exhibiting at least one test smell. These results were later
confirmed in the context of automatic test case generation [10].

These empirical studies highlight the importance for the com-
munity to develop tools to detect test smells and automatically
refactor them. Tufano et al. [17] aimed at determining the devel-
oper’s perception of test smells and came out with results showing
that developers could not identify test smells very easily, thus re-
sulting in a need for automation. Breugelmans et al. [13] built a
tool, TestQ, which allows developers to visually explore test suites
and quantify test smells. Similarly, Koochakzadeh et al. [45] built
a Java plugin for the visualization of redundant tests. Neukirchen
et al. [15] created T-Rex, a tool that detects any violations of test
cases to the Testing and Test Control Notation (TTCN-3) [46].

7 CONCLUSION & FUTUREWORK
The objective of this work is to help developers build and main-
tain better quality test cases for Android apps. To do so, we have
extended the list of known test smells and conducted a set of qualita-
tive experiments to investigate the existence of smells in 656 open-
source Android apps. Additionally, we validated our proposed smell
types with open-source developers. Our main findings indicate a
substantial number of test smells in unit test files. Their existence
represents a threat to test file’s maintainability, as they trigger a
higher chance of more fix-oriented file updates. For instance, the
existence of Assertion Roulette was predominant across test files,
and that smell is known to hinder test comprehension. Some smell
types such as Ignored, Empty, and Default Test also serve as an
indicator of lack of proper testing discipline in the app.

REFERENCES
[1] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory study of the

impact of code smells on software change-proneness,” in Reverse Engineering,
2009. WCRE’09. 16th Working Conference on, pp. 75–84, IEEE, 2009.

[2] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using software
metrics to characterize, evaluate, and improve the design of object-oriented systems.
Springer Science & Business Media, 2007.

[3] M. Kessentini and A. Ouni, “Detecting android smells using multi-objective
genetic programming,” in Proceedings of the 4th International Conference on Mobile
Software Engineering and Systems, pp. 122–132, IEEE Press, 2017.

[4] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni, “A cooperative
parallel search-based software engineering approach for code-smells detection,”
IEEE Transactions on Software Engineering, vol. 40, no. 9, pp. 841–861, 2014.

[5] A. Ouni, M. Kessentini, S. Bechikh, and H. Sahraoui, “Prioritizing code-smells
correction tasks using chemical reaction optimization,” Software Quality Journal.

[6] M. W. Mkaouer, M. Kessentini, M. Ó. Cinnéide, S. Hayashi, and K. Deb, “A ro-
bust multi-objective approach to balance severity and importance of refactoring
opportunities,” Empirical Software Engineering, vol. 22, no. 2, pp. 894–927, 2017.

[7] A. Van Deursen, L. Moonen, A. van den Bergh, and G. Kok, “Refactoring test
code,” in Proceedings of the 2nd International Conference on Extreme Programming
and Flexible Processes in Software Engineering (XP2001), pp. 92–95, 2001.

[8] M. Greiler, A. Zaidman, A. v. Deursen, and M.-A. Storey, “Strategies for avoiding
text fixture smells during software evolution,” in Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR ’13, 2013.

[9] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “Are test smells
really harmful? an empirical study,” Empirical Software Engineering, 2015.

[10] F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia, “On the
diffusion of test smells in automatically generated test code: An empirical study,”

in Proceedings of the 9th international workshop on search-based software testing,
pp. 5–14, ACM, 2016.

[11] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson Education, 2007.
[12] S. Reichhart, T. Gîrba, and S. Ducasse, “Rule-based assessment of test quality.,”
[13] M. Breugelmans and B. V. Rompaey, “Testq: Exploring structural andmaintenance

characteristics of unit test suites,” in Proceedings of the 1st international workshop
on advanced software development tools and Techniques (WASDeTT), 2008.

[14] M. Greiler, A. van Deursen, and M.-A. Storey, “Automated detection of test fixture
strategies and smells,” in 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation.

[15] H. Neukirchen and M. Bisanz, “Utilising code smells to detect quality problems
in ttcn-3 test suites,” Testing of Software and Communicating Systems, 2007.

[16] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “An empirical analysis
of the distribution of unit test smells and their impact on software maintenance,”
in Software Maintenance (ICSM), 2012 28th IEEE International Conference on, 2012.

[17] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “An empirical investigation into the nature of test smells,” in
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, (New York, NY, USA), pp. 4–15, ACM, 2016.

[18] R. Verdecchia, I. Malavolta, and P. Lago, “Guidelines for architecting android
apps: A mixed-method empirical study,” in 2019 IEEE International Conference on
Software Architecture (ICSA), pp. 141–150, March 2019.

[19] G. G. Meszaros, “Xunit test patterns and smells: Improving the roi of test code,”
in Proceedings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion, OOPSLA ’10, 2010.

[20] JUnit, “A framework to write repeatable tests.” https://junit.org/.
[21] E. Van Emden and L. Moonen, “Java quality assurance by detecting code smells,”

in Reverse Engineering, 2002. Proceedings. Ninth Working Conference on, 2002.
[22] F. Palomba and A. Zaidman, “Does refactoring of test smells induce fixing flaky

tests?,” in Proceedings of the International Conference on Software Maintenance
(ICSME). IEEE, 2017.

[23] F. Palomba and A. Zaidman, “The smell of fear: on the relation between test
smells and flaky tests,” Empirical Software Engineering, pp. 1–40, 2019.

[24] M. V. Mäntylä and C. Lassenius, “Subjective evaluation of software evolvability
using code smells: An empirical study,” Empirical Software Engineering, vol. 11.

[25] R. Osherove, The Art of Unit Testing: With Examples in C#. Manning, 2013.
[26] L. Koskela, Effective Unit Testing: A Guide for Java Developers. Manning, 2013.
[27] F. Steve and N. Steve Freeman, Growing Object-Oriented Software: Guided by Tests.
[28] Google, “Android developers.” https://developer.android.com/.
[29] S. U. T. Smells. http://testsmells.github.io/, 2018.
[30] https://github.com/mybatis/mybatis-3/commit/88a48ec.
[31] https://github.com/Pawemix/Chronicles/commit/f231d9b.
[32] https://github.com/hussien89aa/QuranOnAndroid/commit/d7c35d6.
[33] P. Hamill, Unit test frameworks: tools for high-quality software development.
[34] https://github.com/salvatorenovelli/crawler-service/commit/e11b5eb.
[35] https://github.com/ebean-orm/ebean/commit/b7d5aa3.
[36] D. E. Krutz, N. Munaiah, A. Peruma, and M. W. Mkaouer, “Who added that

permission to my app? an analysis of developer permission changes in open
source android apps,” in 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft), pp. 165–169, May 2017.

[37] D. E. Krutz, M. Mirakhorli, S. A. Malachowsky, A. Ruiz, J. Peterson, A. Filipski,
and J. Smith, “A dataset of open-source android applications,” in 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories, pp. 522–525, May 2015.

[38] F-Droid, “Free and open source android app repository.” https://f-droid.org/.
[39] A. Qusef, G. Bavota, R. Oliveto, A. D. Lucia, and D. Binkley, “Scotch: Test-to-code

traceability using slicing and conceptual coupling,” in 2011 27th IEEE International
Conference on Software Maintenance (ICSM), pp. 63–72, Sept 2011.

[40] B. Van Rompaey, B. Du Bois, and S. Demeyer, “Characterizing the relative sig-
nificance of a test smell,” in Software Maintenance, 2006. ICSM’06. 22nd IEEE
International Conference on, pp. 391–400, IEEE, 2006.

[41] B. Van Rompaey, B. Du Bois, S. Demeyer, and M. Rieger, “On the detection of
test smells: A metrics-based approach for general fixture and eager test,” IEEE
Transactions on Software Engineering, vol. 33, p. 800, 12 2007.

[42] F. Palomba, A. Zaidman, and A. De Lucia, “Automatic test smell detection us-
ing information retrieval techniques,” in 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 311–322, IEEE, 2018.

[43] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli, “On the rela-
tion of test smells to software code quality,” in 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp. 1–12, IEEE, 2018.

[44] G. Bavota, A. Qusef, R. Oliveto, A. Lucia, and D. Binkley, “Are test smells really
harmful? an empirical study,” Empirical Softw. Engg., 2015.

[45] N. Koochakzadeh and V. Garousi, “Tecrevis: a tool for test coverage and test
redundancy visualization,” Testing–Practice and Research Techniques, 2010.

[46] J. Grabowski, D. Hogrefe, G. Réthy, I. Schieferdecker, A. Wiles, and C. Willcock,
“An introduction to the testing and test control notation (ttcn-3),” Computer
Networks, vol. 42, no. 3, pp. 375–403, 2003.

10

https://junit.org/
https://developer.android.com/
http://testsmells.github.io/
https://github.com/mybatis/mybatis-3/commit/88a48ec
https://github.com/Pawemix/Chronicles/commit/f231d9b
https://github.com/hussien89aa/QuranOnAndroid/commit/d7c35d6
https://github.com/salvatorenovelli/crawler-service/commit/e11b5eb
 https://github.com/ebean-orm/ebean/commit/b7d5aa3
https://f-droid.org/

	On the Distribution of Test Smells in Open Source Android Applications: An Exploratory Study
	Recommended Citation
	Authors

	Abstract
	1 Introduction
	2 Test Smells
	2.1 Literature test smells
	2.2 Proposed test smells
	2.3 Practicability of proposed test smells

	3 Methodology
	3.1 Data Collection Phase
	3.2 Smell Detection Phase

	4 Analysis & Discussion
	4.1 RQ1: How likely are Android apps to contain unit test smells?
	4.2 RQ2: What is the general trend of test smells in Android apps over time?

	5 Potential Threats to Validity
	6 Related Work
	7 Conclusion & Future Work
	References

