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ABSTRACT
Teachers face several challenges when presenting fundamental con-
cepts of programming in the classroom. Several tools are introduced 
to give a visual dimension to support the learning process. �ey 
rely on code blocks, easily manipulated in a plug and play fashion, 
to build a program. �ese block-based tools intend to familiarize 
students with programming logic, before diving into text-based 
programming languages such as Java, Python, etc. However; when 
transitioning from block-based to text-based programming, stu-
dents o�en encounter a gap in their learning. �e student may not 
be able to apply block-based foundations in a text-based environ-
ment. To bridge the gap between both environments, we developed 
a hybrid-based learning approach. We found that on average a 
hybrid-based approach increases the students understanding of 
programming foundations, memorization, and ease of transition 
by more than 30% when compared to a block-based to text-based 
learning approach. Finally, we provide the community with an open 
source, hybrid-based learning tool that can be used by students 
when learning programming concepts or for future studies.

ACM Reference format:
Hussein Alrubaye, Stephanie Ludi, and Mohamed Wiem Mkaouer. 1997. 
Comparison of Block-Based and Hybrid-Based Environments
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So�ware Engineering, Toronto, Canada, November 4-6, 2019 (CASCON’19), 
10 pages.

1 KEYWORDS
hybrid-based programming, text-based programming, block-based 
programming.

2 INTRODUCTION
Teachers use di�erent coding environments when teaching pro-
gramming in the classroom. Coding environments are either block-
based or text-based. Block-based approaches use blocks to write 
the program as introduced in Figure 1(A). Text-based approaches 
use text code only to write a program as shown in Figure 1(B). Tools 
such as PencilCode, Scratch, and App Inventor use a block-based
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approach. �is environment is welcomed by millions of new stu-
dents. App Inventor is used by 400,000 unique monthly active users
who come from 195 countries and have created almost 22 million
apps1. Scratch that is one of the most modern block-based devel-
opment environment powered by MIT has more than 39 million
users 2. Furthermore, Block-based tutorials on code.org have been
reaching over 780 million students 3. �is environment produces a
new way to write code that includes colors and shapes. �is can
reduce the learning curve that students have when starting to learn
to program in a text-based environment.

It seems more practical to leverage an existing reservoir of knowl-
edge by extending the block-based approach towards a text-based
one rather than starting to learn a whole new programming lan-
guage [1]. However, there are some challenges that teachers are
facing to bring a text-based environment to the classroom. Teachers
use block-based se�ings to teach programming because they are
simple and easy to understand. However, in a typical block-based
environment, students learning curve is slow, as they are only able
to write basic programs. Students will eventually need to move from
a block-based approach to text-based approach in order to write
complete and more complex programs. Moreover, Students should
be also exposed to text-based environments in order to understand
the di�erence between coding styles and coding syntax [1]. �ere
should be a transition from commands with colors and shapes to
text-based environments with only instructions. �is transition
includes large gaps in student learning and students are unable to
transfer their skills upon their preliminary exposure to text-based
environment [2].

We want to bridge the gap between block-based and text-based
environments by implementing a hybrid-based environment, as
proposed in Figure 1(C), which is a combination of block-based and
text-based environments. �is helps the learner to program using
block-based features while also being familiar its corespondent
representation in the text-based environment. It allows the learner
to see and modify text-code along with leveraging the bene�ts of
dragging and dropping blocks of code.

�is study answers the following research questions:

• RQ1. (Learning Improvement) Does the hybrid-based
environment be�er improve students learning curve, when
they migrate to text-based environments, in comparison
with block-based environment?

1h�p://appinventor.mit.edu/explore/, Accessed April 2019.
2h�ps://scratch.mit.edu/statistics/, Accessed April 2019.
3h�ps://code.org/about, Accessed April 2019.
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Figure 1: Types of programming environments.

• RQ2. (CommandMemorization) Does hybrid-based en-
vironment increase the student’s memorization of program-
ming commands, in comparison with block-based environ-
ment?

• RQ3. (Ease Of Transition) Does hybrid-based environ-
ment increase the ease of transition to text-based program-
ming, in comparison with block-based environment?

�is study makes the following contributions:
• We design a novel hybrid-based environment which im-

proves 1) students learning curve by an average of 30.16%;
2) learning programming foundations by 16.2%; 3) learning
code modi�cation by 28.6%; 4) command memorization by
9%; 5) syntax error free code by 67%, and 6) ease of transi-
tion by 30%, when compared to block-based environment.

• We implement a hybrid-based version of PencilCode. �e
tool is available as open source4 for learning, replication,
and extension purposes.

4h�ps://github.com/hussien89aa/HybridPencilCode

�e paper is structured as follows: Section 3 enumerates the 
studies relevant to our problem. Section 4 explains how we build our 
hybrid-based PencilCode tool. Section 5 shows our experimental 
methodology in collecting the necessary data for the experiments 
that are discussed in Section 6, followed by threads to validity in 
Section 8. Conclusion and future directions are in Section 9.

3 RELATED WORK
According to Dijkstra ”�e tools we use have a profound (and devious!) 
in�uence on our thinking habits, and, therefore, on our thinking 
abilities.� [3]. �erefore, several studies focused on understanding 
the impacts of the development environment on learning curve 
[4–10]. Existing studies show that the development environment 
could a�ect the learning curve. A student could perform di�erently 
in a di�erent development environment. Other studies tried to 
bring visual programming to a high school classroom to help the 
student in the learning process [11, 12]. Also, other researchers 
study the impact of visual programming on mobile development by 
bringing the block-based mobile app in the classroom [13]. Various 
visual learning tools have been used to measure the impact of the 
development environment on the student learning curve.

Sherin [14] studied the learning of physics fundamental using 
either programming language or algebraic notation. �ey found 
that students who learned in di�erent environments have di�er-
ent a�ordances in learning physics fundamentals. Boroditsky [15] 
investigated the relationships between di�erent environment rep-
resentations and the learning curve. �ey found that di�erent 
representations have di�erent impact on student learning curve.

Weintrop [2] compared the impact of a block-based, hybrid-based 
and text-based on transfer programming skills using PencilCode.
�e study divided the classroom’s students into three sections.
�e �rst section learned through block-based, the second section 
learned through text-based, and the third learned through hybrid-
based (block /text). All students learned the same curriculum (ex, 
variables, loops, and conditions) for 5 weeks. In week 6, all students 
start coding with text-based using java. �e study reported that 
(92%) of students found block-based is easy to learn than text-based. 
Because in order to write programming Block-based, the student 
needs to drag-drop commands with fewer needed memorization 
of commands. Furthermore, the students found the block-based is 
challenging to build a large complex program. �e hybrid-group did 
not have their tool. �ey were switching between code and block, 
which make it could be di�cult for students to track block-based 
representation in the code when the program becomes larger. So 
they did not get fair learning comparison with other groups. �ey 
have to have their tool.

Robinson [1] did a study on Scratch. One of an exciting feature 
in Scratch is simple to understand and use with avoiding the learner 
the syntax errors. because Scratch focuses on learning the program-
ming logic, and not programming languages, students do not learn 
how to build a program. Instead, the student learns how to think 
logically [1]. When student transfer from Scratch to the text-based 
environment, he/she does not have any programming background.

In this paper, we conduct a comparative study between hybrid-
based and block-based approaches in the context of transferring 
programming skills to text-based environments. Typically, it can be
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performed by comparing state-of-the-art hybrid-based and block-
based approaches. �ere are di�erent tools, currently available to
learn programming in block/text-based setup. Table 1 enumerates
these existing tools. Blockly, AppInventor, and pencilCode advocate
for learning with block/text; however, these tools do not support
hybrid-based learning. pencil.cc [16] is the only tool that contains
a hybrid-based environment. However, the tool is not open-source,
so we were not able to adjust it to our study. �erefore, we built
our own hybrid-based development environment, and we open-
source our tool since 2017, to test it for usability and use it for our
experiments.

In the next section, we describe how we build a hybrid-based
approach that ease the transition of skills to text-based.

Table 1: block/text-based tools.

Tool name Year Hybrid? Open Source? Online?
pencilCode 2001 No Yes Yes

AppInventor 2010 No Yes Yes
Blockly 2012 No Yes Yes
pencil.cc 2018 Yes No Yes

HybridPencilCode 2017 Yes Yes Yes

4 METHODOLOGY
In this section, we explain how we developed a hybrid-based tool
using PencilCode. We start by analyzing the architecture design
of the block-based PencilCode. We then discuss the modi�cations
that we made to the block-based PencilCode in order to transform
it into a more hybrid-based PencilCode. Figure 2, represents our
hybrid-based PencilCode system architecture.

We have chosen to work with PencilCode because it helps to
build con�dence in beginning programmers so that they can create
more complex programs without using a block-based approach [17].
Also, it allows beginners to achieve satisfactory results quickly,
while also minimizing their frustration level when learning, by
avoiding syntactic errors that can be easily introduced when typing
down instructions. Furthermore; it introduces beginners directly
to a programming foundation that is used by professionals and
allows them to toggle between text-based and block-based environ-
ments [17]. PencilCode enables students to write a real Co�eeScript
program using blocks only. Figure 2(A) shows an example of writ-
ing code in PencilCode. PencilCode is currently open source, and
available in GitHub5.

In PencilCode, a user can switch between text-based and block-
based by clicking on ”show code� or ”show block�. When the user
clicks on ”show code�, the blocks view transitions from Blocky6 to
a Droplet [18] model and then the code is displayed. When the user
clicks on ”show block� the code view transitions from a Droplet to
a Blocky model and then the blocks are displayed. �is illustrates
that PencilCode uses two di�erent models, a Blocky model and a
Droplet model. All reserved commands (For, IF, variables, etc.) are
available to users in the toolbox as a block so that they can drag

5h�ps://github.com/PencilCode/PencilCode
6h�ps://developers.google.com/blockly/, Accessed April 2019

and drop (for convenience, we will just say drop) when building an
application in the Blocky view.

Figure 2(B) shows how a Droplet is used to convert blocks to
code and code to blocks. When a user drops blocks from the tool-
box to the text-based view, the Droplet block-model displays its
corresponding program as a number of connected blocks. To build
a hybrid-based tool, we need to convert the block-model into its
corresponding textual representation.

We build the hybrid-based PencilCode to reduce the learning gap
between the block-based and text-based approaches as outlined in
Figure 2(C). �e user is able to use the blocks while also seeing the
code. �is increases the liaison between the block representation
and its corresponding code representation, and also allows the user
to learn the syntax of programming. In hybrid-based PencilCode a
user writes an application by following these steps:

• First, the user drags the block from the blocks toolbox, as
shown in Figure 2(D- 1).

• Second, the user drops the block into text-based, as shown
in Figure 2(D- 2).

• �ird, the user can update the text-based code using key-
board, as shown in Figure 2(D- 3).

In the next section, we discuss the details of updating in PencilCode
to build hybrid-based PencilCode.

4.1 Droplet customization
In order to build a hybrid-based tool, we �rst need to modify the
design of the Droplet model in PencilCode. �e Droplet is a process
that switches between the block-based and the text-based model
in the PencilCode’s environment. �e Droplet’s data model is a
text stream marked up with XML-like tokens such as < block >
, < /block >, < socket >, < /socket >, where every block that is
dropped to the Droplet editor is marked as a token with a start tag
and an end tag.

To convert the text code to blocks, instructions are parsed and
converted to an Abtract Syntax Tree ( see Figure 2(B) [18]). �e
parent node along with its child nodes, all the way to leaf nodes are
then identi�ed. �is tree is then converted to an XML-like block-
model using a syntax-aware language adapter that is responsible
for mapping the block-model to the syntactic code representation,
as follows: �e Droplet needs to render the XML box-model to
blocks. �e Droplet parses the block-model line by line and, for
each line, it transforms the text between two markups into a block.

For a be�er visibility, we also de�ned a set of rules to insert
spaces between lines in each box-model. �ese spaces make the
block clearer when it is drawn. �e Droplet draws the path that
surrounds all of its rectangles while avoiding the unintended area.

�e Droplet typically displays an animation when converting
any text to a block. We disable this animation in the hybrid-based
environment as it would lead to a large number of frequent an-
imations and thus confuse developers as they are writing their
instructions and being constantly distracted by an animation.

�e hybrid-based PencilCode converts every dropped block to
code instantly. �is allows students to see how every block is
represented in the code, as they are developing their program. We
send every block to the Droplet model and then convert it to code
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Figure 2: Hybrid-based PencilCode Overview.

instead of sending the entire program and then converting it to box-
model (text-based). Students can then edit and write code directly
in the Droplet editor.

4.2 Hybrid-based PencilCode implementation
hybrid-based PencilCode, as shown in Figure 1(C), uses the same
internal design of PencilCode with some adjustments. We intention-
ally avoided architectural changes, and minimized code changes
to keep our extension easy to implement and maintain. Also, this
would allow more compatibility with any upcoming version of Pen-
cilCode. Table 2 contains a high-level overview of all our updates
and their corresponding PencilCode �les. In each �le, we discuss
the rationale and details of our updates:

In view.js we made two changes: First, Instead of allowing stu-
dents to click on ”show code� and ”show block� to switch between
block-code, we automated this process implicitly, without le�ing
the student notice it. To do that, we added a new function that is
being called whenever a student drops a block from the toolbox to
the text-based area or whenever the student updates the text-based
code.

When a student drops a block, the function passes a block to the
Droplet in order to generate the code, that is now instantly visible to
the student. �is enables the code view of each block. Furthermore,
when a student changes a line of code, this is a captured event that
updates the blocks with respect to the updated code.

Second, In hybrid-based PencilCode, both block-based (toolbox
only) and text-based are viewed in front of the user instead of
one at the time. �is view is achieved by a minor update in Style
Sheets, which manage program blocks or code views. We retire
PencilCode’s method that handles the correspondence between
blocks and instructions. So when a student drops a block, our

Droplet handles that event by generating the necessary text-based
information, and when a line of code is modi�ed, our Droplet also
updates the blocks.

In Droplet.js, we made four changes, as enumerated in Table 2.
�ese changes allow the Droplet to support converting block to
code instead of block to block only. When a student drops a block
in the text-based area, these changes convert the block to its corre-
sponding source code.

Table 2: Changes in PencilCode code �les to build hybrid-
based PencilCode.

File Name File Path Line numbers Operation
editor.html content/ 13-15 update
Droplet.css content/lib/ 49-51 add

Droplet.js content/lib/

65308- 65310 update
65479- 65480 update
65826- 65829 update
65308- 65310 remove

view.js content/src/ 2841-2842 remove
1933-1943 add

Other changes that were made in other �les are related to user in-
terface design. In order to combine both block-based and text-based
views into one uniform hybrid-based environment. We modify the
layout code of PencilCode from switching between two environ-
ments which are the block-based environments and the text-based
environments into one environment which is the hybrid-based en-
vironment. �e user interface of the hybrid-based environment
IDE splits into two views as elicited in Figure 1(C). �e le� side is
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Figure 3: Experimental Design Overview.

toolbox where a student uses to drag a programming command, and
the right side is the development area(text-based) where student
drop blocks. We named hybrid-based environment as hybrid-based
PencilCode that released as open source project.

5 EXPERIMENTAL DESIGN
We design our experimental study to measure the di�erence in the
impact of block-based or hybrid based environment on student’s
learning curve, when they transition to the text-based environment.
To do so, we perform a qualitative analysis of two separate groups
of students, where each group is assigned to only one environment
(block-based or hybrid-based). �en we evaluate the e�ect of these
environments on transferring the basic programming skills to a
more complex environment, i.e., text-based programming. We want
to investigate whether our hybrid-based environment outperforms
the classic block-based environment in terms of optimizing the
learning time and reducing the error-proneness.

We design our experiment in three phases, as outlined in Fig-
ure 3. First, in Grouping phase we divide students into two groups:
the block-group and the hybrid-group. Second, in Learning phase
we teach each group basic programming concepts using its asso-
ciated environment, namely block-based and hybrid-based. �ird,
in Testing phase we perform a test, in the text-based environment,
to challenge the students understanding of programming concepts,
and �nally we survey them to gauge their impression of the ease
of programming in general.

5.1 Grouping phase
As shown in Figure 3 (step 1), eighteen undergraduate students from
the civil and environmental engineering departments at Rochester
Institute of Technology were randomly sampled for this study( 8
for block-group, 10 for hybrid-group). block-group had 10 students
however two students dropped the study. We veri�ed that they
have no prior experience in programming . �ey were hired for two

sessions, of 2 hours each. We randomly divided the students into
two equal groups: (1) Block-group, this group learns programming
using block-based PencilCode; and (2) Hybrid-group: this group
learns programming using hybrid-based PencilCode. For the learn-
ing phase, we scheduled separate sessions for each group, and we
did not disclose their existence to each other, in order to avoid any
communication between teams, in terms of sharing materials or
questions, and this that may a�ect the accuracy of our experiments
and results.

5.2 Learning phase
As shown in Figure 3 (step 2), the Block-group learns programming
using the block-based PencilCode environment while the hybrid-
group learns programming using the hybrid-based PencilCode en-
vironment. We scheduled to teach materials in basic foundations
of programming, including variables, conditions, and loops. �en
we built easy-to-program games 7. We teach both classes using
the same material, so we can ensure the fairness between both
environments. We use the projection of materials and we allow
students to apply programming topics in a by-Example fashion.
�is allows be�er visualization of concepts as we demonstrate the
execution of every program that we teach during the sessions.

5.3 Testing phase
As shown in Figure 3 (step 3), A�er teaching every group how to
write programs in their corresponding environment, in this phase,
both teams transition to the text-based environment, where we
have prepared a common test for both groups along with a survey
for all participants. Our experiments are driven by the previously
stated research questions.

To answer RQ1. (Learning Improvement), we performed
three types of evaluations: (1) Code Modi�cation, we test the stu-
dent’s ability in correcting a faulty text-based program. We give
7All materials are in a�achment supplementary materials
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students a buggy code and its related correct input/output, then we 
ask them to locate the root cause and �x it. For example, the code 
below checks if a particular number is positive or negative.

Test sample 1: Is ’x’ value positive or negative

x = 7

if x >0

write 'x is a positive number.'

else

write 'x is a negative number.'

We ask the students to update the code and handle the case of the
unsigned number ”0”. Students are required to take into account
the case ”x=0”. (2) Syntax Error Free, we test the student’s ability
in �nding syntax error(s). For example, In the question below, we
added a syntax error in the condition statement by making the
indent of the condition and condition block of code line starting
at same point. �is represents an error in Co�eeScript, because it
is a space sensitive language, therefore, the body of the condition
statement has to be indented.

Test sample 2: What is the output

sum=0

for x in [0..10]

if x>8

sum=sum+x // <----------- Syntax Error

write 'sum= '+ sum

Figure 3 shows multiple-choice answers for the possible output
in test sample 2. students need to select one answer that they
think it is correct. In this case, the correct answer is the option (C).
Furthermore, we consider any syntax error that has been introduced
by the student in any of their code updates as a valid value to
calculate syntax error free matrix.

Table 3: Possible outputs for test sample 2.

A B C D
sum= 9 sum= 19 not run sum= 9

sum= 19

(3) Ease Of Learning, we test the student’s ability in deciphering
and understanding the code logic. For example, as wri�en in the
listing below, we ask students: for the following code what do you
think the tortoise will draw?

Test sample 3: Tortoise movement

speed 2

pen red

for [1..10]

fd 100

rt 45

Figure 4 shows multiple-choice answers for the possible shapes
that tortoise may draw. Students need to select one answer that
they think it is correct. In this case, the correct answer is the option
(D), and not (B), since tortoise actually makes ten moves.

Figure 4: Possible shapes that a tortoise may draw.

We designed an overall of 25 di�erent questions in code modi-
�cation, syntax error free, and ease of learning. To guarantee the
pedagogical aspect of these questions, we have mainly selected
them from Weintrop’s study [2]. All the questions, used in this
study, are available online8. �e grading scale varies between 0
(bad) and 100 (good).

To answer RQ2. (Command Memorization), we survey stu-
dents using the following questions:

(1) Have you had a di�culty in understanding loops, conditions,
and functions in the text-based environment?

(2) Are you able to memorize the commands of loops, conditions,
and functions, when you write in the text-based environ-
ment?

Both questions are answered using a Likert scale [19, 20], varying
between 0 (bad) and 5 (good).

To answer RQ3. (Ease Of Transition), we survey students
using the following question:

(1) When you started coding in the text-based environment, have
you felt that you are in a new development environment,
or the commands for loops, conditions, and functions were
looking familiar to you?

Both questions are answered using a choice of either ”Yes, it
looks new�(0 star) or ”No, it looks familiar”(5 stars). We opted for a
binary answer to capture student’s decisiveness of whether they
are comfortable or not, with the text-based environment.

In the next section, we discuss the qualitative analysis for the
tests and surveys results.

6 RESULTS
6.1 Results for RQ1. (Learning Improvement)
To answer our �rst research question, we report, in Figure 5, the
results of grading both groups in their ability to modify code, debug
it and comprehend it. Figure 5 contains each group average grade
for Code Modi�cation, Syntax Error Free, and Ease Of Learning.

For Code Modi�cation, the hybrid-group has an average of
64.30%, while the block-group has scored an average of 35.70%. �us,
students belonging to hybrid-group have experienced a higher abil-
ity in correctly modifying the code in the text-based environment,
in comparison with the students of the block-group. Furthermore,
8All questions are in a�ached supplementary material
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Figure 5: Performance of hybrid and block learning improvements (higher is better).

a Mann-Whitney U test, between the di�erence of grades between
the two groups has shown signi�cance (p-value ≤ 0.05). We note
that, although block-based environments have various advantages
in facilitating programming concepts, they do limit the learner’s
early exposure to the actual source code, like in high-level pro-
gramming languages [18], which hinders their ability to discover
syntactic errors. �is explains the di�culty experienced by the
block-group in capturing logical errors. On the other hand, the
hybrid environment facilitates the early interaction between begin-
ners and the source code, in a way that allows updating their code
from both, block and source code views.

For Syntax Error Free, we observe that students who learned
through a block-based environment have a higher probability of
producing syntax errors in the text-based environment, when com-
pared with the hybrid-group students. As depicted in Figure 5,the
hybrid-group has an average of 79.5% in writing instructions that
are free of syntactic errors. However, the block-group’s has average
of 12.5% in writing code that is free of syntactic errors. Also, the
di�erence in the number of errors of each student, clustered by
their group, is signi�cant (p-value ≤ 0.05). �ese results highlight
the importance of early raising the awareness of beginners to the
syntactic nature of programming in general. Being inline with this
concept, our proposed hybrid-based environment views the basic
syntax properties as part of the translation from blocks to source
code. For instance, students discover spacing in Co�eeScript, while
they write their hybrid-based program.

As for Ease Of Learning, we note from Figure 5, that hybrid-
group students score an average grade of 58.10%, while block-group
students score an average grade of 41.90%. Also, we report the sta-
tistical signi�cance of the di�erence between the two sets of grades

(p-value ≤ 0.05). �us, we report that our hybrid-based environ-
ment improves the student’s learning by 16.2% in comparison with
the block-based environment. More concretely, hybrid-group stu-
dents can drop blocks of code without the need to memorize the
commands. At same time, they repeatedly observe how the block is
converted to its corresponding source code when they drop blocks
from the toolbox to text-based view. �erefore, students in the
block-group could only see blocks in their views and development
area.

To summarize our �ndings, we observe that the hybrid-
based environment has improved the students learning
curve when migrating to the text based environment. Stu-
dents using the hybrid-based environment are also able
to e�ectively debug the code from seeded errors, outper-
forming students using the block-based environment by
28.6% on average. Furthermore, the percentage of students
with source code with syntax errors is 67% less in the
hybrid-group, in comparison with the block-based group.
Finally, the hybrid-group outperforms the block-group in
identifying the programming concepts by 16.2%

6.2 Results for RQ2. (Command Memorization)
When students, from both groups, are writing code in the text-based
environment, hybrid-group has on average 54.5% (2.725/5) were
students able to memorize programming commands while the block-
group has an average of 45.5% (2.275/5) were students successful in
memorizing programming commands. As a result, the hybrid-group
is 9% (0.45/5) be�er than block-group in command memorization.
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Figure 6: Survey results of hybrid and block learning improvements (higher is better).

Students in the hybrid-group were exposed to modifying commands,
as part of their environment. Besides, they see every programming
command as a block in the toolbox. As a result, seeing commands
as blocks and being able to drop and change them, leads to a be�er
grasp of the commands.

As a summary, learning in hybrid-based environment, in-
creases memorization of programming commands by av-
erage of 9% more than the block-based environment.

6.3 Results for RQ3. (Ease Of Transition)
We found that the hybrid-group has a smoother transition to the
text-based environment than the block-group, as shown in Figure 6.
When students of both groups are writing code in the text-based
environment, the hybrid group has an average of 80% (4/5) were
students expressed noticeable ease of transition to text-based, by
answering with ”No, it looks familiar”. While the block-group has
an average of 50% (2.5/5) were students expressed ease of transition
to text-based, as they have chosen the second answer. According to
the survey results, hybrid-group is 30% (1.5/5) con�dent than block-
group about programming in a text-based environment. Practically,
students of the hybrid-group are in touch with the code while they
learn how to program, in contrast with block-group students, who
found the text-based environment to be new to them.

As a summary, learning in hybrid-based environment, in-
creases con�dence by average of 30% than the block-based
environment, in the ease of the transition to in program-
ming in text-based environment.

7 DISCUSSION
Although the raise of block/hybrid-based environments is primarily
to support novice developers, there is an urgent need for researchers
and practitioners to think about the evolution of such environment
to match the challenges raised by the evolution of so�ware [21, 22].
With the tremendous growth of so�ware repositories, the cost of
maintaining them is growing exponentially, due to various factors,
including the fact that developers of typically trained to design
and implement so�ware from scratch, which what the educational
environments typically o�er. If we want to cope with maintenance
costs and train developers who are ready to address the type of
programming tasks, required to evolve existing so�ware, research
should also focus on designing methodologies to simplify existing
so�ware complex architectures.

�e early exposure of novice developers to the typical mainte-
nance activities would potentially help practitioners reduce cost-
e�ectiveness and anticipate the levels of uncertainty developers
face when maintaining large-scale so�ware systems. Furthermore,
there has been a recent growth in research pro�ling so�ware main-
tainers through mining their activities in open source so�ware
projects. Understanding the nature of these code changes, e.g., bug
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�xing and code refactoring [23–25], allows their incorporation, as
potential features, in block/hybrid-based environments.

8 THREATS TO VALIDITY
Our study inherits threats that are related to studies of students
and programming languages. First of all, the code examples were
speci�c and may not necessarily be representative of all program-
ming concepts. To mitigate this issue, we test students on the same
concepts they have been exposed to, during the learning phase,
besides relying on questions, used in previous studies [2], and both
quantitative and qualitative analyses to enhance the accuracy of
our observations.

Another threat is related to the random division of students into
groups, in which we cannot guarantee a uniform distribution of
learning skills. However, it is eventually challenging to estimate
the programming learning skills of any student with no program-
ming background. To reduce the bias in learning skills, we veri�ed
that the students have no learning background by checking their
degrees and the courses they have taken in their academic career.
Also, to reduce the sample bias, we have chosen students from dif-
ferent levels (freshman, sophomore, etc.), and belonging to various
degrees, as long as they have no exposure to programming.

Another factor that may in�uence the observed results, is the lack
of interest of some students during the testing phase, which may
increase their proneness to errors. To reduce this risk, we only hired
students who have expressed interest to learning programming and
we also paid them $60 upon the completion of their task along with
extra $40 for those who achieved no errors to motivate them. Also,
we performed this study on a limited timeline. Results would be
more accurate if the experiment is performed throughout a longer
period to allow students with a slower learning curve to be�er
capture the concepts.

9 CONCLUSION
In this paper, we present an educative approach in bridging the gap
between block-based and test-based programming environments,
through merging them in one hybrid environment. �e qualitative
analysis of our proposed approach as shown promising results in
terms of improving students learning curve by an average of 30.16%
(learning programming foundations improved by 16.2%, learning
code modi�cation improved by 28.6%, command memorization by
9%, error free code by 67%, and ease of transition by 30%), when
compared to the block-based environment. Furthermore, our tool
is open source for learning, replication, and extension purposes.

While the adoption of hybrid-based programming environments
is intended to gradually introduce basic programming concepts
into novice programmers, there is no clear cut to what extent the
modeling of a more advanced concepts is feasible via such envi-
ronments. As most existing studies focus on comparing between
block-based and text-based programming environments [26–28],
there is a need to incorporate block-based environments into such
comparisons [16], and understand their impact on the student’s
cognitive load and learning outcomes.

In the future, we want to make learning easier with the hybrid-
based PencilCode. By adding additional comments and hints when

blocks are being dragged and dropped. For example, Figure 7 show-
cases a scenario, in which a ”loop� block is being dropped, a hint is
shown a remainder to also drag and drop the ”loop” content block.
Adding hints and contextual guidelines enhances the programming
environment and make it more interactive, especially when the
user lacks the programming re�ex, and needs to be guided into the
identi�cation of the next possible, compiler error-free blocks.

Figure 7: Dropping blocks in hybrid-based PencilCode, as a
potential feature.
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