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⇤University of Maryland, ECE Department and UMIACS, College Park, MD 20742, USA
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Abstract—Hyperspectral imaging offers valuable spectral di-
versity for scene analysis and information extraction. However,
exploiting this spectral diversity involves significant challenges
in performing efficient video processing, especially in resource-
constrained environments. These challenges arise due to the high
memory and computational requirements for hyperspectral video
processing applications. This paper presents system design meth-
ods using band subset selection to address this problem. These
methods are applied to develop an adaptive video processing
system targeted to an Android platform. The system dynamically
adapts the selected bands to process based on constraints on
real-time performance and video analysis accuracy. Experimen-
tal results provide quantitative insight into trade-offs between
accuracy and real-time performance under stringent resource
constraints. The results also validate the effectiveness of the
proposed system in performing adaptive, resource-constrained
hyperspectral video processing.

I. INTRODUCTION

Hyperspectral video processing systems (HVPSs) offer ad-
vanced capabilities for scene analytics and knowledge extrac-
tion due to their high levels of spectral diversity and spectral
resolution compared to conventional video technologies. With
the advancement of video acquisition techniques, HVPSs
are playing increasingly important roles in video processing
applications. Hyperspectral video streams provide high spec-
tral diversity due to their high density of sampling rate in
the wavelength dimension, and their capacity to incorporate
diverse regions of the spectrum. Major application areas for
hyperspectral image and video processing include remote
sensing [9], vehicle tracking [11], and medical diagnostics [4].
However, the high density of bands involved in HVPSs brings
challenges in exploiting the potential of hyperspectral imaging
technology. These challenges are especially severe in the
context of resource-constrained, embedded deployment, where
limited memory and computational resources are available due
to constraints on size, weight, power or cost.

In this paper, we develop new system design methods to
address these challenges, thereby contributing novel capabil-
ities for deploying HVPS technology in a wider variety of
applications. The design methods include strategic selection
of band subsets to reduce processing requirements without
major loss in video analysis accuracy. Applying these de-
sign methods, we design and implement a prototype HVPS
on an Android platform, and conduct experiments using a
relevant hyperspectral video dataset. The experimental results

demonstrate the capability of the proposed system to provide
optimized hyperspectral video processing operation subject to
stringent resource constraints, and to efficiently trade off real-
time performance and video analysis accuracy.

II. RELATED WORK

In recent years, advances in hyperspectral sensor technol-
ogy have helped to increase the availability of hyperspectral
imaging systems, which results in an increasing variety of
applications for hyperspectral image and video processing
(e.g., see [3]). Generally, hyperspectral imaging systems can
involve hundreds, thousands or even more bands for the
same scene. In addition to being more numerous, the bands
employed in hyperspectral imaging systems have narrower
bandwidths, thereby offering greater spectral resolution. Along
with this increased resolution, however, comes the increased
potential for redundancy across different bands. Thus, a natural
mechanism for reducing processing requirements (e.g., to
improve real-time performance or energy efficiency) in an
HVPS is to select a proper subset of the available bands
that provides sufficient accuracy and minimizes the storage
and processing of spectral information that is redundant or is
otherwise not of high relevance for the required video analysis
tasks.

Various methods have been reported in the literature that
are relevant to extraction of useful information from the
diverse channels provided by hyperspectral imaging sensors.
For example, Liu et al. provide a comparative study of
different multiresolution algorithms for image fusion [8]. Wei
et al. present an image fusion method for multispectral and
hyperspectral images. Their method leads to less spectral
error and spectral distortion compared to related fusion tech-
niques [12]. Lin et al. compare four state-of-the-art methods
for fusion of hyperspectral images [7]. Chen et al. demonstrate
a pan-sharpening approach for fusing low-spatial-resolution
hyperspectral images and high-spatial-resolution multispectral
images of the same scene [2].

In our previous work, we demonstrated a multispectral
video processing system for dynamically reconfigurable band-
subset selection [6]. The system optimizes trade-offs between
video analysis accuracy and processing speed. This paper
goes beyond the previous work in its focus on the more
challenging requirements of hyperspectral video processing,



and its targeting of highly resource-constrained devices that
enable less costly, more widespread deployment.

Uzkent et al. have developed a framework for controlling
hyperspectral data collection [11]. They also introduced a pub-
licly available hyperspectral video dataset for vehicle track-
ing. Sobral et al. propose a stochastic tensor decomposition
algorithm for robust background subtraction. Sobral’s results
show that red-green-blue (RGB) features are not sufficient to
handle color saturation, illumination variations and problems
due to shadows, while incorporating six visible spectral bands
together with one near-infra-red band helps to address these
limitations [10].

The distinguishing aspects of this paper include its emphasis
on jointly optimizing accuracy and real-time performance
in HVPSs under stringent resource constraints, with specific
use of an Android smartphone platform to demonstrate the
proposed methods. The paper also introduces a novel adaptive
video processing system that exploits the flexibility of band-
subset selection to efficiently handle time-varying require-
ments on the frame rate and video analysis accuracy.

A preliminary version of this work was presented in an
extended abstract [5]. This paper goes beyond [5] in its inte-
gration of capabilities for adaptive band-subset selection, and
its application of efficient multicore processing for enhanced
real-time performance.

III. METHODS

In this section, we introduce an efficient real-time HVPS
that is targeted to an Android platform, and we present the
underlying system design methods, which are centered on
band-subset selection. The system implements background
subtraction as a concrete video analysis application. The
background subtraction (back-end) component of the system
can readily be replaced or augmented with other video analysis
techniques. This capability allows system designers to utilize
in different ways the framework’s capabilities for adaptive,
resource-constrained hyperspectral video processing.

An important feature of the proposed HVPS is its efficiency
and configurability for processing streams of hyperspectral
image inputs. The proposed HVPS maintains a priority list of
spectral bands that is determined through an off-line training
process. The priority list is created based on each band’s
contribution to the overall accuracy when the bands are equally
weighted. At run-time, the HVPS accesses the priority list
to select Nb bands that have the highest priority, where Nb

is determined based on the current real-time constraint and
a constraint on video analysis accuracy. These constraints
are assumed to be system parameters that can be changed
dynamically. The real-time constraint specifies the minimum
number of frames per second (fps) at which the system is
expected to process its hyperspectral input stream.

Figure 1 illustrates the dataflow for a small-scale exam-
ple configuration of the sequential, fixed-configuration (non-
adaptive) first-version HVPS from [5], which we used as a
starting point in this work. The dataflow graph shown in
Figure 1 corresponds to a configuration in which five bands are

Fig. 1: Dataflow graph for an example configuration of the
first-version HVPS.

Fig. 2: Multithreaded version of Fig. 1 for mapping onto the
targeted Android platform.

selected for the enclosing background subtraction application,
while all other available bands are ignored.

Each circle in Figure 1 represents an actor (signal processing
module) in the dataflow graph. Brief descriptions of the actors
are as follows: IR — Image Read, PLF — Pixel-Level Fusion,
BS — Background Subtraction, FF — Foreground Filter,
FB — Foreground Binarization, FA — Foreground Accuracy
computation (for measurement and diagnostic purposes), and
IW — Image Write. In each iteration of the dataflow graph,
the IR actor reads from a set of files the selected bands of
the next input image, and injects the image into the dataflow
graph for processing.

Figure 2 illustrates the dataflow for a multithreaded version
of Figure 1, which provides improved processing efficiency on
the targeted multicore Android platform. This version allows
more bands to be processed under a given real-time con-
straint, thereby improving background subtraction accuracy.
The dataflow graph is composed of two parts, which we
refer to as the pixel-level fusion (PLF) section (Threads 1–
3) and background subtraction (BS) section (Thread 4). These
sections are denoted, respectively, as Sp and Sb.

The PLF section performs pixel-level fusion to integrate
pixel values from different spectral bands into a single image.
The BS section then uses a Gaussian Mixture Model to per-
form background subtraction on the fused image. We pipeline
the PLF section, using a simple pipeline of three stages,
where each thread corresponds to a single stage. The three
stages apply different steps of the PLF section concurrently
across three successive frames of the input video stream,
thereby helping to improve the achievable frame rate. The BS
stage operates as an additional (fourth) pipeline stage, which
processes the most recent image frame that has passed through



Fig. 3: Multithreaded version of Fig. 1 for P = 6, and Qp =
Qb = 3.

all stages of the PLF section.
The pipelining process used in this design method is gen-

eralized naturally to handle arbitrary numbers of threads (e.g.,
for systems in which smaller or larger numbers of processing
cores are available), arbitrary numbers of spectral bands, and
the possibility of adding multithreading to the BS section. In
the generalized form, let P , Qp and Qb respectively denote
the total number of available threads, the number of threads
allocated to the PLF section Sp, and the number of threads
allocated to the BS section Sb. We assume that the available
threads are utilized fully in the system design so that P =
Qp+Qb. The decomposition of the available P threads into Qp

and Qb is performed through experimentation — e.g., a binary
search on Qp can be used to arrive at a decomposition through
a low-complexity experimentation process. More systematic
approaches to performing this decomposition represent an
interesting direction for future work.

Now if Qp evenly divides Nb, then the number of bands
allocated to each thread in Sp is simply Nb/Qp. Otherwise,
each Sp thread is assigned either flr(Nb/Qp) or clg(Nb/Qp)
bands with the assignment performed in such a way that the
sum of the band-to-thread assignments across Sp equals Nb.
Here, flr and clg represent the floor and ceiling functions, re-
spectively. This simple approach to distributing the processing
of bands helps to keep the load of the pipeline stages balanced,
which is important for throughput optimization. Here, we have
assumed that P < Nb. The approach can be adapted easily to
accommodate the case in which P � Nb; we omit the details
for brevity.

Figure 3 illustrates a multithreaded design of the proposed
HVPS for P = 6, and Qp = Qb = 3. The multithreaded
configuration of the BS section incorporates two additional ac-
tors, denoted IP (Image Partitioning) and IS (image stitching).
These actors, respectively, partition an image into subframes
for processing across multiple threads, and integrate the dif-
ferent results of subframe processing into a single result.

Another important aspect of the proposed HVPS is the

capability to dynamically adapt band-subset selection based on
changes in real-time processing requirements or requirements
in the level of video analysis accuracy (e.g., based on switch-
ing between high- and low-criticality modes of operation).
Algorithm 1 gives a pseudocode sketch of the algorithm
used for top-level configuration control and processing in
the proposed HVPS. The while-loop (“infinite loop”) in the
algorithm simply indicates continuous operation that keeps
processing input until the system is terminated through some
sort of external/asynchronous control, such as a power-down
operation.

Algorithm 1 HVPS-Toplevel
parameter Cr: frame rate (throughput) constraint.
parameter fM : accuracy constraint.
parameter T : configuration monitoring interval.
parameter P : number of available threads.

1: procedure HVPS-TOPLEVEL(Cr, fM , T, P )
2: while true do
3: if changed(fM ) then
4: Nb1 := lookup1 (T1, fM )

5: if changed(Cr) then
6: Nb2 := lookup2 (T2, Cr)

7: Nb := max (Nb1, Nb2)
8: process frames(Nb, T, P )

The changed(p) function returns a Boolean value indicating
whether or not the dynamic parameter p has changed (by some
process external to the procedure) since system initialization
(the first time the changed function is called on a given
parameter) or since the previous call to the changed function
(for all subsequent calls).

The video analysis accuracy metric used in the proposed
HVPS can be defined based on the associated back-end video
analysis functionality that is employed. For our background-
subtraction-based HVPS prototype, we use the Fmeasure met-
ric, which is a commonly-used metric for assessing results of
background subtraction (e.g., see [1]). We use fm throughout
the remainder of this paper as a shorthand for Fmeasure .

The algorithm utilizes two lookup tables, denoted T1 and
T2. The table T1 tabulates for different values of the accuracy
metric (fm) an estimate of the minimum numbers of spectral
bands (band-subset size) that are required to achieve the
specified accuracy levels. The table T2, on the other hand,
tabulates for different throughput (fps) levels, estimates on
the maximum values of Nb that can be utilized without
having performance fall below the throughput levels. The
estimates stored in T1 and T2 are determined off-line through
experimentation and stored in a sorted form for fast retrieval of
the information at run-time. The function lookup1 (x) shown in
Algorithm 1 returns the smallest value of Nb from lookup table
T1 that can achieve the specified accuracy level x. Similarly,
the function lookup2 (x) returns the largest value of Nb from
lookup table T2 that can achieve the throughput level specified



by x.
The two table-lookups described above result in two can-

didate values for Nb, which are denoted, respectively by Nb1

and Nb2. Algorithm HVPS-Toplevel then sets Nb by taking
the maximum of these two candidate values, which effectively
gives priority to the accuracy criterion. By changing this
maximum operation to a different function, the designer can
change the way the two criteria are considered in the HVPS
configuration process (e.g., by prioritizing the throughput met-
ric or applying a weighted combination to achieve a composite
priority function).

After determining Nb, Algorithm HVPS-Toplevel calls
process frames , which encapsulates the core processing func-
tionality (dataflow graph) of the HVPS. The function is called
by passing the total number P of threads, and the band-
subset size Nb that should used for the processing. The
function is also called with a parameter T , which specifies
the number of frames for which processing should continue
before control is returned to the top-level control/configuration
process represented by Algorithm HVPS-Toplevel. The pa-
rameter T effectively specifies the periodicity with which the
system configuration is re-examined for a possible change in
system constraints (Cr or fM ) and subsequent adaptation of
processing parameters in response to such a change.

IV. EXPERIMENTS

We use an Oppo N3 Android phone as the testing platform
for our proposed HVPS. Oppo N3 features a Qualcomm
MSM8974AA Snapdragon 801 Quad-core ARM CPU with
a maximum frequency of 2.3 GHz, 2GB of RAM, and 32GB
internal storage capacity. The Android OS version is 4.4.4
and Linux kernel version is 3.4.0. The hyperspectral dataset
we use is generated by the DIRSIG model [11]. The dataset
has 110 frames of video, where each frame has 61 spectral
bands. More details on the dataset can be found in [5], [11].

For the first experiment, we collect average accuracy and
frame rate results delivered by the proposed HVPS. The
results are presented in terms of fm across different values
of Nb, and different multithreading configurations for each
value of Nb. The data is collected for Nb 2 Zb, where
Zb = {10, 20, . . . , 60}, and summarized in Figure 4. Each
bar in Figure 4 represents the frame rate for a specific
multithreaded or sequential configuration (Qp, Qb), denoted
in the form “Qp + Qb”, and for a specific value of Nb 2 Zb

(the bars for each Nb 2 Zb are grouped together in the
figure). Each of the six dark-shaded diamonds shows the
accuracy for a given value of Nb based on the vertical-axis
scale provided on the right side of the figure. The fps values
displayed in Figure 4 are averaged over 50 executions for
each (Nb, Qb, Qp) combination, and the accuracy values are
averaged over all five sets of 50 executions for each Nb setting.

The figure shows that the accuracy increases monotonically
with increasing Nb 2 Zb, and quantifies this trend of increas-
ing accuracy. For a given (Qp, Qb) configuration, we see that
throughput also decreases monotonically with increasing Nb.
However, for a given Nb, there is no general monotonic trend
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Fig. 4: Frame rate and accuracy for different Nb and different
multithreading configurations.

of throughput in terms of the number P = Qp+Qb of allocated
threads. We expect that this is due to nonlinear effects related
to thread allocation, such as overhead due to contention and
communication across threads.

To provide more detailed insight on video processing
throughput in our Android-based HVPS, a tabulation of the
experimental results for the frame rate (fps) is shown in
Table I. As mentioned previously, each configuration is ex-
ecuted 50 times in our experiments; each row of the table
shows key statistics across the 50 executions associated with
a given configuration. In particular, the table shows the max-
imum, minimum, mean, median, and standard deviation � of
measured fps for each of the configurations represented in
Figure 4. From the results in Table I, we see that beyond
the throughput trends discussed above in relation to Figure 4,
the data in Table I demonstrates that variations in the frame
rate are typically small for a given configuration (e.g., with
relatively low deviation between the minimum and maximum
measured values), leading to production of hyperspectral video
analysis results at a fairly consistent rate.

In general, for a given value of Nb, all multithreaded ver-
sions achieved better frame rates compared to the correspond-
ing sequential versions (P = 1). However, multithreading in
the BS section resulted a performance degradation. This is
observed when comparing the results for Qp = 3, Qb = 1 to
the corresponding results for Qp = 3, Qb = 2. We anticipate
that this is because the calculation for the Gaussian Mixture
Model used in the BS actor, which is the core computation of
the BS section, is not a bottleneck of the HVPS.

While the achieved frame rate levels, as reported in Fig-
ure 4 and Table I, are relatively low, they are sufficient
for applications of resource-constrained sensing where the
scene changes slowly or response time is not critical — for
example, scenarios at the network edge in which the resource
constrained system is used as a first-level of analysis, and is
to be followed by more communication- or resource-intensive



TABLE I: Statistics on the measured frame rates for different
operational configurations. The unit for each entry in the table
is frames per second (fps).

Configuration max. min. mean median �
Nb = 10, 3+1 threads 6.30 5.92 6.12 6.12 9.42⇥ 10�2

Nb = 10, 4+1 threads 5.95 5.52 6.80 5.80 8.71⇥ 10�2

Nb = 10, 5+1 threads 5.02 4.80 4.90 4.89 5.38⇥ 10�2

Nb = 10, 3+2 threads 4.65 4.04 4.19 4.13 1.84⇥ 10�1

Nb = 10, Sequential 2.44 2.34 2.42 2.42 3.14⇥ 10�2

Nb = 20, 3+1 threads 3.59 3.29 3.48 3.48 3.18⇥ 10�2

Nb = 20, 4+1 threads 3.39 3.09 3.29 3.31 7.55⇥ 10�2

Nb = 20, 5+1 threads 3.36 3.06 3.21 3.21 6.94⇥ 10�2

Nb = 20, 3+2 threads 2.04 1.98 2.00 1.99 1.77⇥ 10�2

Nb = 20, Sequential 1.41 1.40 1.40 1.41 0.91⇥ 10�2

Nb = 30, 3+1 threads 2.43 2.39 2.41 2.41 1.23⇥ 10�2

Nb = 30, 4+1 threads 2.46 2.35 2.42 2.43 3.37⇥ 10�2

Nb = 30, 5+1 threads 2.41 2.25 2.32 2.32 5.32⇥ 10�2

Nb = 30, 3+2 threads 1.24 1.21 1.22 1.23 7.10⇥ 10�3

Nb = 30, Sequential 1.00 0.97 0.99 0.99 7.90⇥ 10�3

Nb = 40, 3+1 threads 1.73 1.69 1.71 1.72 1.61⇥ 10�2

Nb = 40, 4+1 threads 1.80 1.72 1.77 1.78 2.34⇥ 10�2

Nb = 40, 5+1 threads 1.82 1.73 1.78 1.78 2.47⇥ 10�2

Nb = 40, 3+2 threads 0.96 0.93 0.94 0.94 6.60⇥ 10�3

Nb = 40, Sequential 0.69 0.66 0.67 0.67 9.60⇥ 10�3

Nb = 50, 3+1 threads 1.30 1.23 1.28 1.29 2.02⇥ 10�2

Nb = 50, 4+1 threads 1.35 1.33 1.34 1.34 6.60⇥ 10�3

Nb = 50, 5+1 threads 1.41 1.37 1.39 1.39 1.46⇥ 10�2

Nb = 50, 3+2 threads 0.74 0.72 0.73 0.73 4.59⇥ 10�3

Nb = 50, Sequential 0.55 0.53 0.53 0.53 6.19⇥ 10�3

Nb = 60, 3+1 threads 1.18 1.16 1.17 1.17 7.93⇥ 10�3

Nb = 60, 4+1 threads 1.17 1.13 1.15 1.16 1.06⇥ 10�2

Nb = 60, 5+1 threads 1.19 1.17 1.18 1.18 7.90⇥ 10�3

Nb = 60, 3+2 threads 0.63 0.62 0.62 0.62 4.28⇥ 10�3

Nb = 60, Sequential 0.45 0.44 0.44 0.44 4.06⇥ 10�3

analysis at a base station if certain types of events are detected.

V. CONCLUSION

In this paper, we have developed new system design meth-
ods for deploying hyperspectral video processing systems
(HVPSs) on highly resource-constrained platforms. Using
these design methods, we have prototyped an HVPS for
background subtraction on an Android platform, and con-
ducted experiments using the prototype. The experimental
results validate capabilities in the proposed HVPS frame-
work to enable efficient design space exploration for hyper-
spectral video processing on resource-constrained platforms.
The supported exploration demonstrated in these experiments
involves complex factors, including band-subset selection,
and multithreading configurations, and their impact on trade-
offs between video analysis accuracy and achievable frame
rate. Useful directions for future work include incorporating
more sophisticated video analysis techniques in the proposed
framework, and investigating design optimizations to further
improve trade-offs between accuracy and throughput.
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