
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Presentations and other scholarship Faculty & Staff Scholarship

9-23-2018

Which Method-Stereotype Changes are Indicators of Code Which Method-Stereotype Changes are Indicators of Code

Smells? Smells?

Michael J. Decker
Bowling Green State University

Christian D. Newman
Rochester Institute of Technology

Natalia Dragan
Kent State University

Michael L. Collard
The University of Akron

Johnathan I. Maletic
Kent State University

See next page for additional authors

Follow this and additional works at: https://repository.rit.edu/other

Recommended Citation Recommended Citation
M. J. Decker, C. D. Newman, N. Dragan, M. L. Collard, J. I. Maletic and N. A. Kraft, "[Research Paper] Which
Method-Stereotype Changes are Indicators of Code Smells?," 2018 IEEE 18th International Working
Conference on Source Code Analysis and Manipulation (SCAM), Madrid, 2018, pp. 82-91, doi: 10.1109/
SCAM.2018.00017

This Conference Paper is brought to you for free and open access by the RIT Libraries. For more information,
please contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/other
https://repository.rit.edu/facstaff
https://repository.rit.edu/other?utm_source=repository.rit.edu%2Fother%2F959&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Authors Authors
Michael J. Decker, Christian D. Newman, Natalia Dragan, Michael L. Collard, Johnathan I. Maletic, and
Nicholas A. Kraft

This conference paper is available at RIT Digital Institutional Repository: https://repository.rit.edu/other/959

https://repository.rit.edu/other/959

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Which Method-Stereotype Changes
are Indicators of Code Smells?

Michael J. Decker
Department of Computer Science
Bowling Green State University

Bowling Green, OH, USA
mdecke@bgsu.edu

Christian D. Newman
Department of Software Engineering

Rochester Institute of Technology
Rochester, NY, USA
cnewman@se.rit.edu

Natalia Dragan
Departmnet of Management and Information

Systems
Kent State University, Kent, OH, USA

ndragan@kent.edu

Michael L. Collard
Department of Computer Science

The University of Akron
Akron, OH, USA

collard@uakron.edu

Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent, OH, USA

jmaletic@kent.edu

Nicholas A. Kraft
ABB Corborate Research

Raleigh, NC, USA
nicholas.a.kraft@us.abb.com

Abstract— A study of how method roles evolve during the
lifetime of a software system is presented. Evolution is examined
by analyzing when the stereotype of a method changes.
Stereotypes provide a high-level categorization of a method’s
behavior and role, and also provide insight into how a method
interacts with its environment and carries out tasks. The study
covers 50 open-source systems and 6 closed-source systems.
Results show that method behavior with respect to stereotype is
highly stable and constant over time. Overall, out of all the history
examined, only about 10% of changes to methods result in a
change in their stereotype. Examples of methods that change
stereotype are further examined. A select number of these types
of changes are indicators of code smells.

Keywords—method stereotypes, software change, software
evolution, code smells, empirical

I. INTRODUCTION
A typical, non-trivial, software system is in a constant state

of evolution over its lifetime [1]. At points in this lifetime, its
design may degrade or be broken by the evolutionary change.
This eventually requires developers to spend time redesigning
parts (or the entirety) of the system. Code smells [2][3] are one
indicator of poor design or design degradation. Thus, there is
research examining ways to automatically identify certain code
smells with the goal of warning users when a system’s design is
potentially degrading [4][5][6].

The work presented here takes a similar approach. That is,
we are trying to understand what types of changes to a system
are potentially hazardous to the design. Here, we are specifically
interested in how individual methods change over time. While
a change to an individual method will not typically degrade a
system’s design, changes to large sets of methods can. Hence,
we empirically investigate and propose a relatively simple
abstraction and lightweight approach that indicates when a
change is a potential problem.

The granularity of change we are examining is at the level of
a method. The abstraction we are using is the idea of method
stereotypes [7][8]. Method stereotypes represent a rich
abstraction of the role and behavior of a method within its class

and the system as a whole. A number of researchers have
leveraged stereotypes for various applications
[9][10][11][12][13][14]. Two simple examples of stereotypes
are accessor (e.g. getter) and mutator (e.g. setter). Accessor
methods allow for information to be read from an object while
preventing modification of the object. Mutator methods allow
one to modify the state of an object. In the next section, we
present a complete set of stereotypes and definitions.

In the work presented here, we are interested in how the
stereotype of a particular method changes during the lifetime of
a system. In particular, we want to determine if a method’s
stereotype changes often or rarely. What types of changes in
stereotype are most common? Are some types of these changes
hazardous? Or innocuous? Our goal is to determine what is the
norm, with regards to changes in stereotype, so we may let
developers and project managers know when something is
abnormal, and thus potentially a problem.

To this end, we have undertaken an empirical study of the
complete version history of 50 open-source C++ systems. This
provides us with almost 1.4 million changes to methods. We
also separately examined 6 closed-source systems with nearly
54K changes to methods. Each of the methods that change are
examined over time and what happened to their (automatically
computed) stereotype is recorded. Our first goal is to examine
the stability of method stereotypes during evolution. That is, do
method stereotypes change as methods change?

Our second goal is to determine what types of changes from
one stereotype to another stereotype are potentially hazardous.
Intuitively, a method should not change drastically from its
original intent. If there is a drastic change in its role and/or
behavior this may be an indication of a problem. However,
clearly systems do evolve and the role of methods must evolve
in some manner. There may also be changes that fix poor
designs and these types of changes may be reflected in the
stereotype of a method. We seek to answer the following
research questions:

• RQ1: Is a method’s stereotype stable as it evolves?
• RQ2: What types of method-stereotype changes occur?
• RQ3: Which method-stereotype changes are benign or

suspicious?

To answer these questions, we perform three separate types
of analysis. First, we analyze stereotype changes in terms of the
change in behavior they represent and the consequences they
have on the source code. Then, we perform an empirical
investigation on 50 open-source software systems. Finally, we
finish with a manual investigation of method-stereotype
changes. We also examine 6 closed-source systems to see if the
results are similar to the open-source code. The contributions of
this work are as follows:

• An empirical study that demonstrates that the stereotype
of a method is very stable as it evolves within a system.

• A set of defined stereotype transitions and their
potential impact on a system’s design.

• A manual evaluation of potentially problematic
stereotype transitions.

The paper is organized as follows. In Section II, we discuss
method stereotypes in detail. In Section III we discuss our
motivation for investigating stereotype stability. In Section IV,
we discuss the stability of method stereotypes and introduce a
taxonomy of method-stereotype changes. In Section V, we
discuss how we collect data for an empirical and manual
investigation. In Section VI, we present the results of an
empirical and manual investigation of the method stereotypes
and relate it to the taxonomy. Finally, in Sections VII and VIII,
the threats to validity and conclusion are provided.

II. METHOD STEREOTYPES
We now provide a brief introduction to method stereotypes.

The work of Dragan et al. [7] [15][16] introduces a taxonomy
for method stereotypes, which we show in TABLE I. A method
stereotype concisely represents behavioral aspects of a method.
Method stereotypes are separated into five broad categories:
Structural Accessors – query the state of an object on which it is
called; Structural Mutators – modify the state of an object on
which it is called; Creational – create/provide new objects;
Collaborational – work on objects pertaining to classes other
than itself; and Degenerate – no use of the object’s state and
often no statements.

The individual stereotypes indicate a refinement of the broad
behavior described by the category. As an example, stereotypes
in the general category Structural Accessor query an object’s
state, while the stereotype predicate more specifically returns a
computed Boolean value. This Boolean characterizes some
information about the state of the object on which the predicate
method is called.

Methods may be labeled with one or more stereotypes. That
is, methods may have a single stereotype from any category and
may also have additional stereotypes from other categories. For
example, a get collaborator is a get (accessor) method that uses
an object of another class (e.g., return type). In addition, while
considered an anti-pattern, a method can both query an object’s
state (Structural Accessor) and modify that state as well
(Structural Mutator).

A freely available tool (see https://github.com/srcML/
stereocode), StereoCode, analyzes and re-documents C++
source code (using srcML [17]) with the stereotype information
for each method. StereoCode reports a superset of the
stereotypes defined in TABLE I. For instance, a get method is
required to be const and thus cannot be both a Structural
Accessor and Structural Mutator. However, the tool will also

identify non_const_get methods which, unlike a get method, can
additionally mutate an object’s state (i.e., can have an additional
stereotype from the Structural Mutator category). An alternative
tool for stereotype identification [8] that works only for Java
programs is also available but appears to be less robust than
StereoCode, hence the use of StereoCode.

TABLE I. METHOD STEREOTYPE TAXONOMY. EACH STEREOTYPE
CATEGORY IS LISTED WITH ITS SET OF STEREOTYPES.

III. MOTIVATION AND RELATED WORK
Method stereotypes have been shown to be a useful and

powerful abstraction of a method’s role and behavior.
Stereotypes have been used for numerous applications,
including generating natural-language summaries [9][18],
feature location [11], detecting potential design flaws [12],
categorizing identifiers [13], and generating commit messages
[14]. However, there has been no work examining the overall
behavior of stereotypes and how they change as a system
evolves. The closest to this work is Dragan et al. [16], which
examines only added and deleted methods to categorize
commits. Additionally, Dragan [19] also examined the
distribution of method stereotypes in a few releases (~20) of two
systems and found the distribution of method stereotypes to be
fairly consistent for one system and unstable for the other.

The primary advantage to method stereotypes is that they
summarize the role/responsibility of a method. Understanding
how stereotypes evolve lays a stronger theoretical groundwork
for current and any future research relying on stereotypes. It also
provides a basis on top of which research can build
improvements and additions to the stereotype model. To be
specific, one way of measuring how well a model fits the data it
is measuring is to analyze how well the model indicates normal
behavior and how well it can indicate abnormal behavior. In this
case, stereotypes are the model and methods are the data.

Stereotype
Category

Stereotype Description

Structural
Accessor

get Returns a data member.

predicate Returns Boolean value that is
not a data member.

property Returns info about data
members.

void-accessor Returns information via a
parameter.

Structural
Mutator

set Sets a data member.
command Performs a complex change to

the object’s state. non-void-command

Creational

constructor,
copy-constructor,

destructor,
factory

Creates and/or destroys
objects.

Collaborational
collaborator

Works with objects
(parameter, local or return
value).

controller Changes only an external
object’s state (not this).

Degenerate

incidental
Does not read/change the
object’s state. No calls to
other class methods.

stateless
Does not read/change the
object’s state. One call to
other class methods.

empty Has no statements.

The goal is to determine if changes in stereotype indicate a
benign or suspicious change to the stereotype’s method.
Showing that stereotypes do not typically change in response to
method changes lends more credibility to stereotypes as a good
model of the innate qualities of methods if we assume a
method’s behavior does not typically change drastically as a
system evolves. Under this assumption, we then need to
additionally show that when a stereotype changes due to a
change to a method, this change indicates some sort of important
activity. That is, if lack of change in stereotype indicates normal
behavior then a stereotype change indicates abnormal behavior.
This abnormal behavior may indicate a poorly designed method
or inappropriate/incorrect changes to a method.

The result of this work contributes the following: 1) data on
how method stereotypes evolve, which will support future
research, 2) a basis to improve stereotypes as a model of
methods and as their role in the context of a system, and 3) a
preliminary study of how stereotypes may be used to alert
developers of code smells and suspicious changes in general.
Towards this, we first explore the question of whether
stereotypes generally change when changes are made to
methods (RQ1). In order to answer this, we mine the software
repositories (complete history) of over 50 open-source and
closed source systems (Section V and VI). We then use this in
combination with a taxonomy (presented in Section IV) to
investigate methods whose stereotypes do change, in order to
see the type of changes that occur (RQ2) and whether those
changes are benign or suspicious (RQ3). The overall goal is to
understand consequences of changes in method stereotypes.

As a goal of the presented work is to evaluate if changes in
method stereotype can be used to indicate the introduction of
code smells, previous work on code smells and their detection is
relevant. Mantyla et al. [20] present a taxonomy that categorizes
similar bad smells and presents findings from an empirical study
of using smells to detect software quality. Rani and Chhabra
[21] present an empirical study on the distribution of select code
smells over different versions of software projects. Tufano et al.
[2][22] investigate the change history of 200 open-source
projects to identify when code smells are introduced and if they
are ever removed. The major difference between these works
and ours is that they tend to target very specific forms of code
and design smells, while our work focuses on the behavior of the
methods (as represented by method stereotypes) themselves.

In [23], the use of change history was explored to detect code
smells. Similar to this work, they use structural changes over
time to identify a set of code smells defined within the paper.
The primary difference between their work and ours is that they
correlate specific types of changes and change patterns to the
smell categories provided in their work whereas we do not do
code-level change patterns, but method-behavior level.

Additional code smell detectors include: JDeodorant
[24][25][26][27], Moha et al. [5] Sahin et al. [28], and Mansoor
et al. [29]. These detectors have been used (such as in [21] and
[2][22]) or can be used to investigate the evolution of code
smells. The work provided here provides a complimentary and
novel view based on the behavior represented by method
stereotypes. Additional work on the mining software
repositories includes commit categorization [30][31][32], bug
prediction [12], and topic analysis [33].

IV. EVOLUTION OF A METHOD’S STEREOTYPE
As stereotypes describe a method’s behavior and role at a

high level, we are able to use changes in a method’s stereotype
to theorize about the consequences of such changes. We define
a stereotype transition as a change in a method’s stereotype
caused by changes made to the method. Stereotype transitions
can be indicators of design improvement or degradation. We
use suspicious for a transition that indicates degradation and
benign otherwise (improvement or neutral). For example, a
change that causes a C++ method to transition from being a
non_const_get to a get is an example of a benign transition, as it
forbids modification of object state by the callee and allows
const objects to use the method. Thus, it improves design by
restricting undefined behavior and makes the system easier to
maintain. If the opposite occurs, a transition in stereotype from
a get method to a non_const_get method, we have an example
of a suspicious change that indicates a degradation in the design
of the system (i.e., code smell). Note, the addition of a
non_const_get method is sometimes necessary in C++ and
therefore valid. However, a change which replaces a const
accessor (which is necessary for const objects) with a
non_const_get method indicates that development is loosening
restrictions on previously forbidden behavior, in addition to
limiting the objects on which the method can be invoked. This
type of change must be highlighted and reviewed, hence we term
it suspicious.

TABLE II. contains our taxonomy of stereotype transitions.
This taxonomy is not meant to be complete, but to highlight
important transitions that have well-defined consequences. For
each entry in the taxonomy there is a name/type of that
classification of transitions, what types of stereotypes are
involved in the transition, a description of the transition type,
and lastly notes about the implications and significance of such
transition and whether such transitions are generally benign or
suspicious. Transitions that are not part of the taxonomy such
as other changes within the same category are considered
benign. This provides a partial answer to RQ2, and it provides
a start for answering RQ3. We investigate this further in a
manual investigation described in a following section.

The main goal of this study is to investigate how often
stereotypes change (i.e., RQ1), and if they change, the
frequency and patterns of changes, i.e., how often and what do
they change to. To do this, the entire history of multiple systems
is analyzed, and data collected on changes (or lack thereof) to
method stereotypes. As the transition categories provided in
TABLE II. are primarily conjectural, an investigation into the
changes that induce a change in method stereotype is
investigated manually (Section VI.C).

V. DATA COLLECTION
To investigate changes in method stereotypes, fifty open-

source software systems, given in TABLE III. were selected for
study. The subject systems are selected using the following
criteria: 1) C++ is the primary language, 2) a minimum of 500
commits, 3) representative ranges of project size in terms of
number of commits, and 4) representative sample of domains.
The number of revisions (center column) are for each system
and are non-merges that contain a modified C++ file.

TABLE II. TAXONOMY OF IMPORTANT STEREOTYPE TRANSITIONS. EACH TRANSITION TYPE HAS A STEREOTYPE CATEGORY, A DESCRIPTION WHICH
INCLUDES THE METHOD STEREOTYPES THAT ARE PART OF THE TRANSITION, AND THE IMPLICATIONS OF THE TRANSITIONS TO THE DESIGN OF THE SYSTEM.

Transition Type Stereotype
Category Description Design Implications

Move to/from
Unclassified Unclassified Method transitioned to/from

Unclassified

• Methods that cannot be classified lack a clear abstraction
• To unclassified (suspicious)
• From unclassified (benign)

Move to/from
Non_const_get

Structural
Accessor

Method transitioned between
non_const_get and another
Accessor

• From Accessor to non_const_get breaks ability use on
constants/degrades design (suspicious)

• From non_const_get to Accessor increases information hiding. Method
probably should have always been Accessor (benign)

Add
Collaborational

Collaborational

A method adds a Collaborational
stereotype or transitions from
another category to Collaborational

• Addition of Collaborational indicates increased dependency to other
object(s) (benign, but suspicious in large numbers)

Remove
Collaborational

A method removes Collaborational
or transitions from a
Collaborational to another category

• Removal of Collaborational indicates decreased dependency to other
object(s) (benign)

Add Degenerate

Degenerate

A method adds a Degenerate
stereotype or transitions from
another category to a Degenerate

• Method’s functionality has been diminished
• Indicates method does not have enough responsibility and consider

removal (suspicous)

Remove
Degenerate

A method removes a Degenerate
stereotype or transitions from a
Degenerate stereotype to one of
another category

• Degenerate methods do not provide enough functionality
• Removal is generally a positive (benign)
• Indicates addition of more functionality or increased complexity

Cross Stereotype
Boundaries

Multiple
Categories

A change from Structural
Accessor, Structural Mutator, and
Creational to a different one of
those categories

• Massive change to function behavior
• Change is suspicious and should be investigated

Add/Remove/
Replace

Categories

Method that has multiple
stereotypes from at least two of the
following: Structural Accessor,
Structural Mutator, and Creational

• Method has too much responsibility
• Presence is possible code smell
• Transition that adds additional method stereotypes indicates degrade in

design (suspicous)
• Transition that removes stereotypes indicates a design improvement

(benign)
• When categories are replaced with others indicates poor design

(suspicous)

The entire commit history of all systems is investigated
providing a total of 445,255 revisions. The right-column in
TABLE III. contains the location of repository. When the
repository location is not a fully qualified URL, the repository
comes from GitHub and has the following complete location:
https://github.com/{Location}.git. The data collection process
consists of the following parts:

1. Identification of all revisions and the files changed in
those revisions.

2. Application of a syntactic differencer to the original and
modified version of all changed C++ files to generate a
fine-grained change log of each revision.

3. Analysis of the change logs to locate changed methods.
4. Collection of the original and modified stereotype of

each changed method.
More specifically, data is collected for each system in the

following manner. First, a local clone of the repository is made.
Next, the syntactic difference of every modified C++ file for
each revision of the default branch is computed (parts 1 and 2)
using srcDiff [34]. In order to generate the change logs for each
revision, a Python program generates a list of each revision and
the modified C++ files contained within each of those revisions
(part 1). To generate this list, the Python program uses the
command git-log. With the correct options, git-log reports all
modified files and their associated revisions. Since we are
interested in changes to existing methods, added and deleted

files are ignored since they can only contain new or removed
methods. For similar reasons, copied and renamed files are also
ignored. In short, we only use file reported by git-log as
modified. In addition, git-log is set to not report merge
revisions. As git-log reports modified files irrespective of
contents, when processing the report provided by git-log, the
Python program uses file extensions to identify C++ files and
filter out non-C++ files. The typical file extensions for C++ are
used (e.g., .cpp, hpp) with .h (a typical C-language extension that
is still used in C++) treated as C++ code. Then, the Python
program runs srcDiff on all the identified modified C++ files for
each revision and generates a single change log for each revision
(part 2).

Once the change log is created for each revision, the data can
be examined for stereotype changes (parts 3 and 4). To examine,
the change logs, a separate Python program we developed is
used to parse the change log, identify and collect the signatures
of changed methods (part 3), and then apply StereoCode to
compute the original and modified method stereotypes for the
changed method (part 4). A method is identified as changed and
the signature collected if 1) it contains a change (added, deleted,
or modified) to the text of the method, 2) the text changed is not
whitespace or part of a comment, and 3) the method itself is not
inserted or deleted.

Whitespace and comments (i.e., non-source code) changes
are ignored, as they are non-functional/stylistic changes. In

addition to the signature, for each changed method, the line
number, class, and file containing the method are also collected.
These additional attributes are collected to generate a unique ID.
After information for each changed method is collected, the
original and modified source code versions for that revision are
converted to srcML using tools provided at srcML.org.

TABLE III. SELECTED SOFTWARE SYSTEMS ORDERED BY NUMBER OF
REVISIONS. KLOC IS THE CODE OF THE MOST RECENT VERSION, # REV IS
NUMBER OF REVISIONS WITH MODIFIED C/C++ FILES. LOCATIONS HAVE A

URL OF HTTPS://GITHUB.COM/{LOCATION}.GIT, EXCEPT FOR CLANG.

System KLOC # Rev Location
kokkos 141 745 kokkos/kokkos
tera 114 832 baidu/tera
json 62 1,049 nlohmann/json
griefly 21 1,074 griefly/griefly
CRYENGINE 2,337 1,092 CRYTEK/CRYENGINE
MultiMC5 73 1,267 MultiMC/MultiMC5
ChaiScript 33 1,312 ChaiScript/ChaiScript
Mantella 3 1,320 Mantella/Mantella
GamePlay 300 1,354 gameplay3d/GamePlay
Plasma 686 1,395 H-uru/Plasma
antimony 106 1,737 mkeeter/antimony
Rcpp 109 1,947 RcppCore/Rcpp
engine 155 2,078 flutter/engine
oiio 165 2,445 OpenImageIO/oiio
rdkit 252 2,474 rdkit/rdkit
distortos 880 2,498 DISTORTEC/distortos
nix 39 2,704 NixOS/nix
CTK 252 2,823 commontk/CTK
irods 225 2,860 irods/irods
citra 107 2,908 citra-emu/citra
BansheeEngine 344 3,058 BearishSun/BansheeEngine
newton-dynamics 1,678 3,124 MADEAPPS/newton-dynamics
gnuradio 262 3,191 gnuradio/gnuradio
folly 238 3,277 facebook/folly
supertux 97 4,283 SuperTux/supertux
Dlib 479 4,366 davisking/dlib
ola 211 4,470 OpenLightingProject/ola
tfs-old-svn 89 4,665 otland/tfs-old-svn
Urho3D 959 5,225 urho3d/Urho3D
ogre 639 5,280 OGRECave/ogre
appleseed 304 5,369 appleseedhq/appleseed
bitcoin 148 5,785 bitcoin/bitcoin
openFrameworks 190 6,620 openframeworks/openFrameworks
codeblocks 315 7,484 jenslody/codeblocks
codelite 812 7,918 eranif/codelite
QuantLib 497 8,526 lballabio/QuantLib
stellarium 238 8,677 Stellarium/stellarium
Natron 702 10,064 MrKepzie/Natron
opencv 937 11,328 opencv/opencv
cocos2d-x 997 13,890 cocos2d/cocos2d-x
ppsspp 483 15,272 hrydgard/ppsspp
kdevelop 162 16,663 KDE/kdevelop
Dealii 2,463 20,340 dealii/dealii
blender 1,213 24,215 git://git.blender.org/blender.git
xbmc 980 25,280 xbmc/xbmc
Mongo 3,122 26,345 mongodb/mongo
Qt 5,228 28,069 qt/qt
swift 719 30,343 apple/swift
cgal 1,678 39,583 CGAL/cgal
Clang 1,571 56,631 http://llvm.org/git/clang
Total 33,820 445,255

Then, StereoCode is used on the original and modified code

to compute the stereotype of each method. StereoCode reports
these in a CSV format containing the method stereotype and the

same ID information collected for the changed methods (line
number, file name, class name, and method signature). This is
used to lookup the original and modified stereotypes.
StereoCode is applied to the entire file as opposed to just the
each version of the method to avoid error due to any dependency
StereoCode may have on contextual information.

Finally, information is recorded in two ways. First, each
stereotype and ID information pair is recorded. Second, running
totals on the counts of the number of times each stereotype
transition occurred and when each stereotype did not change are
updated. All programs written for the data collection process
were tested and verified for accuracy.

VI. RESULTS
Data was collected from all investigated systems. Empirical

results are presented in Section A. In Section B we compare the
results of Section A to that from six additional closed-source
systems, and the manual investigation is presented in Section C.

A. Empirical Investigation
Results on all method changes for all systems is now

presented. The complete dataset is available at
http://www.sdml.cs.kent.edu/stereodiff/. The data is analyzed
on all systems as a whole as well as on each system individually.
Due to space restrictions, we report the total occurrences out of
all systems and the median percentage. The median percentage
is computed by calculating the percentages individually for each
system and then taking the median. We computed median
because the data is not uniform. The number of
revisions/method changes for each system is not uniform (some
systems contribute significantly more) and computing
percentages of on all systems collectively can be affected by this
disproportion. However, for the data we collected, the results
are similar with either method.

Over all systems, there is a total of 1,361,348 changes to
methods. The vast majority, 1,233,645 (89.9%), of the changes
to methods resulted in no change in the stereotype. That is, the
stereotype of a method is very stable over time. Of the method
changes in these systems, only 127,603 (10.1%) result in a
change in stereotype, with the percentage on individual systems
ranging from 4.5% to 29.0%.

TABLE IV. presents the top-ten most commonly changed
methods grouped by their stereotype. In all cases, the changes
that did not impact the stereotype. Of all method changes, the
percentage drops sharply from 41.9%, for command
collaborator, down to 0.7% for unclassified, with 50% either
command collaborator or non_void_command collaborator.

The top-ten method changes where the stereotype changed
(transitions) are shown in TABLE V. We found over 2,000
unique transitions in total, many of which occur a small number
of times. For the most part, the transitions are benign according
to the taxonomy (e.g., unclassified to command). The main type
of transition that is suspicious is non_void_command
collaborator to property collaborator which indicates a
significant deviation in behavior.

Also of note in TABLE V. the percentage of each transition
is very low (i.e., < 1%). Collectively, out of all method changes,
stereotype transitions only occur 10.1% of the time, with each
individual transition type occurring with a small percentage.
With this, we can now answer RQ1. Method stereotypes, as a

whole, change infrequently due to changes to methods and thus,
a method’s stereotype is very stable over evolution.

TABLE IV. TOP TEN MOST COMMON CHANGES TO METHODS THAT DID

NOT CHANGE THE STEREOTYPE (GROUPED BY STEREOTYPE), MEDIAN OF THE
PER-SYSTEM PERCENT OUT OF ALL METHOD CHANGES, AND THE NUMBER

CHANGED.

Stereotype Median % Count
command collaborator 41.9% 595,085
non_void_command collaborator 8.1% 164,289
command 4.9% 65,473
property collaborator 4.1% 76,635
collaborator 4.0% 63,473
get collaborator 1.7% 23,614
void_accessor collaborator 1.7% 49,312
non_void_command collaborator
factory 1.0% 40,183

predicate collaborator 1.0% 21,425
unclassified 0.7% 10,391

TABLE V. TOP TEN STEREOTYPE TRANSITIONS OUT OF OVER 2,000
UNIQUE POSSIBLE TRANSITIONS. THE STEREOTYPE OF THE METHOD CHANGED
FROM ITS ORIGINAL STEREOTYPE TO THE MODIFIED STEREOTYPE, WITH THE

MEDIAN OF THE PER-SYSTEM PERCENT OUT OF ALL METHOD CHANGES.

Original Stereotype Modified Stereotype Median % Count

command command
collaborator 0.5% 6,327

collaborator command
collaborator 0.5% 7,633

command
collaborator collaborator 0.3% 4,761

command
collaborator command 0.3% 4,358

collaborator non_void_command
collaborator 0.1% 2,407

set collaborator command
collaborator 0.1% 1,907

unclassified command 0.1% 1,519
non_void_command
collaborator collaborator 0.1% 1,645
set command 0.1% 1,567
non_void_command
collaborator property collaborator 0.1% 1,889

In order to answer RQ2, let us now take a closer look at
stereotype transitions. Over, 65% of the time (median, with
totals of 1,245/1,742) that a non_const_get method changed
stereotype, it changed to a get. In fact, it is more common for a
non_const_get method to change into a get method, as it is to
remain a non_const_get (i.e., individually it is not stable). The
opposite (get to non_const_get) is exceedingly rare (22 total
instances over all projects and revisions). That is, get methods
are mistakenly written as non_const_get methods and then
corrected at a later date.

When a method-stereotype transition occurs, 37,183
(29.7%) of the time, one or more stereotypes are inserted and
30,092 (22.2%) of the time one or more stereotypes are deleted.
A summarization of the top-ten deleted and inserted groups of
stereotypes are in TABLE VI. and TABLE VII. respectively. In
both, the stereotype inserted or deleted is given with the median
of the per-system percent, and the number of occurrences. For
both, the most common insertion or deletion is that of a single
stereotype, with collaborator being most common. When just
considering method stereotypes that purely inserted or deleted
stereotypes, this points to increased collaboration between

classes in a system over time (the remaining pure insert and
delete data that is not shown here does not offset this trend).

The remaining times a stereotype transition occurred it
completely changed from one stereotype to another: 24,859
(19.8%), or partially-changed (one or more stereotypes replaced
with one or more other stereotypes with at least one stereotype
remaining in common to both): 35,469 (27.4%). TABLE VIII.
and TABLE IX. provide the top-ten completely changed method
stereotypes and partially-changed stereotypes, respectively.

For TABLE VIII. the change from the original stereotype to
the modified stereotype, the median of the per-system
percentage (with percent individually out of total amount of
transitions in that system), and the number of occurrences is
given. The most frequently completely changed stereotypes are
unclassified to command (benign), set to command (within same
stereotype category), and unclassified to collaborator (benign).
Out of all the top ten, the only suspicious transitions are those
that are no longer able to be classified by StereoCode
(unclassified), which may indicate that the methods have
become convoluted, lacking a clear abstraction (e.g., long
method code smell).

TABLE VI. TOP TEN DELETED STEREOTYPES. MEDIAN % IS THE MEDIAN
OF THE PER-SYSTEM PERCENT WITH THE PERCENT INDIVIDUALLY OUT OF ALL

TRANSITIONS IN THAT SYSTEM.

Deleted Stereotype Median % Count
collaborator 5.3% 8,496
stateless 5.1% 7,498
command 3.4% 4,859
non_void_command 1.4% 2,283
non_const_get 1.0% 1,891
collaborational_command 0.7% 1,280
factory 0.5% 1,479
empty 0.1% 356
set 0.1% 269
collaborational_command stateless 0.1% 213

TABLE VII. TOP TEN INSERTED STEREOTYPES. MEDIAN % IS THE MEDIAN
OF THE PER-SYSTEM PERCENT WITH THE PERCENT INDIVIDUALLY OUT OF ALL

TRANSITIONS IN THAT SYSTEM.

Inserted Stereotype Median % Count
collaborator 10.1% 12,532
command 5.5% 7,705
stateless 3.6% 5,263
non_void_command 2.4% 3,618
non_const_get 0.8% 1,423
collaborational_command 0.6% 827
property 0.5% 1,037
factory 0.3% 1,000
predicate 0.2% 415
set 0.1% 220

In TABLE IX. the most common partially-changed
stereotypes are set with command (benign) and
non_void_command with property (suspicious as it may be
adding a missing const or indicate a more serious problem). The
remainder are largely partially-changed from within the same
category (benign) with the exception of empty to command and
non_const_get to get (benign); and command to void-accessor,
which crosses categories (suspicious).

In summary, methods do not change stereotype very often.
When they do change, most of the frequent types of changes are
of relatively little concern. There are, however, a few among the

top-ten that are worth investigating. Due to their relative rarity,
an automatic detection and reporting/alerting tool would be of
great use. Such a tool can easily be integrated into an IDE or
versioning system.

TABLE VIII. TOP TEN COMPLETELY CHANGED STEREOTYPES. FROM THE
ORIGINAL TO MODIFIED STEREOTYPE. MEDIAN IF OF THE PER-SYSTEM PERCENT

(PERCENT OF ALL TRANSITIONS IN THAT SYSTEM).

Original
Stereotype

Modified
Stereotype Median % Count

unclassified command 1.2% 1,519
set command 1.2% 1,567
unclassified collaborator 0.8% 1,077
command unclassified 0.7% 955
command set 0.6% 856
non_const_get get 0.5% 1,245
collaborator unclassified 0.3% 890
stateless unclassified 0.2% 506

unclassified command
collaborator 0.2% 420

empty command
collaborator 0.2% 531

TABLE IX. TOP TEN PARTIALLY-CHANGED STEREOTYPES. MEDIAN IS OF
THE PER-SYSTEM PERCENT (PERCENT OF ALL TRANSITIONS IN THAT SYSTEM).

Original Stereotype Modified Stereotype Median % Count
set command 1.4% 1,907
non_void_command property 1.3% 2,500
command non_void_command 1.1% 1,519
get property 0.9% 1,861
command set 0.9% 1,051
non_void_command command 0.8% 3,003
property get 0.8% 1,212
non_const_get get 0.6% 1,344
command void_accessor 0.5% 1,147
empty command 0.4% 895

B. Closed Systems
We additionally performed an empirical study of 6 closed-

source systems (TABLE X.) to understand generalizability of
the open-source results. Among the 53,876 method changes in
the 6 closed-source systems, 49,067 (86.7%) do not change
method stereotype and 4,809 (13.2%) do change method
stereotype (varying between 0-20%). The number of transitions
in the closed systems is slightly higher, however, a larger
selection of systems is needed to see if this trend holds. When
both data sets are combined, less than 10.4% of all method
changes resulted in a method-stereotype change.

Similar patterns are found for method changes that do not
change method stereotype (TABLE XI.). That is, a few
stereotypes (first three are identical to those in open-source
system) occur with higher-frequency and the values drop
quickly. Likewise, all stereotype transitions are uncommon
(<1%) with 8/10 stereotypes in common between the open-
source and closed systems (although in a different order). Also
consistent with the open-source results, all but one transition is
benign. The one suspicious transition changed the method to be
both an accessor and mutator (non_void_command collaborator
to non_void_command non_const_get collaborator).

As for get and non_const_get methods, as in the open-source
systems non_const_get is not stable (i.e., changes stereotypes
frequently). However, both are even more unstable than in the
open-source systems. get methods did not change 15.7%
(20/58) of the time and non_const_get did not change 14.3%

(57/132) of the time. In contrast, in the open-source systems get
did not change (i.e., is stable) 70.9% (4,781/6,821) of the time
and non_const_get is stable 31.9% (1,396/3,138). Although
non_const_get transitioned to get 40/132 times, unlike the open-
source data, the median of the per-system percent is zero. More
consistent with the open-source systems, although get is not
stable in closed systems, it never changed to a non_const_get.

Regarding how method stereotypes change, when a
stereotype transition occurs, it is completely changed 16.7%
(682) of the time; only consisted of deleted stereotypes 23.2%
(1140) of the time; only consisted of inserted stereotypes 40.9%
(1,717) of the time; and had stereotypes partially changed 20.5%
(1,270) of the time. In comparison to the open-source systems,
the median of inserting new stereotypes is more frequent by over
10% of the median values while partial/complete change of
stereotypes medians are less (~6.9%/~3.1%).

TABLE X. CLOSED SOURCE SYSTEMS IDENTIFIED WITH ANONYMOUS
NAMES. KLOC IS C++ CODE FOR THE MOST RECENT VERSION INVESTIGATED
USING WC, AND # REV IS NUMBER OF REVISIONS WITH MODIFIED C++ FILES.

System KLOC # Rev
EC 295 1,539
FASA 174 1,546
G 430 1,969
H 654 5,359
On 2,046 34,427
Op 995 315
Total 4,595 45,155

TABLE XI. TOP TEN MOST COMMON CHANGES TO METHODS THAT DID
NOT CHANGE THE STEREOTYPE (GROUPED BY STEREOTYPE) FOR THE CLOSED-

SOURCE SYSTEMS, MEDIAN OF THE PER-SYSTEM PERCENT IS OUT OF ALL
METHOD CHANGES, AND THE NUMBER CHANGED.

Stereotype Median % Count
command collaborator 38.8% 22,476
non_void_command collaborator 7.4% 17,207
command 4.9% 1,535
collaborator 4.1% 1,597
property collaborator 1.0% 229
non_void_command collaborator
factory 0.7% 360

non_const_get collaborator 0.6% 407
set collaborator 0.5% 215
unclassified 0.4% 224
collaborational_command collaborator 0.4% 439

Considering instances where the only a change in stereotype
is the insertion or deletion of one or more stereotypes, the closed
systems (similar to open-source systems) show a larger increase
in collaborator indicating increased collaboration. In contrast,
the closed systems have less variability in what stereotypes are
inserted/deleted, with only 7/9 types occurring in the closed
systems with a median greater than zero (open-source has 13
deleted and 17 inserted).

Similar to the open-source systems, the majority of the top-
ten completely changed stereotypes are benign except two that
are not able to be classified (command to unclassified and
collaborator to unclassified). Likewise, partial changes are
similar and mostly in the same category (benign). There are two
other benign transitions (non_const_get to get and stateless to
command), and two suspicious transitions (non_void_command
to non_const_get and command to empty).

Ultimately, there is some variation in the specific details of
the two data sets. It is worth investigating in the future if a larger

set of closed systems will produce results more consistent with
the open-source systems. However, although there are
differences between the two data sets, the conclusions are
largely the same: stereotypes transition occur infrequently, and
when they do, few among the top-ten that are worth
investigating. Thus, automatic detection and reporting will also
be valuable to closed systems.

C. Manual Investigation
In Section IV, we presented a taxonomy on the consequences

of a change to a method’s stereotype. In Section VI.A, we show
that method stereotypes as a whole are stable with regards to
method change with a method’s stereotype changing 10% of the
time in the 50 open source systems we examined. In addition,
the most frequent changes in method stereotype are generally
safe and unsuspicious.

In order to answer RQ3, we describe the results of a manual
investigation of stereotype transitions. The approach taken is as
follows. First, a list is constructed containing all the method-
stereotype transitions that occur in the subject systems (TABLE
III.) and the frequency for each is computed. Based on the
behavior of method-stereotypes as described by Dragan et al.
[8], an author who is an expert on method stereotypes examined
every method-stereotype transition (the expert had no
knowledge of TABLE II.) and they noted all the transitions that
should be investigated (i.e., was a possible code smell).

Then, for each transition that occurred more than ten times
in the revision history of all 50 systems, a separate expert
developer examined an instance of each of the method-
stereotype transitions noted previously. For each instance,
detailed notes are taken about the change in method stereotype
and the source code modified. When necessary, additional
information is consulted such as related commits and their
changes. This information is then used to make a determination
of whether the change in method stereotype is of benign (no
concern/positive) or suspicious (the method change is worth
inspection by a developer) such as when the change to the
method is clearly wrong or revealed issues with the design and
maintainability of the method/class.

This type of manual investigation is a slow and tedious
process. In order to make the investigation process more
manageable, a syntactic source-code difference (i.e., srcDiff)
supporting a unified view of changes and StereoCode were used
to examine the changed methods.

In total, 33 method-stereotype changes were examined in
this level of detail. The investigation took approximately 20-
person hours. TABLE XII. presents a summary of the results
with each of the stereotype transitions grouped according to the
taxonomy presented in Section IV. Other consists of
insignificant changes not included in the taxonomy (four
instances of changes within the same stereotype category and
one command collaborator to collaborator). In addition, one
method change included both the Cross Stereotype Boundaries
and Multiple Category Stereotype, this is counted as part of both
(hence the count adds to 34 but one method is in the table twice
and we give 33 as the total).

For each of the categories present, a count of the number of
transitions belonging to those categories along with a count and
percentage of the number of times those changed methods are
benign or suspicious.

A benign change is typically a neutral change or one that
fixes a bug or code smell. Suspicious change is a change that is
clearly wrong or indicates a problem with the function. With
corrections for the one change counted twice, 32% of changes
in method stereotype are suspicious, while 68% are benign.

In agreement with the taxonomy in TABLE II. From
Non_const_get (convert from non_const_get to get), Remove
Collaborational, Remove Degenerate, and Other are benign
indicators. The one instance of stereotype becoming
unclassified is suspicious (method is poorly designed). Cross
Stereotype Boundaries, and Add Categories/Remove Categories
(both those that become ones and those that lost the multiple
categories) are mixed. That is, the method-stereotype change
belonging to the Cross Stereotype Boundaries and
Add/Remove/Replace transition types are indicators of problems
with the method design or change, but only a portion of the time.
TABLE XII. SUMMARY OF MANUAL INVESTIGATION. FOR EACH METHOD-
STEREOTYPE TRANSITION TYPE THE TABLE STATES THE OVERALL NUMBER OF

OCCURRENCES. THIS IS BROKEN INTO NUMBER AND PERCENTAGE OF
OCCURRENCES FOR BOTH SUSPICIOUS CHANGES (I.E., SHOULD BE

INVESTIGATED FURTHER) AND BENIGN CHANGES (I.E., ARE OF NO CONCERN)..

Type Overall

Suspicious Benign
% # %

To Unclassified 1 1 100% 0 0%
From Non_const_get 1 0 0% 1 100%
Remove Collaborational 1 0 0% 1 100%
Remove Degenerate 2 0 0% 2 100%
Add Categories 8 4 50% 4 50%
Remove Categories 4 2 50% 2 50%
Cross Stereotype
Boundaries 11 4 36% 7 64%

Other 6 0 0% 5 100%
Total 33 11 32% 23 68%

Fig. 1 and Fig. 2 give examples of a benign change and
suspicious change, respectively. For both figures, the method is
annotated with the changes in a unified-view. Inserted code is
marked with a green background color, while code common to
both versions is left with a plain-white background. No deleted
code is present in the examples.

In Fig. 1, the developer makes a non_const_get method into
a const get method, thus disallowing any indirect modification
to the class data member and making the system easier to
maintain. In agreement with the taxonomy, we regard this as a
benign change.

In Fig. 2, the developer makes an initialize method const,
however, to make it compile, the developer also made several
data members of the class mutable, and thus making the system
more difficult to maintain. To make matters worse, a comment
by the developer reveals that they were baffled that the code
worked previously. Clearly, this individual does not understand
the language concepts of const or mutable very well. This is an
obvious mistake. In agreement with the taxonomy, we regard
this as a suspicious change.

From this, we can conclude that although not perfect, certain
categories of method-stereotype changes (To Unclassified,
Cross Stereotype Boundaries, and Add/Remove/Replace
Categories) can be useful indicators for method-design
problems or inappropriate method changes. Since changes in
method stereotype are uncommon (with specific categories
being even less common), investigation by a developer will not
require substantial time.

From the manual investigation, we note that a finer-grained
categorization may produce more accurate predictions. For
example, many of the Cross Stereotype Boundaries did so
because method constness is added/removed. The addition of
const, allowed StereoCode to make a correct assessment of
behavior and are benign changes, while the removal of const is
suspicious. That is, refining Cross Stereotype Boundaries into
cases where adding const or removing const will increase
prediction ability. Similar types of improvements may be made
to Add/Remove/Replace Categories.

With this we finish answering RQ2 and RQ3. That is,
changes in method stereotypes are statistically uncommon.
When they do change, many categories of changes are of little
concern. However, specific categories of changes in method
stereotypes (To Unclassified, Cross Stereotype Boundaries, and
Add/Remove/Replace Categories) can indicate code smells, that
is method design problems and inappropriate changes to code.

inline
 const Tds & tds() const
 { return _tds;}

Fig. 1. Example of a benign change. Method stereotype changes from a
non_const_get method (Structural Accessor) to a get method (Structural
Accessor). Developer simply added const to return type and method.

=== Method ===
void BarrierOption::initialize() const {
 sigmaSqrtT_ = volatility_ * QL_SQRT(residualTime_);

 mu_ = (riskFreeRate_ - dividendYield_)/
 (volatility_ * volatility_) - 0.5;
 muSigma_ = (1 + mu_) * sigmaSqrtT_;
 dividendDiscount_ = QL_EXP(-dividendYield_*residualTime_);
 riskFreeDiscount_ = QL_EXP(-riskFreeRate_*residualTime_);
 greeksCalculated_ = false;
}
=== Data Members ===
private:
 BarrierType barrType_;
 double barrier_, rebate_;
 mutable double sigmaSqrtT_, mu_, muSigma_;
 mutable double dividendDiscount_, riskFreeDiscount_;
 Math::CumulativeNormalDistribution f_;

Fig. 2. Example of a suspicious change. Method stereotype changes from
command (Structural Mutator) to void-accessor (Structural Accessor).
Developer made an initialize method const and the data members it
modifies mutable.

VII. THREATS TO VALIDITY
Only standard C++ extensions are used to locate C++ files.

Most of the projects use only these extensions, however, some
use unusual extensions which possibly contained C++ code. For
example, a C++ extension followed by .in, which possible
denotes a file that is used to generate code as part of the build
system, and .tpp, which can possible contain template code.
These are only noticed in a few of the repositories. For future
work, these files can be examined more closely and a
determination made as to whether they should be included as
part of the data collected.

The .h extension is treated as C++, however, it is used both
as a C and C++ header extension. Some of the projects included
both C and C++ code and use .h for both. As C++ is largely a
super-set of C (with a few exceptions), the parsing of C code as
C++ code is a minor threat.

Some of the projects have code committed that is auto-
generated by some tooling. Auto-generated files may exist
throughout the history of a project or may appear and disappear
at any point in the history of the software. For the most part, we
are uninterested in changes to auto-generated code, however, as
they can appear at any point in history, they can be difficult to
identify. Investigation into auto-detection of all generated files
through the history of projects is a valid research topic. In our
study we found two, one each in ppsspp and codelite, that
contained auto-generated files, these were ignored.

Only C++ is used as part of the study. Results may be
somewhat different for other languages. Currently, StereoCode
only supports C++ and is thus a limitation.

One threat is that the amount of revisions contributed by
each project is not uniform. That is, large systems such as Clang
(over 56K revisions) contribute much more than a much smaller
project such as Tera (832 revisions), and the distribution of these
may be different between them. Mitigating this, we normalized
the data per system and present those results. In addition, the
largest project (Clang), contributed less than 13% of the total
number of revisions and thus no one system dominated the
results. In addition, in a preliminary run of the experiment that
differed by well over 100K revisions, the authors found very
similar results. That is, even when different projects are
investigated the results are very much the same.

Lastly, manual investigation is subject to human error.
Mitigating this, the process was done carefully, and detailed
notes taken. When the encoder was unsure about the change,
another expert programmer was consulted. In addition, a
breadth instead of depth look at the changes in method
stereotypes is performed. One sample is certainly not
representative of every possible change that could induce that
particular change in stereotype. That is, we can only conclude
that changes in method stereotype can indicate problems,
however, we cannot give the extent to which they do.

VIII. CONCLUSIONS
The work presented examined how methods change in the

face of evolution. Specifically, we examine how the stereotype
of a method (an abstraction of a method’s role and behavior)
changes as the method is changed. The version histories of 50
open source systems were examined. Out of the approximately
1.4 million changes to methods, we found that the stereotype of
a method rarely changed. About 90% of changes to methods
resulted in no change to its stereotype. Hence, we can conclude
that a method does not often change in original intent and are
quite stable in that regard during the lifetime of a system. The 6
closed-source systems display similar characteristics.

However, this gives question to the remaining ~10% of
changes that do impact the stereotype. Further manual
examination of these cases show that certain categories of
method-stereotype changes can be indicators of poor method
design or of inappropriate changes to a method. A
categorization of various stereotype transitions and their
potential to impact the design is also proposed and supported by
evidence from the manual investigation.

While method stereotypes are a powerful descriptor of
method role/behavior they will need to be combined with other
analysis techniques to uncover other code smells. Since a
method stereotype can be automatically and quickly computed,

these results could be easily integrated into a development
process to notify developers or project managers of potentially
problematic changes to a method; potentially triggering code
reviews or other precautionary measures.

In this study, we investigate how individual methods evolve
and not a project as a whole. As such, we did not investigate
benign cases (e.g., Add Collaborational) that can be suspicious
in large numbers. For future work, we will look at how
collections of method stereotype changes can be used as
indicators. Additionally, we would like to take this work further
to explore how we can use stereotype transitions in combination
with log and structural information to improve upon past
research using commit history to predict/analyze code health.

This work was supported in part by a grant from the US
National Science Foundation CNS 13-05292/05217.

REFERENCES
[1] B. W. Boehm, Software Engineering Economics, vol. 197. Prentice Hall

PTR, 1981.
[2] M. Tufano et al., “When and Why Your Code Starts to Smell Bad,” in

2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, 2015, vol. 1, pp. 403–414.

[3] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1999.

[4] R. Marinescu, “Detection Strategies: Metrics-based Rules for Detecting
Design Flaws,” in 20th IEEE International Conference on Software
Maintenance, 2004. Proceedings., 2004, pp. 350–359.

[5] N. Moha, Y. G. Gueheneuc, L. Duchien, and A. F. L. Meur, “DECOR: A
Method for the Specification and Detection of Code and Design Smells,”
IEEE Trans. Softw. Eng., vol. 36, no. 1, pp. 20–36, Jan. 2010.

[6] F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mäntylä, “Code Smell
Detection: Towards a Machine Learning-Based Approach,” in 2013 IEEE
International Conference on Software Maintenance, 2013, pp. 396–399.

[7] N. Dragan, M. L. Collard, and J. I. Maletic, “Reverse Engineering Method
Stereotypes,” presented at the 22nd IEEE International Conference on
Software Maintenance (ICSM’06), 2006, pp. 24–34.

[8] L. Moreno and A. Marcus, “JStereoCode: Automatically Identifying
Method and Class Stereotypes in Java code,” presented at the 27th
IEEE/ACM International Conference on Automated Software
Engineering, Essen, Germany, 2012.

[9] N. J. Abid, N. Dragan, M. L. Collard, and J. I. Maletic, “Using Stereotypes
in the Automatic Generation of Natural Language Summaries for C++
Methods,” presented at the IEEE International Conference on Software
Maintenance and Evolution (ICSME’15), 2015, pp. 561–565.

[10] P. Andras, A. Pakhira, L. Moreno, and A. Marcus, “A Measure to Assess
the Behavior of Method Stereotypes in Object-Oriented Software,” in
2013 4th International Workshop on Emerging Trends in Software
Metrics (WETSoM), 2013, pp. 7–13.

[11] N. Alhindawi, J. I. Maletic, N. Dragan, and M. L. Collard, “Improving
Feature Location by Enhancing Source Code with Stereotypes,” presented
at the 29th IEEE International Conference on Software Maintenance
(ICSM’13), 2013, pp. 1–10.

[12] G. Canfora and L. Cerulo, “Impact Analysis by Mining Software and
Change Request Repositories,” presented at the 11th IEEE International
Symposium on Software Metrics (METRICS’05), 2005, pp. 29–37.

[13] C. D. Newman, R. S. AlSuhaibani, M. L. Collard, and J. I. Maletic,
“Lexical Categories for Source Code Identifiers,” in 2017 IEEE 24th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2017, pp. 228–239.

[14] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk,
“ChangeScribe: A Tool for Automatically Generating Commit
Messages,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, 2015, vol. 2, pp. 709–712.

[15] N. Dragan, M. L. Collard, and J. I. Maletic, “Automatic Identification of
Class Stereotypes,” presented at the IEEE International Conference on
Software Maintenance (ICSM’10), 2010, pp. 1–10.

[16] N. Dragan, M. L. Collard, M. Hammad, and M. I. Maletic, “Using
Stereotypes to Help Characterize Commits,” presented at the 27th IEEE
International Conference on Software Maintenance (ICSM’11), 2011, pp.
520–523.

[17] M. L. Collard, M. J. Decker, and J. I. Maletic, “Lightweight
Transformation and Fact Extraction with the srcML Toolkit,” presented
at the 11th IEEE Interational Conference on Source Code Analysis and
Manipulation, 2011, pp. 173–184.

[18] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic Generation of Natural Language Summaries for
Java Classes,” in 21st International Conference on Program
Comprehension (ICPC’13), 2013, pp. 23–32.

[19] Natalia Dragan, “The Emergent Laws of Method and Class Stereotypes
in Object Oriented Software,” Ph.D. Dissertation, Kent State University,
Kent, Ohio USA, 2010.

[20] M. Mantyla, J. Vanhanen, and C. Lassenius, “A Taxonomy and an Initial
Empirical Study of Bad Smells in Code,” in International Conference on
Software Maintenance (ICSM’03), 2003, pp. 381–384.

[21] A. Rani and J. K. Chhabra, “Evolution of Code Smells Over Multiple
Versions of Softwares: An Empirical Investigation,” in 2017 2nd
International Conference for Convergence in Technology (I2CT), 2017,
pp. 1093–1098.

[22] M. Tufano et al., “When and Why Your Code Starts to Smell Bad (and
Whether the Smells Go Away),” IEEE Trans. Softw. Eng., vol. 43, no. 11,
pp. 1063–1088, Nov. 2017.

[23] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D.
Poshyvanyk, “Detecting Bad Smells in Source Code Using Change
History Information,” in Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering,
Piscataway, NJ, USA, 2013, pp. 268–278.

[24] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “JDeodorant:
Identification and Removal of Type-Checking Bad Smells,” in 2008 12th
European Conference on Software Maintenance and Reengineering,
2008, pp. 329–331.

[25] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou,
“JDeodorant: Identification and Application of Extract Class
Refactorings,” in Proceedings of the 33rd International Conference on
Software Engineering, New York, NY, USA, 2011, pp. 1037–1039.

[26] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou, “JDeodorant:
Identification and Removal of Feature Envy Bad Smells,” in 2007 IEEE
International Conference on Software Maintenance, 2007, pp. 519–520.

[27] D. Mazinanian, N. Tsantalis, R. Stein, and Z. Valenta, “JDeodorant:
Clone Refactoring,” in 2016 IEEE/ACM 38th International Conference
on Software Engineering Companion (ICSE-C), 2016, pp. 613–616.

[28] D. Sahin, M. Kessentini, S. Bechikh, and K. Deb, “Code-Smell Detection
As a Bilevel Problem,” ACM Trans Softw Eng Methodol, vol. 24, no. 1,
pp. 6:1–6:44, Oct. 2014.

[29] U. Mansoor, M. Kessentini, B. R. Maxim, and K. Deb, “Multi-Objective
Code-Smells Detection Using Good and Bad Design Examples,” Softw.
Qual. J., vol. 25, no. 2, pp. 529–552, Jun. 2017.

[30] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt, “Automatic
Classication of Large Changes into Maintenance Categories,” in 2009
IEEE 17th International Conference on Program Comprehension, 2009,
pp. 30–39.

[31] L. P. Hattori and M. Lanza, “On the Nature of Commits,” in Proceedings
of the 23rd IEEE/ACM International Conference on Automated Software
Engineering, Piscataway, NJ, USA, 2008, pp. III–63–III–71.

[32] J. J. Amor, G. Robles, J. M. Gonzalez-Barahona, and A. Navarro,
“Discriminating Development Activities in Versioning Systems: A Case
Study,” in Proceedings PROMISE, 2006, vol. 2006, p. 2nd.

[33] A. Hindle, M. W. Godfrey, and R. C. Holt, “What’s Hot and What’s Not:
Windowed Developer Topic Analysis,” in 2009 IEEE International
Conference on Software Maintenance, 2009, pp. 339–348.

[34] Michael John Decker, “srcDiff: Syntactic Differencing to Support
Software Maintenance and Evolution,” Dissertation, Kent State
University, 2017.

	Which Method-Stereotype Changes are Indicators of Code Smells?
	Recommended Citation
	Authors

	Microsoft Word - paper.docx

