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Few Throats to Choke:

On the Current Structure of the Internet

Abstract—The original design of the Internet was as a resilient,
distributed system, able to route around (and therefore recover
from) massive disruption - up to and including nuclear war.
However, network effects and business decisions (e.g. the pur-
chase of GlobalCrossing by Level-3) have led to centralization
of routing power. This is not merely an academic issue; it has
practical implications, such as whether the citizens of a country
may be subject to censorship by an “upstream” ISP in some
other country, that controls its entire access to the Internet.

In this paper, we examine the extent of routing centralization in
the Internet; identify the major players who control the “Internet
backbone”; and point out how many these are, in fact, under
the jurisdiction of censorious countries. We also measure the
collateral damage caused by censorship, particularly by the two
largest Internet-using nations, China and India.

I. INTRODUCTION

The Internet, as originally mandated by DARPA, is a

telecommunication network that can survive tremendous dam-

age. As a packet-switching network, it does not require central-

ized control; catastrophic damage to one part of the network

is simply routed around.

However, in practice, the Internet is not a flat network.

It consists of a large number (currently about 55,000) of

networks, called Autonomous Systems or ASes, which mostly

keep their internal structure a black box and enter into

relationships (as customers, peers, or providers) with other

ASes to forward each others’ traffic. The existence of such

relationships is a constraint on the paths followed by traffic.

For example, if ASes A and B are both providers to AS X,

then X will refuse to carry transit traffic from A to B (or B

to A).

One consequence of such structure, pointed out by

Shmatikov [1], is that individuals, companies, and even na-

tions have very limited control over their connectivity to the

Internet. Even in the case of China, the world’s largest nation

by number of Internet users (720 million) [2], and connected

to over 850 ASes which are happy to carry its traffic, choosing

to avoid just 2% of world ASes leads to massive and costly

disruption.

1) 44 ASes in China have to start functioning as transit

ASes. (China has only 30 transit ASes, so this is an

increase of ≈ 150%.

2) The effective latency seen by the Chinese user increases

by a factor of 8.

In conjunction with observing how a small number

of randomly-chosen Autonomous Systems has a surprising

amount of power, we also note that not all Autonomous

Systems are equal. In the 2001 study by Rexford and Katz [3],

the Internet is demonstrated to be a hierarchy of five levels.

1) Dense Core. (≈ 20 ASes. Tier-1 providers, nearly a

clique)

2) Transit Core. (162 ASes. Mostly peer with dense core

or each other)

3) Outer Core. (675 ASes. Not all closely connected)

4) Small Regional ISPs. (950 ASes. Usually have a single

provider)

5) Customer ASes. (8852 ASes. Stubs - end consumers)

It is natural to ask just how much power the central ASes

of the Internet have. In this regard, our paper looks into the

following research questions.

• What are the “backbone” ASes of the Internet, and how

effective are they at capturing Internet traffic?

– The study by Rexford et al is fifteen years old; in

this time, the Internet has grown from 10,000 ASes

to 55,000. How many backbone ASes are there in

the current Internet?

– Are the “backbone” ASes specifically those with no

providers (Tier 1), or are other ASes better able to

capture traffic?

• How much impact do censorious countries have, on the

functioning of the Internet?

– Are any backbone ASes located in censorious coun-

tries? Could they in fact be filtering traffic to other

countries?

– How much collateral damage can censor countries

inflict on “downstream” ASes in other countries

(who are technically outside their jurisdiction)?

We note that these questions about the structure of the

Internet have important practical implications. Open access to

the Internet is an exceptionally powerful resource, and plays

a political role in the world; for this reason, free access to

information online has been declared a human right by the

United Nations [4]. However, there is a tension between free

speech and keeping the commons safe. Several Governments

- notably China, Russia, Cuba etc. and also some notable

democracies such as India, South Africa, and Indonesia, have

expressed concern about the open Internet. 1 This concern may

be benevolent, e.g. policing child pornography; but there is

precedent where State control of communication channels has

been abused to silence the opposition. We suggest that, if in

fact the power to monitor or filter all Internet traffic lies in

the hands of a few major companies, this may be a cause for

concern.

We begin our study with some discussion of background

and related work, in the next section.

1Kyrgyzstan opposes declaring access to information online as a human
right. Bangladesh, Congo, and Kenya are opposed to free speech online as
a human right. Bolivia, Burundi, China, Cuba, Ecuador, India, Indonesia,
Kyrgyzstan, Qatar, Russian Federation, Saudi Arabia, South Africa, United
Arab Emirates, Venezuela, and Vietnam are opposed to both[5].
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II. BACKGROUND AND RELATED WORK

There are two bodies of work related to the current paper.

The first involves the study of censorship and how it is imple-

mented in various countries around the world. The second is

the study of Internet mapping, or more precisely, determining

the routes taken by Internet traffic. We discuss both of these

areas briefly in this section.

A. Internet Censorship

Government censorship of the Internet was systematically

studied by Zittrain [6], in his seminal analysis of filtering

by the People’s Republic of China. Important early studies

were then contributed by Deibert [7], Wolfgarten [8], and

Dornseif [9], who describe not only censorship policy but also

mechanism of filtering as well as anti-censorship measures.

Work in the area has since focused on either determining

exactly which content is blocked in a given country (i.e.

policy) or how such blocking is performed (mechanism).

In the area of policy, several authors have explored the

censorship in single countries such as China [10], Iran [11],

Pakistan [12] etc.; Verkamp et al [13] extend this with a survey

of censorship across eleven countries. Several projects provide

tools to determine censorship policy: ConceptDoppler [14],

HerdictWeb [15], CensMon [16], and Encore [17].

Studies of mechanism show a steady increase in the so-

phistication of both censorship and anti-censorship, from the

early work of Clayton [18] (TCP reset) and Park [19] (HTML

response filtering) to the complex arsenal used by China to

block Tor, reported by Winter [20]. Our work, in particular, is

strongly influenced by two papers in this group: Levis [21],

who raised concerns that collateral damage can be caused

by the Internet filtering in a nation, and Shmatikov et al [1],

who describe the costs of trying to avoid a particular AS.

It is natural to ask, if a randomly-chosen AS has so much

power, how hard it is to avoid a “backbone” AS as reported

by Rexford [3], and also how much collateral damage is in

fact being caused by the censorious nations that host one or

more backbone ASes. We explore both these questions in this

paper.

B. Internet Mapping

Our work draws heavily on the construction of a map of

routes in the Internet. The early work in this area, such as

by Govindan [22], Willinger [23], and Shavitt [24], rely on

discovering router-level maps using the tool Traceroute, and

then use heuristics to deduce ASes and their connections.

However, we make use of the algorithm by Gao [25], which

directly computes AS-level paths using public BGP routing

data collected by Routeviews [26].

More recently, Claffy [27] and Giotsas [28] have demon-

strated improved methods of Internet mapping, which are very

accurate in deducing AS relationships (provider-customer,

peer-peer). We have therefore taken the relationships they

compute and used this information in finding routes in the

Internet with Gao’s algorithm.

III. APPROACH AND METHODS

Our primary question, in this paper, is whether a small set

of Autonomous Systems actually route all or nearly all of the

traffic in the Internet - and if so, to identify these ASes. A

high-level overview of our approach is as follows.

1) Collect BGP-level routes in the Internet, to a large set of

important targets (such as Google, Facebook, Amazon

etc.) and construct an AS-level map of the routes.

2) Identify the heavy-hitter ASes on the map, which appear

on a large fraction (nearly all) of the traces.

3) Repeat the experiment with different sets of target sites,

to check that the given heavy hitters are general, and not

an artifact of the chosen list of target sites.

It is natural to question why we do not directly map the

traffic-heavy paths of the Internet. Unfortunately, direct infor-

mation about the magnitudes of traffic flows is not publicly

available. We believe we get a good approximation from

mapping the paths to the most popular websites. This approach

does have vulnerabilities - it is quite possible that, for example,

we choose the Alexa top-100 websites for our study, and the

map we construct is completely different than for the top-

200 or some other equally valid set. In order to guard against

such a possibility, we perform cross-validation by repeating

the experiment with multiple target sets.

We now provide the details of our method.

A. Mapping the Internet

As discussed in the previous section, there are two principal

methods of mapping the Internet. The first method, as used

by tools such as CAIDA’s Archipelago [], involves the active

measurement of the network using traceroute etc. Probes are

sent along various paths, and the hop-by-hop path is computed,

then abstracted to AS-level resolution. The second method is to

collect publicly-available routing information, from the BGP

announcements of ASes, and to collate these routes to produce

maps of the Internet.

In this paper, we have adopted the second method. We build

an AS-level Internet map, using the paths connecting popular

WWW destinations and the various ASes of the Internet.

Our original map uses the top-100 most popular websites

(as reported by Alexa) as the target WWW destinations; we

then perform cross-validation, to check that our results are

not an artifact of these sites (as discussed in detail later in this

section).

For AS-level path inference, we employ the end-to-end

algorithm by Gao [25], which estimates paths from a given

IP or IP-prefix to every AS in the Internet. The inputs to the

algorithm are existing BGP RIBs; we use the BGP routing

tables collected by the RouteViews project [26] from Internet

Exchange Points (IXes), where several ASes peer and advertise

their available routes.

Paths directly obtained from RIBs are termed sure paths.

ASes on sure paths are called Base ASes. For example, in the

(hypothetical) path 2869 − 3586 − 49561 − 58556 − 10348
192.168.1.12/24, each number represents an AS. The path

originates at AS2869 and terminates at AS10348, the home
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AS of the advertised prefix 192.168.1.12/24. Note that the

suffixes of sure paths are themselves also sure paths.

In addition to sure paths, the algorithm computes new

ones. This is done by extending sure paths to other ASes to

which there are no explicitly-known paths (from the prefix

concerned). The extended path must be loop-free, and must

satisfy the Valley-Free Property [25]. The process is as follows.

• For each prefix, all sure paths (containing all the base

ASes) are selected. (These are simply the RIB entries

corresponding to the input prefix).

Next, these sure paths are to be inspected for possible

extension to new ASes, provided they they satisfy the

Valley Free property and have no loops.

• The algorithm searches for ASes that share valid business

relations with the current end ASes of paths. [Rather

than attempt to infer relationships, we directly used the

relationships presented by CAIDA [29].]

• One edge is chosen. It is simply assumed that this edge

extends the given sure path by one hop.

Note that we are trying to find a path from an AS to the

target prefix, and that extensions of several sure paths

might connect the chosen AS to the prefix. Hence there

is a need for tie breaking.

– The algorithm sorts the possible paths, and selects

the shortest path to the prefix.

– In case of a tie, the path with minimum uncertainty

(length of the inferred path extensions) is chosen.

– If there is still a tie, the path with the higher

frequency index (the number of times a sure path

actually appears in the RIBs) is selected.

• The frequency with which the chosen edge appears in the

RIBs, the uncertainty of the extended path, and the new

path length, are updated.

B. Identifying ASes of interest

To select ASes of interest from our map of Internet paths, we

take a greedy approach. Ranking the ASes by path frequency

(i.e. how frequently an AS appears on the paths in the graph),

we keep selecting the most-frequent ASes until we achieve a

desired level of coverage. We choose 90% coverage as our

target - i.e. we select enough ASes to give us a cover of at

least 90% of the paths in the graph.

It may be questioned here why we do not follow the

standard approach of CAIDA [29], where the “importance”

of an AS is determined by its customer-cone size (the total

number of its customers, customers of customers, etc.) In

Section V, we show that in fact customer cone size is a poor

predictor of path frequency - the actual metric of our interest

- and explain why this is so.

C. Validation

The most important question regarding our study, is how

general its results are. If for example, we find that a small set

of “key” ASes dominate routing in the Internet, can we trust

this claim, or is it only true for routes to our sample of target

sites (Alexa Top-100)?

To address this concern, we repeated our experiment for var-

ious target sets (Alexa top-10, top-20, top-30 ... top-200 sites)

to see if our results remained stable. Finally, we performed

direct cross-validation by computing heavy-hitter ASes from

paths to one set of sites (Alexa Top-100) and checking whether

they cover over 90% of paths to a different, disjoint set (Alexa

ranks 101 to 225).

In this context, we should also consider why we did not

simply use our algorithm to plot paths from every AS to

every other AS in the world. The reason is that over 85% of

the Internet consists of eyeball ASes, who primarily consume

content from a small number of providers; the overwhelming

majority of computed paths in such an all-to-all map would

see almost no traffic. Our map of paths from all ASes to

important destinations, in contrast, gives a reasonable picture

of the actual paths taken by traffic.

IV. EXPERIMENTAL RESULTS

In this section, we present our experimental results. First,

we consider the map constructed with paths to our original

sample, the Alexa top-100 test sites. We then check whether

our results remain unchanged as we vary the set of target sites

in our test.

A. Test 1 : Alexa Top-100
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Fig. 1. Paths to Alexa top-100 sites captured by ASes
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Fig. 2. Paths to one example target site (facebook.com) captured by ASes

The most important result we observe is that the frequency

with which heavy-hitter ASes appear on paths is remarkably

top-heavy, not only for our entire sample of test sites as an
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aggregate, but even for the individual sites tested (Figures 3

and 4).

The highest-ranked AS, AS3356 (Level 3 Communications),

intercepts 1, 492, 079 paths (≈ 33% of total paths).2 The next

highest, AS174 (Cogent Communications), intercepts 536, 752
more paths (not counting overlaps, i.e. paths intercepted by

both). Together, AS3356 and AS174 intercept 2, 028, 831(=
1, 492, 079 + 536, 752) unique IP-prefix-to-AS paths, i.e.,

about ≈ 45% of all the paths. Proceeding similarly, we see

that the top 30-ASes by path frequency together intercept

92.4% of all paths. The complete list is presented in Table

II; as is clearly visible, nearly a third of these key ASes lie in

censorious countries. (If we include AS 6453, Tata America -

which, while headquartered in the US, actually belongs to an

Indian company - exactly one-third of the 30 “key” ASes lies

in a censorious country.)

As may be expected, out of the censorious countries, the

ones with backbone ASes - Russia (11.09% of world paths)

and China (7.39% of world paths), as also India (3.08% of

world paths) - cover a substantial fraction of the paths in the

Internet. 3 This is still much smaller than the U.S. (81.82% of

world paths), but overall censorious nations control 20.73%
of the paths in the Internet.

Country Fraction of total

paths intercepted

RU 11.09%
CN 7.39%
IN 3.08%
IR 0.69%
SA 0.23%
VE 0.16%
EG 0.12%
PK 0.14%
BH 0.04%

TABLE I

B. Cross-Validation

In order to verify the generality of our results, we repeated

our experiment for various target sets (Alexa top-10, top-20,

top-30 ... top-200 sites). In each case we found the same ASes

cover ≈ 90% of paths. Further, the key ASes computed using

the Alexa top-100, also capture over 90% of paths to the

websites ranked 101 to 225. [We add in passing that we also

tested how well our “key” ASes covered paths to the 50 most

popular non-domestic websites in China, Iran, and Pakistan;

they covered > 90% of these paths as well.]

C. Collateral Damage

As our final experiment, we considered some of the known

censorious ASes and computed the number of customer AS

2Even this figure underestimates the influence of the company, as another
of the 30 key ASes - AS 3549, i.e. Global Crossing - belongs to Level 3.

3In comparison, other censorious nations have much less impact: Iran covers
0.69%, Saudi Arabia 0.23%, and Venezuela, Egypt and Pakistan less than
0.15% each.

ASN Country Rank (Pfreq) Rank (Csize) 

3356 US 1 1 

174 US 2 2 

2914 US 3 5 

1299 SE 4 4 

3257 DE 5 3 

6939 US 6 13 

6461 US 7 8 

6453 US 8 52 

7018 US 9 17 

10310 US 10 6 

4134* CN 11 10 

3549 US 12 79 

4837* CN 13 85 

209 US 14 19 

9002 UA 15 97 

6762* IT 16 7 

8359* RU 17 22 

2828 US 18 30 

20485* RU 19 21 

16509 US 20 9 

9498* IN 21 18 

4323 US 22 16 

3216* RU 23 99 

2497 JP 24 15 

701 US 25 12 

12956 ES 26 65 

37100 MU 27 23 

4826* AU 28 26 

12389* RU 29 67 

1335 US 30 92 

 

TABLE II
THE 30 “KEY” ASES, WHICH INTERCEPT MORE THAN 90% OF PATHS.

ASes headquartered in censorious nations highlighted.
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Fig. 3. Cum. freq.: Paths to Alexa top-100 sites captured by key ASes
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paths which are subject to the censorship policy of the AS.

The fraction of traffic that experiences collateral damage from

filtering by some sample censorious nations is presented in

Figure 5.

21.73

3.47

44.23

13.43

84.6

5.61

26.83

42.43

92.25

RU IR VE EG PK SA BH IN CN
0

20

40

60

80

C
ol

la
te

ra
l d

am
ag

e(
%

)

Countries

Fig. 5. Ratio of collateral damage (paths filtered that the country does not have

jurisdiction over) to intentional damage (paths filtered that actually originate
in the country), expressed as a percentage.

The histograms represent the ratio of collateral damage - the

paths that transit or originate in ASes outside the censorious

nations, before passing through the ASes hosted within these

nations - to the actual paths originating inside these nations,

i.e. are the intended targets of filtering. For example, in case

of China, 306, 874 AS paths visited or originated from an

AS outside China4 This constitutes approx. 92.25% of the

332, 742 paths from Chinese ASes to the popular destinations.

And in case of India, 121, 931 paths transiting India suffer

collateral damage compared to 186, 679 paths originating in

the country. In comparison, Russia shows relatively little

collateral damage; the paths passing through Russian ASes

mostly originate in Russia itself.

V. DISCUSSION AND FUTURE WORK

From our results in the previous section, it is clear that an

overwhelming majority of Internet traffic in our tests (well

over 90%) does in fact pass through one or more of a small

set of backbone ASes. This would imply that these ASes have

the power to set de facto censorship policy, and monitor or

filter Internet traffic worldwide.

The most important question regarding our work, is how we

can claim that this picture is true for Internet traffic in general,

and not an artifact of our methodology - i.e., that the heavy

hitters for flows to Alexa top-100 sites are also heavy hitters

for flows to any site. We have already discussed our answer

to this question in the previous sections, with a description of

our cross-validation using different sets of target sites. In this

section, we address other questions: we explore our finding

that the “backbone” ASes are not necessarily the “Tier 1”

ASes of the Internet, and end with a mention of how this

paper related to our current and future work in the area.

4Out of these, 362 paths originated at a Chinese AS, passed through non-
Chinese ASes, then re-entered China and passed through one or more Chinese
ASes, before finally leaving for its destination.
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Fig. 6. Schematic AS graph. A is “root” of customer cone.

A. Backbone vs Tier-1 ASes

One of the surprising observations of our paper is that

the “heavy hitters” of the Internet not only form a small

core, but the size of the core is not much larger than the 20
ASes reported by Rexford, despite the dramatic growth of the

Internet in the intervening fifteen years [3].

Another, and perhaps equally surprising, fact is that the

backbone ASes we identify are not necessarily Tier-1 ASes

(defined as those with only peering relationships, and no

providers). For example, our list includes the major Tier-

2 ASes Cogent Communications (AS 174) and Hurricane

Electric (AS 6939), as well as the ChinaNet backbone (AS

4134 and AS 4837), RosTelecom (AS 12389), Yahoo! (AS

10310) etc. which are not only Tier-2 but have Tier-2 providers

(Cogent (AS 174) is a provider to RosTelecom, nLayer

Communications (AS 4436) to the ChinaNet backbone, and

Hurricane Electric (AS 6939) to Yahoo!) We did not, however,

observe any Tier-3 ASes5. On the other hand, our list does not

include five of the sixteen Tier-1 ASes, specifically Deutsche

Telekom AG (AS 3320), KPN International (AS 286), Orange

(AS 5511), Liberty Global (AS 6830), and Sprint (AS 1239).

We therefore find that the assumption that Tier-1 ASes are

the heavy-hitters of Internet traffic, is not quite true; there is

certainly a strong positive correlation between being Tier-1

and being a “key AS” of the Internet - by which we mean

an AS able to intercept most Internet traffic - but it is neither

necessary, nor sufficient.

Next, we observed that while many of the ASes on our

list were in fact Tier-2, they were very highly ranked by

CAIDA [29] in terms of Customer Cone size. This naturally

raised the question of whether perhaps a composite feature

- Tier-1 or large customer cone - would predict if an AS is

in fact a key AS w.r.t. intercepting Internet traffic. However,

there are counter examples for this as well, such as RETN

(AS 9002) and SOVAM (AS 3216).

We then experimentally checked whether customer cone

size is a good predictor of path frequency. Our results were

very surprising: in fact, among our key ASes, the Spearman’s

Rank Correlation Coefficient between cone size and path

frequency is only ≈ 0.2. We believe the explanation for

this result comes from the existence of non-root paths in a

customer cone, which we now explain with the help of Figure

6.

5The customers of Tier-2 ASes are mostly still Tier-2 rather than Tier-3.
The term Tier-3 is used to refer to ASes not in the Internet core, i.e., which
do not have peering relationships with Tier-1 or Tier-2 ASes.
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AS3356 

AS7015 

AS6363 

AS2818 

Bbc.com 

AS9002 

AS29226 

AS51971 

AS X 

AS Y 

AS Z 

c2p 

p2p 

Fig. 7. Valley free paths in the cone of AS3356. Green line: network path
that traverses AS3356 to reach AS2818 directly. Red lines: network paths that
traverse the one-hop customers of AS3356, but not AS3356 itself.

The figure represents a hypothetical AS graph where node

A is the “root” AS. A has the highest customer-cone size

in this figure (6 ASes - D,B,E, F,C,G).6 ASes B and C
have customer cones of size 2. Many valid (valley-free) paths

- such as D − B − E, D − B − C − F , D − B − C − G,

D−B−A−C−F , D−B−A−C−G, E−B−A−C−F
and E − B − A− C −G - do not pass through the root AS,

i.e. the node with the highest customer-cone size.

Our map of the Internet shows that this is indeed a common

phenomenon. For example, 34.16% of the paths to top-100
IP prefixes traverse the AS with the largest customer cone,

AS3356 (cone size = 24, 553). But nearly as many paths,

33.17%, prefer to pass through its 1-hop (immediate) cus-

tomers. For example - as we see in Figure 7, the traffic through

AS9002 to AS2818 (www.bbc.co.uk) does not pass through

AS3356, though it is the provider to both these ASes. Still

more paths pass through n-hop customers of root ASes (i.e.

customers of customers, and so on.) As a result, customer-

cone sizes and AS path frequencies are not well correlated.

ASN % of path % of path

not reaching reaching
the AS the AS

3356 34.16 33.17

174 29.05 13.13

2914 28.16 12.90

1299 36.50 8.05

3257 21.00 5.23

6939 7.46 4.40

6461 5.13 4.03

6453 26.00 3.76

7018 7.40 3.70

10310 0.07 3.52
TABLE III

FRACTION OF TRAFFIC PATHS IN A CUSTOMER CONE TRAVERSING LARGE

“ROOT” AS, VS FRACTION TRAVERSING 1-HOP CUSTOMERS INSTEAD.

We conclude that path frequency is not as strongly corre-

lated with customer cone size as we expected, owing to the

considerable fraction of paths which do not transit ASes with

6The customer cone consists of all the ASes that A can reach via its
customers, their customers, etc.

large cone sizes (preferring to pass through their customer

ASes instead). However, for ASes with smaller customer-

cones, we observed fewer such non-root paths (possibly be-

cause an AS in a small cone tends to have fewer peers to route

through). We may perform a more extensive analysis of such

behavior in future work.

B. Current and Future Work

The primary idea that motivates this work is to map the

Internet, and determine which entities (companies and gov-

ernments) hold the strategic “high ground” of cyberspace. We

are currently exploring this research direction in two other

works:

• It seems to be very difficult for a country to route its

traffic in a way that avoids the backbone of the Internet.

Instead of considering this as a threat, as we do in this

paper, could we perhaps make good use of it? In our study

of Decoy Routing[omitted for review], an anti-censorship

technique that re-purposes smart routers as proxies, we

examine this complementary perspective.

• The largest nation on the Internet by users, China, is

highly censorious. India, the second-largest, is rapidly

becoming censorious as well. If in future a Great Firewall

of India is built along the same lines as the Great Firewall

of China, what might it look like, and what mechanisms

might it employ? We study this question in our submitted

paper[omitted for review].

Our results indicate that routing in the Internet is indeed

dominated by a few heavy hitters, who therefore enjoy a

surprising amount of power. However, several other players in

the current Internet economy may also be considered “central”

to the Web - the major websites themselves (especially the

ones who serve as a platform - most prominently Google and

Amazon); root DNS servers; and the major Internet Exchanges

(DE-CIX, AMS-IX, LINX, IX.br, DATA-IX and MSK-IX,

NL-IX, Equinix, etc.) The general question, “who holds the

high ground,” is thus just as complicated for cyberspace as for

the physical world. (The question is very similar to asking: is

it the player who controls oil wells who is in a strong strategic

position? Or the one with the critical ports on trade routes?)

We intend to explore this research direction in detail, in the

course of our future work.

VI. CONCLUDING REMARKS

The organic growth of the Internet has led to a structure

that concentrates substantial routing power in a small num-

ber of companies. The first contribution of our paper is to

experimentally validate this “folk wisdom” and demonstrate

that it still holds true even though the Internet has grown and

expanded dramatically in the fifteen years since it was first

discovered [3]. Our work also turns up two surprises. The

first is that the “key” ASes of the Internet, who carry the

overwhelming majority of traffic, are not identical to the Tier-

1 ASes as we expected. The second is that path frequency and

customer cone-size are poorly correlated, and perhaps peering

links explain the reason for this.
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However, the main contribution of our paper is to draw

attention to the potential for censorship in this top-heavy

structure. A third of the 30 key ASes that form the backbone

of the Internet lie in censorious countries, and they cover

over 20% of the Internet paths in our tests. Further, from

direct examination we see that censorious countries filter (and

possibly also monitor) a substantial fraction of traffic from

other countries. (In particular, we provide direct figures for

China and India.)

We conclude that while it is certainly understandable that

the more powerful routing companies successfully increase

their influence over time, perhaps such centralization is effec-

tively making the Internet more fragile as it leads to a small

number of “throats to choke”. We will pursue this direction

further in our future work.
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