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Abstract

Embedded nanostructures such as quantum dots (QDs) have been studied for many appli-

cations in solar cells including enhanced mini-band absorption in intermediate-band solar cells

and current matching in multi junction cells. The major drawbacks of using such techniques

to decrease intrinsic solar cell loss mechanisms are twofold: first, it is difficult to maintain

partially populated states using QDs due to a quick thermal extraction of carriers; second, QDs

have a weak absorption which necessitates a near-perfect control of QD growth mechanisms to

carefully ensure a balance between dot size and density. One avenue for improving absorption

into QDs is to utilize a thin cell with a back surface reflector in order to increase the effective

optical path length (OPL) of light through the QD region, which has the potential to increase

absorption into QD states. One method for the processing of thin solar cells that has been ex-

perimentally demonstrated on large 4-6′′ wafers is epitaxial lift-off, which takes advantage of

an inverted growth and a wet chemical etch of a sacrificial release layer to remove the substrate.

In this thesis, 0.25 cm2 InAs/GaAs QD cells were grown on 4′′ wafers, fabricated, and pro-

cessed by epitaxial lift off, creating thin and flexible devices. Materials and optical character-

ization techniques such as atomic force microscopy and photoluminescence were used on test

structures prior to and following ELO, and analysis indicated that QD optical coherence and

material quality after ELO processing were preserved, although non-uniform. This was con-

cluded to be caused by the radial thermal profile of the growth reactor, through which spatial
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dependence led to local variations in QD quality and size across the 4′′ wafer, indicative of the

high temperature sensitivity of QDs. Transmission electron microscopy measurements were

used to investigate defects and dislocations throughout the QD device structure that would im-

pact performance, and showed a higher concentration of defects in regions of the wafer subject

to a higher temperature during growth. A similar pattern of radial dependence was observed in

solar cell devices by electrical characterization. Current-voltage measurements under one-sun

AM0 illumination were taken on several cells around the wafer, showing a statistical variation

in solar cell device metrics dependent on wafer position. Spectral responsivity measurements

show an established cavity mode pattern in sub-host bandgap wavelengths, which is discussed

as an enhancement due to the thinning of the device. Integrated external quantum efficiency

shows a QD contribution to the short circuit current density of 0.23 mA/cm2.

In addition to optical, materials, and electrical characterization, QD and baseline ELO de-

vices were exposed to alpha radiation to gauge the effects of a harmful environment on cell per-

formance. The QD device exhibited a remaining factor increase of 2% (absolute) in conversion

efficiency over the baseline device at an end of life alpha particle fluence of 5 × 109 α/cm2/s.

In addition, linear temperature coefficients for solar cell figures of merit were extracted as a

function of increasing alpha fluence. At a fluence of 5 × 108 α/cm2/s, the QD device showed

an efficiency temperature coefficient 0.2 %/◦C higher (absolute) than the baseline, indicating

that the inclusion of QDs could improve the radiation and temperature tolerance of solar cell

devices used for space applications.



vii

Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 III-V PHOTOVOLTAICS IN SPACE . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 QUANTUM DOTS IN PHOTOVOLTAIC DEVICES . . . . . . . . . . . . . . 4

1.2.1 Advantage of Quantum Dot Incorporation . . . . . . . . . . . . . . . . 4
1.2.2 The Intermediate-Band Solar Cell (IBSC) . . . . . . . . . . . . . . . . 8

1.3 MOTIVATION FOR THIN SOLAR CELLS VIA EPITAXIAL LIFT-OFF . . . 10
1.4 RADIATION DAMAGE IN GALLIUM ARSENIDE SOLAR CELLS . . . . . 12
1.5 ORGANIZATION OF WORK . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Quantum Dot Epitaxial Lift-Off Solar Cell Characterization . . . . . . . . . . 15
2.1 THE EPITAXIAL LIFT-OFF PROCESS . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Growth and Processing of ELO Test Structures and Devices . . . . . . 16

2.2 EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Basic Solar Cell Operation . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Solar Cell Testing Methodologies and Experimental Setups . . . . . . . 23

2.3 CHARACTERIZATION RESULTS AND DISCUSSION . . . . . . . . . . . . 32
2.3.1 Materials and Optical Discussion . . . . . . . . . . . . . . . . . . . . 32
2.3.2 Statistical Current-Voltage Characteristics and Discussion . . . . . . . 45
2.3.3 Statistical Spectral Responsivity Measurements and Electrical Obser-

vations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.4 Comparison of Best Performing Cells Across The 4′′ ELO Wafers . . . 56
2.3.5 Temperature Dependent Performance . . . . . . . . . . . . . . . . . . 62

2.4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



viii

3 Radiation Effects in ELO QDSCs . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2 THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.1 Radioactive Isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.2 Radiation Interaction With Semiconductors . . . . . . . . . . . . . . . 68

3.3 EXPERIMENTAL SET-UP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1 Testing Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.2 Alpha Particle Calibration and Setup . . . . . . . . . . . . . . . . . . . 72

3.4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.1 Alpha Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . 82
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Backside Reflector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



ix

List of Tables

2.1 Atomic Force Micrograph Statistical Analysis . . . . . . . . . . . . . . . . . . 33
2.2 PL peak values and extracted strain and periodicity values from symmetric

HRXRD scans. All peak and FWHM values are given in nm. . . . . . . . . . . 37
2.3 ELO comparison of PL peak values and extracted strain and periodicity values

from symmetric HRXRD scans. All peak and FWHM values are given in nm. . 39
2.4 Lengths of different layer thickness (all in nm) for two QD devices compiled

in ImageJ compared to growth design. The emitter and base regions include
the 33 nm i-GaAs region, as this is difficult to measure in TEM alone. . . . . . 42

2.5 IV 1-Sun AM0 Statistical Results . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6 Dark J-V results. A small increase in Rs and similar decrease in Rsh can

change J0 by almost an order of magnitude, as noted in the QD results. . . . . . 50
2.7 J-V Performance Metrics Of 20-Device Sample Set Used For Statistical EQE

Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.8 Diffusion Lengths Simulated using MATLAB Drift-Diffusion Model . . . . . . 55
2.9 J-V 1-Sun AM0 High Efficiency Device Results . . . . . . . . . . . . . . . . 57
2.10 Summary of IV temperature coefficients for ELO cells under 1-sun AM0 con-

ditions, percentage difference for the QD sample relative to the baseline sample
is shown for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 1-Sun AM0 Upright Device J-V And Integrated Spectral Response Results . . 87



x

List of Figures

1.1 Crystal growers chart of bandgaps as a function of lattice constants at 300
K for several binary and ternary III-V semiconductors. The dotted lines aid
in determining lattice-matched materials for growth. Figure courtesy of M.
Slocum, RIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Visualization of intrinsic solar cell power loss mechanisms, such as transmis-
sion and thermalization, as a function of semiconductor bandgap. Figure cour-
tesy of Z. Bittner, RIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Density of states as dimensionality of confinement increases. Figure courtesy
of A. Podell, RIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Self-assembly in the Stranski-Krastanov growth mode, through which epitaxial
quantum dot growth is realized. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 (a) IBSC diagram showing location of intermediate band (IB) in the forbid-
den gap in relation to the valence band (VB) and conduction band (CB); (b)
MATLAB simulation showing contours for given CB-IB and IB-VB transition
energies under AM 1.5 illumination at 1000 suns concentration. Figure cour-
tesy of T. Bald, RIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 (a) Photonic events occurring in a semiconductor, including absorption, reflec-
tion, transmission, emission, and photon recycling; (b) A planar mirror on the
rear surface can reflect internal photons back towards the junction or contacts
for potential collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 All design templates are shown above, including test structures and baseline
and QD ELO device structures. Cells are flipped and polarity is reversed during
the process, so the layer stacks are grown inverted. The repeated QD stack and
the 4′′ ELO template are also shown. . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Epitaxial lift-off process flow as performed by MicroLink Devices, Inc. Device
polarity is reversed during the process, so the layer stack is grown inverted.
Figure courtesy of MicroLink Devices, Inc. . . . . . . . . . . . . . . . . . . . 19

2.3 Layer structure for ELO devices pre- and post-ELO used for solar cell device
characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Images of a single 0.25 cm2 ELO device (a), next to a US dime for reference (b). 20



xi

2.5 (a) n-i-p band structure detailing relative energies of the grown materials; (b)
zoom of the intrinsic region showing a 5x layer of QDs. . . . . . . . . . . . . . 21

2.6 On the left, the effect of current generation due to light is shown. The light IV
is typically flipped into the first quadrant, shown on the right with important
solar cell figures of merit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Block diagram of a photoluminescence setup. . . . . . . . . . . . . . . . . . . 24
2.8 Block diagram for the TSS solar simulator showing two lamp zones and various

filters used for spectral shaping and tuning. . . . . . . . . . . . . . . . . . . . 28
2.9 Spectra for the two zones of RIT’s solar simulator overlaid on the AM0 spectrum. 29
2.10 Block diagram of a spectral response setup. . . . . . . . . . . . . . . . . . . . 30
2.11 Atomic force micrographs taken at 5 points across the test structure. . . . . . . 33
2.12 AFM statistical trends taken at 5 points across the test structure for small QDs

with a height less than 5 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.13 AFM statistical trends taken at 5 points across the test structure for large QDs

with a height greater than 5 nm. . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.14 Top-down representative image of wafer placement on the platen during growth.

The platen can hold up to three 2′′ wafers (black dashed lines) or a single 4′′

wafer (red dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.15 AFM binned statistics for three points showing height (a) and diameter (b) for

a pre-ELO test structure radially outward from the center. These test structures
additionally underwent PL (c) and HRXRD (d) measurements at similar points
on the wafer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.16 PL (a) and HRXRD (b) spectra for a test structure pre- and post-ELO. . . . . . 38
2.17 Transmission electron microscopy images of (a) the full layer structure and (b)

the superlattice for QD ELO sample A. . . . . . . . . . . . . . . . . . . . . . . 42
2.18 Transmission electron microscopy images of (a) the full layer structure and (b)

the superlattice for QD ELO sample B. . . . . . . . . . . . . . . . . . . . . . . 43
2.19 Transmission electron microscopy images of the zoomed in QD superlattice of

sample B. Materials used in the superlattice layer stack are labeled. . . . . . . . 45
2.20 Multiple J-V curves for both baseline and QD ELO devices depicting wafer

uniformity. The QD wafer has a significantly higher degree of non-uniformity
in both Jsc and Voc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.21 Box plots showing statistical uniformity for baseline and QD wafers for solar
cell figures of merit: Jsc (top left), Voc (top right), FF (bottom left), and η
(bottom right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



xii

2.22 Variation of solar cell metrics (a) Jsc (mA/cm2) and (b) Voc (V) of devices
measured around the wafer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.23 Dark J-V curves measured during a Jsc-Voc test and used to extract reverse
saturation current densities and ideality factors for ELO devices. . . . . . . . . 49

2.24 Positions of cells measured around the wafer. . . . . . . . . . . . . . . . . . . 50
2.25 EQE curves showing variations in carrier absorption and collection for baseline

and QD ELO devices. The QD wafer non-uniformity seen in AM0 J-V results
is largely related to a significant degradation in base collection in several cells. . 51

2.26 Box plots comparing Jsc values obtained from AM0 LIV measurements (left)
with those calculated through integrated spectral response (JSR) for the entire
device (middle) and only the QD contribution for 880+ nm (right). . . . . . . . 51

2.27 MATLAB simulations following the Hovel-Woodal model to fit experimental
EQE data and extract out carrier transport properties. . . . . . . . . . . . . . . 54

2.28 MATLAB simulations following the Hovel-Woodal model to fit experimental
EQE data and extract out carrier transport properties. . . . . . . . . . . . . . . 54

2.29 Box plots of modeled emitter and base minority carrier diffusion lengths for
the sample set of EQE measurements performed. Baseline ELO cells outper-
form QD ELO cells on average due to longer diffusion lengths that allow for
improved carrier transport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.30 High-efficiency device chosen from baseline and QD sample for comparison.
A current enhancement is seen in the QD device as well as a decrease in Voc. . . 56

2.31 External quantum efficiency calculated from spectral response measurements
of baseline and QD ELO devices. (a) depicts bulk measurements while (b)
zooms in on the sub-GaAs bandedge region of the spectrum, and includes an
electroluminescence measurement. . . . . . . . . . . . . . . . . . . . . . . . . 59

2.32 Nomarski images comparing similar cell regions from baseline ELO and QD
ELO devices. It is clear that the QD ELO wafer suffers from an incomplete
contact etch, leading to some current loss in the short-to-mid wavelength region. 59

2.33 Sub-GaAs bandgap EQE curves showing enhanced absorption in the QD states.
The blue dotted FDTD simulation is a representation of the electric field inten-
sity in a thin cavity of a similar structure to the ELO devices. . . . . . . . . . . 61

2.34 Temperature coefficients for Jsc, Voc, and Pmax for baseline and QD ELO sam-
ples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 Atom displacement in a 2-d lattice due to radiation damage. . . . . . . . . . . . 69
3.2 Can containing 210Po source. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



xiii

3.3 1-sun AM0 J-V curves under increasing alpha radiation, given in displacement
damage dose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 EQE curves for increasing displacement damage dose from alpha irradiation. . 76
3.5 Diffusion length values extracted from MATLAB simulations as a function

of displacement damage dose, given in absolute values (a) and as remaining
factors of BOL (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 (a) Remaining factor solar cell metrics under alpha irradiation for baseline and
QD ELO cells; (b) Remaining factor plot of integrated Jsc for both bulk wave-
lengths (300-880 nm) and sub-GaAs wavelengths (880-1050 nm) as a function
of radiation displacement damage dose for baseline and QD cells. EOL is mea-
sured at 6 × 108 MeV/g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 EQE curve of sub-GaAs wavelengths (880-1050 nm) of a QD cell device mea-
sured prior to and following alpha irradiation, at BOL and EOL. . . . . . . . . 78

3.8 Temperature coefficients for Isc, Voc, FF , and η plotted as a function of dis-
placement damage dose for both a baseline and QD ELO device. . . . . . . . . 79

3.9 Difference in temperature coefficients for solar cell 1-sun figures of merit be-
tween the QD and baseline devices, shown as function of increasing displace-
ment damage dose from α irradiation. . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Upright solar cell structure detailing compounds used in the layer stack. . . . . 85
4.2 (a) Simulation performed using MATLAB that optimized SiO2 thickness layer

based on maximizing reflectivity and current density; (b) FDTD simulation for
a structure with and without SiO2 grading. Note that the electric field intensity
is maximized at a different wavelength. . . . . . . . . . . . . . . . . . . . . . 86

4.3 (a) Patterned back surface of a 2′′ GaAs QDSC for electrical contact; (b) exper-
imental reflectivity measured for a 10x QD device with and without the SiO2

dielectric layer included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 1-sun AM0 J-V curves (left) and EQE spectra (right) for upright 2′′ devices. . . 87



1

Chapter 1

Introduction

1.1 III-V PHOTOVOLTAICS IN SPACE

Solar technology is an essential path for harnessing alternative energy, as the sun

provides a significant, consistent, and substantial amount of power to the earth [1]. It

is among many sources for filling the growing necessity for alternative energy routes,

including wind, geothermal, and water; but is able to provide power in places or sit-

uations where it may otherwise be impractical. For example, solar cells are used in

space to power satellites and allow for remote exploration of the solar system [2]. The

interesting properties of semiconductors make them suitable elements in the process-

ing of solar cells. Solar cell technologies are grouped together by their generation.

First generation solar technology refers to single crystal silicon devices that are at this

point mature from a manufacturing standpoint, and are the most prevalent material

used for solar cells because of the inexpensiveness and abundance of silicon. Sec-

ond generation devices include thin film materials such as CdTe and amorphous Si,

and are inexpensive but also less efficient than first generation devices. The main
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focus of third generation solar is to ”push the limit” of device efficiency, and includes

III-V based material systems and multijunction solar cells.

Silicon was initially investigated for space PV, and early developments in PV pro-

cessing technologies made Si solar cells easily manufacturable on a large scale. In

addition, Si was and is still the formidable technology for terrestrial PV for similar rea-

sons. Si has a reasonable bandgap for many applications, and is easily passivated

with SiO2. However, there are tradeoffs in performance for Si versus other semicon-

ducting materials. Primarily, Si is an indirect bandgap semiconductor, which necessi-

tates not only an energy transfer from a photon but an additional momentum transfer

for carrier absorption. This leads to an undesirable absorption spectra that tails off

as photon energies approach the bandgap energy. Silicon has a high mobility and

therefore a high diffusion length, which allows for a high collection probability with a

thicker device. However, this makes Si solar cells bulky and heavy, which is impracti-

cal in a space environment: a determining factor in device deployment is the cost to

weight ratio, thus lighter cells will have a higher impact in space because ultimately

the overall cost is decreased. Furthermore, Si is not a radiation hard material, which

is a significant disadvantage in a space environment.

The realization of epitaxial growth during the 1980’s led to the development of III-V

semiconductor compounds formed from gallium, indium, arsenide, antimony, phos-

phide and others to use as material systems instead of the previously used group IV

elements: silicon and germanium. The III-V materials have a direct bandgap, which

allows for high absorption up to the band edge; a flexibility for compound tunability and
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optimization; a higher radiation tolerance, which is promising in a space environment;

and a higher overall absorption, which means the grown device can be much thinner

and still absorb incoming photons with energies larger than the bandgap energy. The

relation of several of these compounds with respect to their bandgaps and lattice con-

stant is shown in Figure 1.1. The semiconductors used must be lattice-matched in

order to epitaxially grow materials with minimized defects (e.g. In0.48Ga0.52P grown on

GaAs). Only a few single crystal high quality substrates are available, such as GaAs,

InP, and GaSb, which limits the choices of lattice-matched materials. In this thesis,

GaAs was used as a substrate material.

Figure 1.1: Crystal growers chart of bandgaps as a function of lattice constants at 300 K for several
binary and ternary III-V semiconductors. The dotted lines aid in determining lattice-matched materials
for growth. Figure courtesy of M. Slocum, RIT.
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1.2 QUANTUM DOTS IN PHOTOVOLTAIC DEVICES

1.2.1 Advantage of Quantum Dot Incorporation

A rigorous model for investigating the limiting efficiencies of solar PV was established

by Schockley and Queisser (SQ) in 1961 [3]. For single junction GaAs solar cells

under AM0 illumination (illumination in a space environment), the theoretical upper

efficiency limit calculated using this detailed balance approach is 31%. The SQ treat-

ment attempts to quantify the significant impact of loss mechanisms to solar cells such

as transmission and thermalization. Photons with energies above the bandgap of the

material can be absorbed, but a photon with an energy below that of the bandgap can-

not. The latter process is referred to as transmission. Photons with energies above

the semiconductor bandgap generate carriers with an excess amount of energy, and

relax down to the bandedge releasing that energy as heat. This mechanism is known

as thermalization.

Figure 1.2 visually qualifies these intrinsic loss processes as a function of bandgap.

Carnot, Boltzmann, and emission mismatches contribute some power loss realized as

a reduction in either open circuit voltage or short circuit current. However, it is appar-

ent in Figure 1.2 that the most significant impact to solar cell power loss comes from

transmission and thermalization. For wide bandgap materials, thermalization is de-

creased but transmission losses increase. Conversely, for narrow bandgap materials

transmission losses are mitigated but thermalization lends more to power loss. Clearly,

there is an optimal bandgap leading to maximum power out of the cell, at 1.31 eV [4].
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There have been a number of proposed techniques to overcome the SQ limit and re-

duce loss mechanisms. Some examples include spectrum splitting using multifunction

cells and third-generation techniques such as hot carrier solar cells and impurity band

absorption. These techniques to help push solar cell conversion efficiencies beyond

the SQ limit can be enabled by quantum dots.

Figure 1.2: Visualization of intrinsic solar cell power loss mechanisms, such as transmission and ther-
malization, as a function of semiconductor bandgap. Figure courtesy of Z. Bittner, RIT.

Self-assembled strain-balanced quantum dots (QDs) have been proposed as use-

ful candidates to enhance the absorption properties of photovoltaic solar cells in the in-

frared, decreasing transmission losses [5, 6, 7]. Advances in growth techniques such

as metallic beam epitaxy (MBE) and metal-organic vapor-phase epitaxy (MOVPE)

have made it possible to grow semiconductor nanostructures, such as QDs, on the

order of several nanometers. The unique properties of quantum confined materials
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contrast from ordinary bulk material behavior and establish quantized optoelectronic

states. If dimensions of confinement approach and become less than the de Broglie

wavelength of the carriers being confined, discrete energy levels will form in the poten-

tial well. The effects on quantum confinement in increasing dimension on the density

of states (DOS) function is summarized in Figure 1.3. The DOS is a measure of

the number of quantum states per unit energy. Integration of the DOS function with

respect to energy will yield a total number of states, which will affect both electrical

transport and optical properties of the nanostructures. QDs are quantum confined

nanostructures in all three Cartesian dimensions, which leads to a discretized density

of states. The optimum size of a QD is dependent on the conduction band offset, ef-

fective carrier masses, and the upper limit of the thermal population in the conduction

band.

Figure 1.3: Density of states as dimensionality of confinement increases. Figure courtesy of A. Podell,
RIT.
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QD based solar cells include inorganic colloidal QDs and epitaxial crystalline QDs.

The former are typically formed by chemical synthesis in a host matrix, and are not

the focus of this thesis. Lattice mismatched materials (e.g. indium arsenide (InAs) on

GaAs) create a certain amount of stress that is the driving force behind QD formation

during epitaxial growth. The lattice constants of InAs (6.05 Å) and GaAs (5.65 Å) create

a 7.8 % compressive mismatch. Self-assembly due to a slight lattice mismatch (2-10%)

is known as Stranski-Krastanov (SK) growth. In this growth mode, monolayers are

deposited epitaxially on the substrate, and the larger lattice (InAs) induces strain as

the crystals compress to match the substrate below. Up to a critical thickness Θc,

growth is 2-dimensional and forms the wetting layer (WL). After reaching Θc, growth

follows the more energetically favorable formation of strained QD islands [8, 9]. These

processes are depicted in Figure 1.4. Self-assembly using this growth regime typically

results in QDs with diameters of 15−45 nm and heights of 1−6 nm, with areal densities

around 1 × 1010 cm−2 [10]. This results in a relatively low dot density for a single QD

layer, so multiple layers are grown to improve the overall filling factor of the superlattice,

or the area filled by the QDs. However, stacking too many layers will lead to loss of

material quality due to the accumulation of strain through the superlattice [11]. In

order to mitigate material degradation in the superlattice, a strain-balancing technique

is used to offset strain [7].

Figure 1.4: Self-assembly in the Stranski-Krastanov growth mode, through which epitaxial quantum dot
growth is realized.
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1.2.2 The Intermediate-Band Solar Cell (IBSC)

QDs have been investigated as an avenue for establishing mini-band absorption in

intermediate-band solar cells (IBSCs) [12, 13]. This technique is potentially useful

in converting sub-host-bandgap photons that would otherwise be lost to transmission:

an IBSC implements a partially-filled energy band within the forbidden gap of a semi-

conductor, and is discussed in-depth in Refs. [14, 15]. As QDs are grown in the i-

region, their wavefunctions overlap and this coupling forms a mini-band which allows

for tunneling of the localized excited carriers. In an IBSC, absorption occurs from the

host valence band to the intermediate band (IB), then from the intermediate band to

the host conduction band as well as between the host valence and conduction bands.

This technique is potentially useful in converting sub-host-bandgap photons that would

otherwise be lost to transmission by allowing for multiple transitions for photon absorp-

tion with no loss in open circuit voltage. Requirements for an efficient IBSC are that

the intermediate state is half-filled with electrons and favorably located so that tran-

sitions into and out of the intermediate band have equivalent absorption [16]. This

is depicted in the IBSC schematic in Figure 1.5(a). Figure 1.5(b) shows a contour

plot of efficiency profiles simulated using MATLAB under 1000 suns concentration. It

is clear that for certain conduction band-to-intermediate band and intermediate band-

to-valence band transition energy choices in an IBSC system, very high efficiencies of

over 60% are theoretically attainable under concentration.

IBSCs have been investigated experimentally, although the formation of the inter-

mediate band has proven to be a challenge. The introduction of defect levels and
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Figure 1.5: (a) IBSC diagram showing location of intermediate band (IB) in the forbidden gap in relation
to the valence band (VB) and conduction band (CB); (b) MATLAB simulation showing contours for
given CB-IB and IB-VB transition energies under AM 1.5 illumination at 1000 suns concentration.
Figure courtesy of T. Bald, RIT.

quantum dots have been investigated to develop an IB. However, the full potential of

IBSCs may be difficult to achieve due to weak absorption into quantum dots as well as

the difficulty of maintaining partially populated intermediate states [17, 18]. One way

to improve absorption into QD states is to improve the filling factor of the superlattice.

Typically, this is achieved by growing a large number of QD layers. However, this ap-

proach will lengthen epitaxial growth time and requires optimized strain-balancing to

accommodate for an increase in strain of the superlattice as more layers are added.

Another way to improve absorption into QD states is to instead focus on increasing

the optical path length (OPL) of light through the superlattice, which can be realized

through the addition of light trapping or rear-surface light management techniques.

For instance, using a highly reflective mirror on the rear surface of the solar cell can

improve the reflectivity of the metal-semiconductor interface by nearly 20%, based on
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calculations involving the complex indices of refraction of the materials. Although this

seems like a large improvement, reflected photons will be wasted in a thick substrate

due to free carrier absorption. Therefore, back surface light management necessitates

the removal of the substrate. Methods to remove the substrate will be discussed in the

following section.

1.3 MOTIVATION FOR THIN SOLAR CELLS VIA EPITAXIAL LIFT-

OFF

Basic light events occurring in a semiconductor material are shown in Figure 1.6(a).

An incoming photon can be absorbed, reflected, or transmitted through the material.

In a solar cell, absorption occurs throughout the device, depending on the energy of

the incoming photon. Many internal re-absorption and re-emission events, depicted in

Figure 1.6(b), could potentially increase external extraction of carriers in a thin cell.

The addition of a planar mirror would reflect some photons back through the device,

improving their optical path length.

In order to enhance nanostructure absorption and increase the conversion effi-

ciency of a quantum dot (QD) enhanced solar cell, the effective optical path length

through the QD region must be increased. For instance, a single QD layer with density

on the order of 1 × 1010 cm−2 and a height and diameter of 3 nm and 20 nm, respec-

tively, has a QD coverage in a 1 cm2 area of less than 15%. Growing a large number

of repeated QD layers to increase the effective filling factor of the superlattice requires
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Figure 1.6: (a) Photonic events occurring in a semiconductor, including absorption, reflection, transmis-
sion, emission, and photon recycling; (b) A planar mirror on the rear surface can reflect internal photons
back towards the junction or contacts for potential collection.

an extremely precise degree of strain-balancing, where slight deviations in layer thick-

ness would result in lower open circuit voltage due to an increase in non-radiative

recombination. However, the use of a backside reflector or plasmonic nanostructures

in a thin film GaAs device could at least double the effective OPL of light through the

active region of the device [19, 20, 21]. This effect is not seen in a traditional QDSC

due to free carrier absorption in the thick substrate. Ultimately, a thin QDSC has the

potential of increasing both short circuit current density and open circuit voltage: the

use of a backside reflector on a thin film GaAs device will aid in reflecting bandedge

and IR photons back into the device, effectively decreasing the total number of non-

radiative recombination events while potentially increasing absorption into QD states.

Miller and Yablonovitch argue furthermore that efficient light extraction of internal pho-

tons is necessary in minimizing non-radiative recombination and optical losses in a

device [22]. Internal photons are those photons which are emitted during a recombi-

nation event, but are re-absorbed, creating a new electron-hole pair. This sequence

of events can lead to total internal reflection and photon recycling, further increasing
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the OPL of light in the solar cell.

Therefore, utilizing thin film QD devices allows a larger design space for nanostruc-

ture absorption enhancement. In fact, there have been many recent advances made

for thin film epitaxial lift-off (ELO) GaAs devices for both single junction cells [23, 24]

and multijunction systems that benefit from a cost savings due to successful substrate

reuse [25, 26, 27, 28]. In addition, ELO allows for device processing on both sides of

the cell to optimize current absorption and collection using mirrors or bifacial contacts

[29]. Furthermore, plasmonic nanoparticles have been incorporated as light trapping

structures in a single junction QD-enhanced solar cell to improve infrared photore-

sponse [30]. In this thesis, thin-film QD-enhanced single-junction solar cells have

been grown and processed by ELO rather than the bond-and-transfer technique that

has been previously reported by Tanabe et al. [31]. The ELO process in regards to

this work will be discussed in detail.

1.4 RADIATION DAMAGE IN GALLIUM ARSENIDE SOLAR CELLS

Longtime goals of PV research and development have been to further increase ef-

ficiency and mass specific power while lowering cost and maintaining cell longevity.

This is most important for devices grown for space applications where harmful elec-

tron and proton radiation can have a detrimental effect on unprotected cells. The next

generation of space PV is the inverted metamorphic (IMM) triple junction solar cell

(TJSC) [32]. The current state-of-the-art III-V upright TJSC features a top InGaP2
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subcell and a middle (In)GaAs subcell grown lattice matched to a Ge substrate, result-

ing in band gaps of 1.85 eV / 1.42 eV / 0.66 eV with a low defect density. Metamorphic,

or lattice mismatched growth, allows for a larger flexibility in solar cell design: the de-

sign space created by moving toward IMM devices allows for a more optimal selection

of material band gaps.

During IMM growth, each subcell is grown in a reverse order, starting with higher

band gap materials. These are grown lattice matched to a GaAs substrate and include

a transparent metamorphic grade to the bottom 1.0 eV subcell, which has been shown

to yield conversion efficiencies of over 40% under concentrated AM1.5 spectrum [33].

If grown upright, the bottom subcell would not be lattice matched, and thus would

result in a defect-ridden device. Using the inverted method, material quality can be

maintained throughout all junctions. After growth, the substrate is removed, yielding

a low-weight cell. High quality material growth and excellent device characteristics

have been previously reported [33, 34]. Despite the noticeable advantages of these

structures in a space environment, some of the IMM junctions are not as tolerant

to radiation as the current upright TJSC, although improvements have been made

[35, 36].

One way to improve radiation tolerance is to use quantum dots (QDs), which have

been shown to be more tolerant to both electron and proton irradiation [37]. Previous

studies have shown QDs to have a greater radiation tolerance than other nanostruc-

tures such as quantum wells due to the effects of 3D quantum confinement [38]. In

addition, embedded QDs in the middle junction of an InGaP/(In)GaAs/Ge TJSC have
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resulted in an overall better radiation tolerance to open circuit voltage degradation than

similar TJSCs without QDs [39]. This can be extended to IMM devices in future work

to provide a more suitable current match for the middle and bottom junctions while

improving radiation hardness.

1.5 ORGANIZATION OF WORK

The following chapters describe the development and application of thin epitaxial lift-

off solar cells that include an embedded superlattice of quantum dots to improve the

absorption past the GaAs bandedge. There has been no previously published work

on this specific process. Chapter 2 focuses on the optical, materials, and electrical

characterization of these devices. This includes a detailed statistical study of several

devices around a 4′′ wafer as well as a discussion of the best-performing cells and

avenues for improvement. Chapter 3 presents data and analysis of the effects of α

radiation on QD ELO devices. Chapter 4 presents an overall conclusion for this study

and a discussion on future work to enhance the optical absorption in the QD states.
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Chapter 2

Quantum Dot Epitaxial Lift-Off Solar Cell Char-

acterization

2.1 THE EPITAXIAL LIFT-OFF PROCESS

2.1.1 Motivation

Recently, there has been renewed interest in combining innovative nano-scale fea-

tures such as quantum-dots (QDs) with optically functional textures within the solar

cell structure to improve efficiency in single junction III-V solar cells [30, 31]. Self-

assembled InAs QDs in a single junction GaAs solar cell have experimentally demon-

strated an absorption enhancement in the infrared [40], and could potentially increase

conversion efficiency by reducing intrinsic losses due to photon transmission. Al-

though the filling factor of a single QD layer is less than 15%, combining a thinner

cell with light management techniques can increase the effective optical path length of

light through the active region of the device.

Epitaxial lift-off is a developed procedure for processing thin film cells through the
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chemical removal of the substrate and subsequent bonding to a metal handle. The

crystallographic substrate is necessary for epitaxial growth, but once growth is com-

pleted it only adds an unnecessary weight and bulk material that does not aid in photon

absorption or carrier collection. Removal of the substrate through ELO allows for both

a reduction in cost due to substrate reuse and light management on the rear of the

thin device to increase the optical path length of light.

2.1.2 Growth and Processing of ELO Test Structures and Devices

All samples were grown at NASA Glenn Research Center by metal-organic vapor-

phase epitaxy (MOVPE) in a Veeco P125LDM chamber. In the MOVPE process,

group-III precursors (tri-methyl gallium TMGa, try-methyl indium TMIn) and group-V

sources (arsine AsH3, phosphine PH3) are flown into a reactor chamber. At an ele-

vated temperature, atoms diffuse to the substrate, settle into a vacancy, and bind with

the crystal structure at the surface. Byproducts are removed from the system. This

growth method yields high quality crystalline material at low vacuum. ELO structures

were grown on 4′′ GaAs ELO templates consisting of an n-type GaAs (100) substrate

offcut 6◦ towards [110], with a pre-grown AlxGa1−xAs release layer used for lift-off and

an n-type GaAs buffer layer. Structures were grown based on an inverted design,

which was compatible with subsequent epitaxial lift-off. This means that a p-i-n growth

stack top-down results in a n-i-p solar cell following ELO.

In order to characterize the effects of growing strain balanced QDs on an ELO

template, test structures were grown with an embedded superlattice of 5 layers of
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InAs/GaAs QDs used for optical and material characterization, as well as surface dots

used to investigate statistical QD size distribution. The test structure growth design

template is shown in Figure 2.1. Bulk unintentionally doped (UID) GaAs and InGaP

layers were grown at a temperature of 620 ◦C. Highlighted in Figure 2.1 is the strain

balancing technique used for QD growth in the intrinsic region. The QD growth is

performed at a lower temperature than the bulk layers, at an InAs growth temperature

of 480 − 500 ◦C). 2.0 ML of InAs deposition and a 4 ML GaP strain balancing layer

were used. The strain balancing thickness was calculated for zero stress conditions

assuming a QD density near 5 × 1010 cm2, a QD height of 2 − 3 nm and a wetting layer

(WL) of 1 nm, discussed in detail in Ref. [41]. The nominal repeat layer thickness is

12 − 13 nm.

Two sets of inverted devices on ELO templates were grown and both of the design

templates are also included in Figure 2.1. A baseline ELO structure with a GaAs emit-

ter, i-region, and base of thicknesses 50, 100, and 2500 nm, respectively, was used as

a reference device with no QDs. The structure included InGaP front window and back

surface field layers for surface passivation and carrier transport enhancement. A QD

ELO structure was also grown with an exact structure as the baseline except for the

inclusion of a 10-layer superlattice of QDs in the intrinsic region, giving a total i-region

thickness of 145 nm. The repeated period of the QDs was calculated and grown in

the same way as the test structure. Zn and Si were used as p- and n-type dopants

for bulk layers, and highly doped contact layers were formed by either Si or C. Doping

levels and thickness for each layer in the design are depicted in Figure 2.1.
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Figure 2.1: All design templates are shown above, including test structures and baseline and QD ELO
device structures. Cells are flipped and polarity is reversed during the process, so the layer stacks are
grown inverted. The repeated QD stack and the 4′′ ELO template are also shown.
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Figure 2.2: Epitaxial lift-off process flow as performed by MicroLink Devices, Inc. Device polarity is
reversed during the process, so the layer stack is grown inverted. Figure courtesy of MicroLink Devices,
Inc.

Epitaxial lift-off and fabrication was performed at MicroLink Devices, Inc. Specific

details on the fabrication process is proprietary information and cannot be disclosed,

but the ELO process is summarized as shown in Figure 2.2: following growth, a

metal handle layer was applied to the top surface of the inverted solar cell structure.

Next, a wafer-scale wet chemical procedure was performed to remove the solar cell

and handle layer from the substrate. A thin amount of aluminum gallium arsenide

(AlxGa(1−x)As) was used as a sacrificial release layer. An etch solution with a large

selectivity between the solar cell structure and the release layer was used to remove

the solar cell array on top of the AlxGa(1−x)As without inducing damage to either the
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solar cell or the substrate. After lift-off, the thin ELO foil was mounted to a temporary,

rigid carrier for further processing, metallization, and device testing. No anti-reflection

coatings were used. Figure 2.3 shows a layer design structure of the QD ELO solar

cell devices pre- and post-ELO for further visual aid of the ELO process, following

the ELO schematic outlined in Figure 2.2. Baseline ELO and QD ELO devices were

fabricated with a 14x14 array of 0.5x0.5 cm2 devices. Images of single devices are

shown in Figure 2.4.

Figure 2.3: Layer structure for ELO devices pre- and post-ELO used for solar cell device characteriza-
tion.

Figure 2.4: Images of a single 0.25 cm2 ELO device (a), next to a US dime for reference (b).
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2.2 EXPERIMENTAL SETUP

2.2.1 Basic Solar Cell Operation

A solar cell is fundamentally a pn junction diode. An incoming photon with energy

equal to or greater than the bandgap energy of the cell will generate an electron-hole

pair. Other photons are lost to transmission or indirectly transfer energy to the lattice

through thermalization. A visual of the photon processes is shown on a typical band

diagram in Figure 2.5.

Figure 2.5: (a) n-i-p band structure detailing relative energies of the grown materials; (b) zoom of the
intrinsic region showing a 5x layer of QDs.

An electron or hole generated due to light is known as an injected carrier, and as

such is not immediately bound to the crystal lattice and is free to move, resulting in

some carrier transport in addition to thermal excitation. Carrier transport comes in two

forms: drift and diffusion. For an ideal diode in equilibrium, the drift and diffusion com-

ponents are equal and opposite, thus there is no net current flow. Photonic excitation

takes the diode out of equilibrium, resulting in additional minority carriers that diffuse

toward the junction and are swept across due to the built-in electric field between the
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p and n sides. It is assumed that a single absorbed photon with E>Eg generates one

electron-hole pair.

The amount of current generated at zero applied forward bias is called the short

circuit current (Jsc). As forward bias is applied to the diode, the diode current begins

to balance out the light injected current until a point is reached where there is no net

current through the diode. This point is termed the open circuit voltage (Voc). Thus,

the total current is the light injected current minus the diode current, as shown in the

the well known diode Equation 2.1. Here, JL is the light injected current density and q

and kB are the fundamental charge and Boltzmann constant, respectively, and T is the

operating temperature. J0 is a lumped parameter called the reverse saturation current

density that depends on material properties such as diffusion lengths, doping levels,

and diffusivity constants, and n is the cell ideality factor. J0 and n are used to describe

cell performance and will be discussed in further detail later.

J = JL − J0

(
e

q(V )
nkBT − 1

)
(2.1)

The diode J-V curve is shifted into the fourth quadrant by Jsc, and is plotted in

relation to JL in Figure 2.6, left. This operation range is termed the “power quadrant,”

and by convention is flipped into the first quadrant to show power generation for the

solar cell as in Figure 2.6, right. The point on the J − V curve where the maximum

power is generated is called Pmax. The fill factor is calculated from Pmax with Equation

2.2. The solar cell conversion efficiency (η) is the ratio of the maximum generated

power Pmax to the incident power Pin at a given illumination, or Pmax/Pin. For the AM0
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spectrum, Pin is taken to be 136 mW/cm2. The solar cell metrics Jsc, Voc, Pmax, and

FF are also depicted on the right J-V curve in Figure 2.6.

FF =
Pmax
Isc ∗ Voc

=
Im ∗ Vm
IscVoc

(2.2)

Figure 2.6: On the left, the effect of current generation due to light is shown. The light IV is typically
flipped into the first quadrant, shown on the right with important solar cell figures of merit.

2.2.2 Solar Cell Testing Methodologies and Experimental Setups

Materials and optical characterization was performed via atomic force microscopy,

photoluminescence, electroluminescence, high resolution X-ray diffraction, and trans-

mission electron microscopy. The testing methods and performed experiments are

outlined here. Prior to ELO, atomic force micrographs (AFM) of the test structures

were taken using a Veeco Dimension 3100 AFM operating in tapping mode. The tool

brings a piezoelectric tip attached to a cantilever across the wafer and measures a

potential. A potential difference is measured when the tip reaches a surface structure.
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Scanning across larger areas leads to an image with nanometer resolution that is

used to detect surface features. Several 1x1 µm measurements were taken on each

test structure to characterize QD uniformity across the 4-inch test structure. Scan-

ning Probe Image Processor (SPIP) software was used to calculate statistically based

values for QD density, height, and diameter from the AFM images [42].

Optical properties of the QDs were investigated before and after ELO using pho-

toluminescence, taken with a 514 nm Argon ion laser and sensed with an InGaAs

detector at room temperature and a Horiba Jobin iHR320 monochromator. A block

diagram of the PL setup is shown in Figure 2.7. This technique utilizes a laser to

pump light at a high power density to promote carrier emission.

Figure 2.7: Block diagram of a photoluminescence setup.

Stimulated carriers cannot be collected electrically and recombine. This results

in a high intensity luminescence at wavelengths typically corresponding to the GaAs

band-to-band transition, the wetting layer transition, and the quantum dot ground state

transition. Due to the smaller bandgap of the QD structures, carriers that fall into

these states will recombine at a longer wavelength than the bulk GaAs material.

This technique is useful in evaluating the relative intensities and peak locations for
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these transitions. The statistical spread of the varying island sizes that is investigated

through atomic force microscopy techniques is inherent of a QD ensemble created

by self-assembly methods, and it is well known that this size distribution of the QDs

leads to inhomogeneous broadening of the optical emission. This results in broad PL

peaks with a full width at half maximum that is typically on the order of several tens of

nanometers.

A technique similar to PL that requires an electrical bias and a complete metal-

lization to excite carriers is called electroluminescence (EL). This measurement is

useful to determine states resulting quantum-confined structures that have different

bandgaps than the bulk semiconductor. A forward bias is applied to the device to in-

crease carrier recombination and the photon emission that results is sent through a

fiber optic cable and monochromator to detect and relate spectral information for the

device.

A Bruker D8 Discover high-resolution X-ray diffractometer was used to measure

the strain in the QD superlattice with ω/2θ scans of the [004] plane reflections. Out-

of-plane strain values of the superlattice with respect to the GaAs substrate were

extracted using a differential formula for Bragg’s law, given in Equation 2.3. Here,

∆θSL is the difference in angle between the substrate Bragg peak and the zeroth

order superlattice peak, θb is the value of the substrate Bragg angle, and ∆a/a is the

fractional mismatch representing the out-of-plane strain in the superlattice.

∆a

a
= ∆θSLcotθb (2.3)
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Using this technique, three important figures of merit related to the superlattice

strain can be extracted: one, a positive or negative value will describe if the strain is

compressive or tensile. This is important in strain balancing optimization. Two, a value

for strain is calculated, quantifying the amount of strain on the superlattice. Strain

values are typically in the several hundreds of parts per million (ppm). Finally, the

periodicity or total thickness of the superlattice can be calculated and compared to

growth design.

Cross-sectional Transmission electron microscopy (TEM) measurements can be

used to investigate defects and give information on the type and size of the defect

as well as the location within the structure. In this technique, a beam of electrons

is transmitted through a very thin sample, forming an image of interactions with the

material. This is then magnified, focused, and detected by a sensor. Due to the small

de Broglie wavelength of electrons, this technique has the capability of imaging at a

significantly high resolution. Faults in the structure of the crystal lattice as well as

the quality of the QD superlattice can be readily viewed using this technique. TEM

measurements were provided by Phil Ahrenkiel at the South Dakota School of Mines

and Technology.

Electrical device characterization was performed through current-voltage measure-

ments in the dark and at 1-sun AM0 illumination, and spectral response. A useful test

in characterizing diode performance described previously is through dark J-V and

Jsc-Voc measurements. Modifications to the ideal diode equation are made by taking

parasitic resistances such as series (Rs) and shunting (Rsh) into account, resulting in
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Equation 2.4. J0 is based on material properties as well as parasitic generation re-

sulting from interfacial states resulting from trap states and non ideal crystal growth,

undesired dopants, and un-passivated side wall bonds. All of these will increase the

reverse saturation current. The ideality factor, n, is used to derive assumptions related

to recombination and generation relationships within the diode. An ideality factor of

n = 1 leads to the assumption that recombination and generation occurs in bulk semi-

conductor outside the intrinsic region or that the device is under low-level injection.

Ideality factors closer to n = 2 describes more recombination and generation taking

place in the intrinsic region or that recombination is limited by both carrier types, an

assumption resulting from high-level injection. Any change in n will affect the slope of

the dark J-V curve and have a significant impact on diode performance.

J = JL − J0

(
e

q(V −JRs)
nkBT − 1

)
− V + JRs

Rsh

(2.4)

Jsc-Voc was used to extract the series resistance described above. Jsc and Voc were

measured via LabVIEW using a Keithley 2400 under increasing concentration from a

quartz tungsten lamp array powered by a Sorensen DLM 80-7.5 power supply. At high

currents, the dark J-V and Jsc-Voc curves deviate from one another due to resistive

losses. These losses are eliminated in the Jsc-Voc measurement as all data is taken

at conditions where no power is dissipated in the device. Comparing the currents at

1-sun was used to calculate series resistance.

Device performance characteristics under AM0 illumination were measured using

a dual source solar simulator from TS Space Systems, calibrated using secondary
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standards to provide a close match to 1-sun solar spectrums. Supplied 4 cm2 subcells

from the NASA Glenn Research Center that were used in an international round robin

test were used to calibrate the solar simulator [43]. A block diagram of the system

is shown in Figure 2.8. A 6 kW hydrargyrum medium-arc iodide (HMI) lamp provides

UV and visible light and a 12 kW quartz-tungsten-halogen (QTH) lamp provides near-

IR and IR light. The complete spectra from the lamps is shaped using filters and

a dichroic mirror, and a large folding mirror focuses the light down onto the device-

under-test (DUT) placed on the metal chuck.

Figure 2.8: Block diagram for the TSS solar simulator showing two lamp zones and various filters used
for spectral shaping and tuning.

Calibration for these tests used an InGaP subcell with a bandgap of 1.75 eV to

calibrate the HMI followed by a GaAs subcell with a bandgap of 1.42 eV to set the QTH

lamp voltage. A plot of the simulator intensity as well as the ASTM AM0 spectrum is

shown in Figure 2.9 with the GaAs bandedge cutoff of 878 nm. A 6000K blackbody,

often used to approximate the temperature of the sun, is included for reference. The
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solar simulator is used to calculate various solar cell figures of merit such as the short

circuit current Jsc, open circuit voltage Voc, fill factor FF, and efficiency η, as described

in the previous section.

Figure 2.9: Spectra for the two zones of RIT’s solar simulator overlaid on the AM0 spectrum.

Spectral responsivity measurements were taken to analyze absorptive properties

of the devices using an Optronics Laboratories OL 750-S Monochromater with an

OL750-HSD-300 Silicon detector that was calibrated using a Si calibration standard.

A block diagram of the setup is depicted in Figure 2.10. A tungsten lamp sends light

through a monochromator and chopper, and a single wavelength is optically focused

down onto the sample. The sample is held at short circuit, and a current is measured.

Due to the low currents typically measured, the signal is amplified using a preamplifier

and lock-in amplifier before being sent to the computer system. Spectral responsivity

is calculated as the ratio of this current to the input power of the lamp, and is typically
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depicted as a function of wavelength. This ratio can be converted to external quantum

efficiency (EQE) by Equation 2.5. EQE quantifies the absorption and collection prob-

ability of incoming photons as a function of wavelength, and provides for a normalized

analysis of carrier transport throughout the cell.

Figure 2.10: Block diagram of a spectral response setup.

EQE = SR ∗ hc
qλ

(2.5)

An in-house MATLAB model was valuable in visually separating the contributions

to the EQE from different regions of the cell. The model follows the work of Hovel &

Woodall in the 1970’s [44]. The model uses a series of carrier transport equations

in conjunction with absorption data and the flux at a given wavelength, φ, to extract

useful carrier parameters such as minority carrier diffusion lengths, surface recombi-

nation velocities, and minority carrier lifetimes. Absorptive regions of the cell include

a front high-bandgap window layer, emitter, space-charge region, and base. Current

generated and collected in the front window layer is described by Equation 2.6, where

αw, D, Lw, τw Sw are the absorption coefficient, thickness, diffusion length, lifetime,
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and surface recombination velocity in the front window layer, respectively. The emitter

collection is given by Equation 2.7, where αe, d, Le, τe Se are the absorption coef-

ficient, thickness, diffusion length, lifetime, and surface recombination velocity in the

emitter material, respectively. The collection in the space-charge region is given by

Equation 2.8, where the assumption in the depletion region (width W ) is made that

all carriers are swept out quickly by the large drift component of the electric field and

hence collected. Equation 2.9 gives the base contribution to carrier collection for an

assumed long-base diode with a width w and minority carrier diffusion length Lb. The

total modeled spectral response of the cell is given as the summation of the previ-

ously calculated regions as in Equation 2.10. A measure of the short circuit current

density is obtained by integrating the product of measured data or modeled data from

Equation 2.10 across all wavelengths, as in Equation 2.11. Here, SRλ is the spectral

response of the cell and φspecλ is the spectrum.

JD =
qφαwLw
α2
wL

2
w − 1

αwLw + Sw
τw
Lw

(
1 − e−αwDcosh D

Lw

)
− e−αwDsinh D

Lw

Sw
τw
Lw
sinh D

Lw
+ cosh D

Lw

− αwLwe
−αwD


(2.6)

JD+d =
qφe−αwDαeLe
α2
eL

2
e − 1

αeLe + Se
τe
Le

(
1 − e−αedcosh d

Le

)
− e−αedsinh d

Le

Se
τe
Le
sinh d

Le
+ cosh d

Le

− αeLee
−αed


+

JD

Se
τe
Le
sinh d

Le
+ cosh d

Le

(2.7)
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JW = qφe−αwDe−αed(1 − e−αeW ) (2.8)

JD+d+w = qφe−αwDe−αede−αeWLb
αeLb

αeLb + 1
(2.9)

SR(λ) =
JD+d(λ) + JW (λ) + JD+d+w(λ)

qφ(λ)
(2.10)

JSR =

∫
SRλφspecλdλ (2.11)

2.3 CHARACTERIZATION RESULTS AND DISCUSSION

2.3.1 Materials and Optical Discussion

Initially, test structures were grown using the previously described method. The test

structures included an embedded superlattice with 5 repeat units of InAs QDs used

for optical and material characterization, as well as surface dots used to investigate

statistical QD size distribution prior to performing ELO. Characterizing these test struc-

tures allowed for an investigation of materials and optical properties from growing

strain-balanced QDs on an ELO template. Atomic force micrographs taken across

the test structure are depicted in Figure 2.11 with a z-scale for reference as well

as a representative 3D image. A QD height of 5 nm was used to filter the data

through SPIP into small and large QD bins, summarized in Table 2.1. Average values
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compiled from these statistics gave uniformly sized QDs with a small dot density of

2.4 ± 0.8 × 1010 cm−2. Statistical small dot sizes observed were 2.9 ± 0.3 nm in height

and 17.8 ± 2.3 nm in diameter. These values are similar to previously reported values

[40, 45], indicating that uniform, non-coalesced QDs can be deposited on 4′′ GaAs

wafers pre-grown with an AlGaAs release layer and GaAs buffer.

Figure 2.11: Atomic force micrographs taken at 5 points across the test structure.

Table 2.1: Atomic Force Micrograph Statistical Analysis
Small QDs Large QDs

Density Height Diameter Density Height Diameter
Position (×1010 cm−2) ( nm) ( nm) (×109 cm−2) ( nm) ( nm)

Anti-Flat (AF) 1.0 3.2 17.1 0.7 6.6 24.3
Anti-Flat-Center (AFC) 2.8 3.0 21.6 3.2 8.1 21.7
Center (C) 2.5 2.6 15.9 3.3 16.7 22.6
Flat-Center (FC) 3.0 2.5 15.4 0.3 8.2 24.8
Flat (F) 2.9 3.1 18.9 2.4 8.0 23.0
Average 2.4 2.9 17.8 2.0 9.5 23.3
Standard Deviation 0.8 0.3 2.3 1.3 3.6 1.1
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Figure 2.12: AFM statistical trends taken at 5 points across the test structure for small QDs with a height
less than 5 nm.

Figure 2.13: AFM statistical trends taken at 5 points across the test structure for large QDs with a height
greater than 5 nm.

It is important to note the QD size trends and variations across the 4′′ test structure,

as seen in Figures 2.12 and 2.13. Extracted values for density and size of small and

large dots indicate that there is a local variation in QD size across the wafer. Figure

2.14 depicts growth differences for 2′′ and 4′′ wafers: the reactor can accommodate

either three 2′′ wafers or a single 4′′ wafer. For the latter situation, the 4′′ wafer is
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placed in the middle of the platen, such that the center of the wafer is right above

the spindle used for rotation. Heat transfer to the spindle results in a variation in the

thermal profile of the susceptor and platen, which is translated to the wafer. As QDs

are very temperature sensitive [10, 46], QD size and quality are not constant across

the larger wafer in this growth situation. The effect of this inconsistent temperature

profile was also observed through optical means using photoluminescence.

Figure 2.14: Top-down representative image of wafer placement on the platen during growth. The platen
can hold up to three 2′′ wafers (black dashed lines) or a single 4′′ wafer (red dashed line).

Photoluminescence and X-ray diffraction were taken on the test structure at points

corresponding to the center, flat-center, and flat locations of the wafer. AFM binned

statistics for heigh and diameter for these locations as well as the PL and HRXRD

measurements are shown in Figure 2.15. PL was used to investigate relative transition

strengths and intensity peaks, while HRXRD was used to describe the effects of strain

and strain balancing.

The PL scans depict three clear peaks which are described by an 8-band k·pmodel

for InAs QDs in GaAs [47]. The emission around 875 nm is labeled as the GaAs sub-

strate band-to-band transition. The other two peaks arise from sub-GaAs bandgap
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Figure 2.15: AFM binned statistics for three points showing height (a) and diameter (b) for a pre-ELO
test structure radially outward from the center. These test structures additionally underwent PL (c) and
HRXRD (d) measurements at similar points on the wafer.

transitions and are known as the wetting layer (WL) transition (around 925 nm) and the

ground state (GS) InAs QD transition. For the flat and center-flat scans, this value

was around 1000 nm, but a drastic blue-shift was seen in the intensity peak in the

center scan. All PL peaks were fit with a Gaussian profile to study effects due to in-

homogeneous broadening of the QD ensemble. Peak wavelengths and FWHM values

resulting from fits are summarized in Table 2.2, along with strain and superlattice

periodicity values calculated from HRXRD measurements. Superlattice periodicity is
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consistent with growth design described in the previous section. Other than the center

scan, FWHM values are low and have similar peak wavelength values. For the center

scan, there is a drastic broadening of both the WL and QD GS peak, such that they

nearly converge with one another. A comparison of AFM trends to PL spectra can

provide a possible explanation for the significant difference in the results of the center

PL scan: the thermal profile of the reactor led to a variation in both QD size and optical

quality across the 4′′ test wafer. The lower effective growth temperature in the center

of the wafer, caused by the susceptor acting as a heat sink, led to a higher density of

lower quality smaller dots and shifted the center PL peak towards a higher energy.

Table 2.2: PL peak values and extracted strain and periodicity values from symmetric HRXRD scans.
All peak and FWHM values are given in nm.

Center Flat-Center Flat
GaAs Peak 871 871 872

FWHM 9 9 10
WL Peak 932 926 925

FWHM 97 29 24
QD GS Peak 975 1004 1004

FWHM 115 36 33
HRXRD Strain (ppm) 519 461 407

Period (nm) 142 141 141

Figure 2.16(a) depicts PL spectra corresponding to pre- and post-ELO scans used

to investigate changes in QD emission energies and relative transition strengths fol-

lowing ELO. The GaAs substrate emission maintained a consistent full width at half

maximum (FWHM) of 12 nm, and the WL and QD GS transitions maintain a FWHM

pre- and post-ELO between 30 nm and 40 nm, indicating no significant change in size

distribution of the QDs during ELO.
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Figure 2.16: PL (a) and HRXRD (b) spectra for a test structure pre- and post-ELO.

Furthermore, the PL results illustrate a strong PL intensity corresponding to the

QD ground state energy post-ELO. This could be due to less GaAs material on top of

the dots in the post-ELO configuration, which may be increasing the pump power into

the QD ground state. However, it is logical to assume that this would also cause the

WL peak intensity to increase as well, which would keep the ratio of the two intensities

constant. There are two possible interactions that could cause this change: one,

the removal of the thick substrate could have an effect on the superlattice strain and

the optical coupling between the wetting layer and QDs, which could account for the

ratio difference. However, there is still 1-2µm acting as a “substrate” following lift-

off, which is a significant amount of material when compared to the ∼100 nm intrinsic

region containing the superlattice. The more likely possibility is that the QD GS peak

observed in the PL is lined up with a cavity mode that is enhanced because of the thin

device. The cavity resonance would lead to an effective optical enhancement of light



39

into the QDs. This enhanced spontaneous emission has been previously observed in

QD microcavities and would occur in the current situation if the QD GS peak is near

a cavity mode in the thin wafer [48]. In addition, a 4-5 nm blue shift in all three peaks

was observed. This is likely related to a net change in strain of the GaAs substrate

post-ELO and is not due to a change in size of the QDs, which would only affect the

position or shape of the QD GS peak. The pre- and post-ELO PL results are compared

in Table 2.3.

Table 2.3: ELO comparison of PL peak values and extracted strain and periodicity values from symmet-
ric HRXRD scans. All peak and FWHM values are given in nm.

Pre-ELO Post-ELO
GaAs Peak 871 867

FWHM 9 12
WL Peak 926 923

FWHM 29 34
QD GS Peak 1004 998

FWHM 36 33
HRXRD Strain (ppm) 519 178

Period (nm) 142 143

Figure 2.16(b) shows HRXRD measurements taken prior to and following ELO.

The broadening of the bragg peak post-ELO can be explained by the difficulty of the

measurement on a thin foil: the thin structures were delivered on silicon carriers, but

rigidity was still an issue. Additional attempts at adhering the foils flat to the chuck

proved difficult as well. Periodicity and strain values calculated using the data are also

tabulated in Table 2.3. The difference in periodicity between the samples is relatively

insignificant, but calculated strain values show that the sample tends to become less
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compressive (more tensile) following ELO. This can be due to the lack of a thick sub-

strate, as some relaxation is occurring in agreement with the peak wavelength shift

observed in the PL spectra in Figure 2.16(a). A series of additional calculations was

performed involving the vertical component of strain (the component measured using

this HRXRD technique) and a QD material behaving Poisson’s relation that resulted in

an approximate strain value necessary to cause a PL peak wavelength shift. Assum-

ing a pure InAs QD in GaAs having a diameter of 20 nm and height of 3 nm, a tensile

strain of approximately 1000 ppm is needed to cause the 4-5 nm blue-shift observed in

PL.

Overall, the PL, AFM, and HRXRD analyses indicate that QD optical qualities and

material qualities including QD size and superlattice periodicity are maintained post-

ELO. These techniques and the conclusions drawn can be aided and expanded by

performing a transmission electron microscopy (TEM) analysis of a device structure,

which is used to take close-up images of the QD device structure to investigate defects

and dislocations that would impact performance. Threading dislocations that arise

from misfits and other nonideal morphologies like stacking faults can lower carrier

concentrations and mobilities, resulting in device degradation. Ohring notes that the

defect level threshold for minority-carrier devices is around 103 cm−2, as increasing

numbers of defects act as charge-recombination centers, reducing photon radiative

processes as well as minority carrier lifetimes and quantum efficiencies [49].

Several cross-sectional TEM images of two QD ELO devices were taken, labeled

as sample A and sample B, and used to investigate layer composition and thickness.
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Sample A is located spatially near the flat-center of the wafer, and Sample B is lo-

cated near the center (refer to Figure 2.11). Unfortunately, no baseline devices were

measured by TEM for comparison of the inclusion of the superlattice. Furthermore,

without performing additional TEM measurements on devices prior to ELO it is difficult

to conclude if the dislocations seen are a product of inherent strain fields in the QD

devices or are merely a result of intense handling of the thin ELO foils.

Figures 2.17(a) and 2.18(a) each depict a cross-sectional (220) dark-field TEM

image of the entire QD ELO device structure, while Figures 2.17(b) and 2.18(b) show

a cross-sectional (200) dark-field TEM image of the QD superlattice. In these images,

the different layers of the cell as well as the growth direction [100] are annotated. Table

2.4 summarizes the thicknesses of both TEM images, measured using the imaging

software ImageJ [50], and compares them to the growth design. The image contrast

using this diffraction condition is sensitive to both composition and strain variations.

In particular, strain relaxation at the surface of the thin TEM foil gives rise to strong

delineation at the interfaces between adjacent, heteroepitaxial layers. Strain-driven

tilting and bending of the foil as well as thickness variations also contribute to the

contrast.

Dislocations were observed in both Figures 2.17(a) and 2.18(a). Figure 2.17(a)

contains threading dislocations that begin along a misfit line at the superlattice inter-

face and then thread along an angle into the base. Figure 2.18(a) appears to have

a more significant amount of damage to the base, resulting in a shearing of the lat-

tice structure that manifests as cracking of the foil. The more pronounced damage to
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Figure 2.17: Transmission electron microscopy images of (a) the full layer structure and (b) the super-
lattice for QD ELO sample A.

Table 2.4: Lengths of different layer thickness (all in nm) for two QD devices compiled in ImageJ
compared to growth design. The emitter and base regions include the 33 nm i-GaAs region, as this is
difficult to measure in TEM alone.

Window Emitter Superlattice Base BSF + Back
Contact

Total

Growth 30 83 145 2533 260 3051

Sample A 27 83 147 2550 243 3066

Sample B 30 95 148 2700 224 3170
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Figure 2.18: Transmission electron microscopy images of (a) the full layer structure and (b) the super-
lattice for QD ELO sample B.

the base region as observed in TEM seems to lead to a systematic reduction in the

quantum efficiency of QD devices grown on 4′′ wafers in a similar location, which will

be discussed more in depth after a presentation of device results. Dislocations similar

to the V-shaped threads observed in Figure 2.17(a) have been previously observed
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in p-i-n structures with 5 QD layers with no strain compensation [51] that originate in

buried QD layers and travel on different planes to the surface [52].

The superlattices observed in Figures 2.17(b) and 2.18(b) appear to have poor

interface quality. In both, the darker areas are defined by the localized strain fields

of the InAs QDs. The repeat layers seem to ”bunch up” around some of these ar-

eas, which leads to an inconsistent repeat layer thickness perpendicular to the growth

direction. This could be caused by stacking faults propagating from the superlattice-

emitter interface, or from low-angle grain boundaries caused by quantum dot island

coalescense. This could also be a result of an increased temperature profile in this

region of the wafer due to the reactor used (as has been previously discussed). A

higher apparent growth temperature can lead to larger dots and corrugated interfaces

of the superlattice [53].

Figure 2.19 shows a zoomed-in image of the superlattice for sample B. Here, the

growth direction is depicted as well as the materials used in the superlattice stack.

GaAs spacer layers and GaP strain balancing layers have thicknesses that closely

match growth design parameters. Measured parameters are compared to growth de-

sign in Table 2.4. The total superlattice thickness of 150 nm is also consistent with

periodicity values calculated using high resolution X-ray diffraction measurements, as

explained previously.

The TEM in Figure 2.19 shows QD stacking that appears to occur on a 25◦ degree

angle to the (100) plane. As discussed by Shoji et al. [54], this QD alignment is tilted

along a direction of a stronger non-local center of strain, as is visible in the TEM.
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Figure 2.19: Transmission electron microscopy images of the zoomed in QD superlattice of sample B.
Materials used in the superlattice layer stack are labeled.

The strain arises from the buried dots, although the strain compensation layers aid

in mitigating induced strain at each layer surface. When present in lower layers, this

strain tends to affect the QD formation in higher layers and could have a significant

effect on the overall optical absorption properties of the QD ensemble.

2.3.2 Statistical Current-Voltage Characteristics and Discussion

As explained previously, current-voltage metrics are a valuable indicator of solar cell

device performance. Many cells on both the baseline and QD ELO cells were mea-

sured to obtain a statistical spread in solar cell figures of merit. Overall, 55 0.5x0.5 cm2

devices were measured on the baseline wafer and 37 devices were measured on the

QD wafer, shown in Figure 2.20.
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Figure 2.20: Multiple J-V curves for both baseline and QD ELO devices depicting wafer uniformity.
The QD wafer has a significantly higher degree of non-uniformity in both Jsc and Voc.

The QD measurements show a much larger spread in solar cell J-V metrics, while

baseline samples maintain a more consistent profile although there is some spread in

Jsc as well. Box plots were created to display the statistical spread of the baseline and

QD devices for Jsc, Voc, FF , and η, shown in Figure 2.21. In each of these plots, the

box signifies the 25th-75th percentile, and the whiskers expand out to the 5th and 95th

percentiles. The line inside each box describes the median, while the square inside

the box is the mean. The crosses at either extreme are the minimum and maximum

values for the sample set. Statistical spreads for solar cell metrics across the two

wafers are summarized in Table 2.5.

For a comparison of wafer uniformity, Figure 2.22 shows baseline and QD ELO Jsc

and Voc performance for devices measured around the 4′′. The baseline ELO devices

all exhibit a small spread across the wafer, and there does not seem to be an overall

spatial dependence. Jsc values are slightly higher towards the middle of the wafer and
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Figure 2.21: Box plots showing statistical uniformity for baseline and QD wafers for solar cell figures
of merit: Jsc (top left), Voc (top right), FF (bottom left), and η (bottom right).

Table 2.5: IV 1-Sun AM0 Statistical Results
Jsc Voc FF Pmax η

( mA/cm2) ( V) (%) ( mW/cm2) (%)

Baseline
Average 22.5 0.96 83.2 18.1 13.3
Std Dev 0.5 0.08 5.8 2.3 1.7

QD
Average 20.5 0.78 74.1 12.0 8.8
Std Dev 1.5 0.08 5.0 2.5 1.8

trend downward toward the outer edge. Voc across the wafer is also consistent, and

almost all devices exhibited open circuit voltage values greater than 0.97 V. The QD

ELO wafer exhibits a much different performance across the wafer. Both Jsc and Voc

are much lower in the middle of the wafer, and trend to higher values radially outward

from the center. The best performing QD ELO cells were therefore closest to the

wafer edge. Recall in the previous section and Figure 2.15 that the center PL scan
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Figure 2.22: Variation of solar cell metrics (a) Jsc (mA/cm2) and (b) Voc (V) of devices measured around
the wafer.

and AFM micrograph exhibited different results than those toward the outer edge of the

wafer, near the flat. It was hypothesized that this was due to the reactor used during

growth, in which the thermal profile of the platen and susceptor used to hold the wafer

translated to a lower local temperature for QD growth in the center of the wafer. This

led to a larger density of dots with smaller heights that were of lower quality in the

center of the wafer. Clearly, the temperature profile of the reactor has also led to poor

device performance of QD ELO cells in the center of the wafer.
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Figure 2.23 depicts dark J-V curves of two baseline ELO and two QD ELO solar

cells. Extracted values for reverse saturation current J0, ideality factor n, and parasitic

resistances are summarized in Table 2.6. Ideality factors are near 2, indicating that

recombination mechanisms are limited by two-carrier processes. It is apparent that

the QD ELO cells have a higher and more varied dark current than baseline ELO

solar cells. This ultimately leads to a variation in Voc, which was observed in light J-V

measurements. Referring back to Figure 2.22, QD 1 is near the top left of the wafer,

while QD 2 is near the anti-flat center (recall Figure 2.11) location of the wafer. QD 2

exhibits poor light J-V characteristics as well as dark J-V , highlighted by the greater

effect of parasitic resistances and a J0 value that is nearly an order of magnitude larger

than QD1. Even so, QD1 underperforms when compared to dark J-V results of the

two baseline cells, which exhibit a lower Rs, higher Rsh, and J0 values that are an order

of magnitude lower than QD1.

Figure 2.23: Dark J-V curves measured during a Jsc-Voc test and used to extract reverse saturation
current densities and ideality factors for ELO devices.
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Table 2.6: Dark J-V results. A small increase in Rs and similar decrease in Rsh can change J0 by
almost an order of magnitude, as noted in the QD results.

Sample J0 (pA) n Rs (Ω) Rsh ( MΩ))
Baseline 1 24.3 2.02 0.88 83.2
Baseline 2 18.5 2.02 0.87 132.0
QD 1 768 1.97 1.32 30.0
QD 2 3450 1.82 2.04 18.8

2.3.3 Statistical Spectral Responsivity Measurements and Electrical Observations

Figure 2.24: Positions of cells measured around the wafer.

Following the J-V measurements, 20 cells were chosen to calculate statistical dis-

tributions in spectral responsivity measurements across each wafer. The locations

of the cells that underwent SR testing are shown in Figure 2.24. External quantum

efficiency (EQE), calculated from spectral response, can more effectively convey the

absorption and collection yield across incident wavelengths and aid in quantifying the

QD contribution to the short circuit current density. EQE plots for baseline and QD ELO
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devices are shown in Figure 2.25. The EQE plots clarify the varying degree of J-V

performance by many of the QD ELO cells, as will be discussed. Short circuit current

densities were calculated from spectral response using Equation 2.11 as explained

in the previous section using a trapezoidal numerical integration, and are shown and

compared with Jsc values from J-V measurements under the solar simulator in Figure

2.26.

Figure 2.25: EQE curves showing variations in carrier absorption and collection for baseline and QD
ELO devices. The QD wafer non-uniformity seen in AM0 J-V results is largely related to a significant
degradation in base collection in several cells.

Figure 2.26: Box plots comparing Jsc values obtained from AM0 LIV measurements (left) with those
calculated through integrated spectral response (JSR) for the entire device (middle) and only the QD
contribution for 880+ nm (right).
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Table 2.7: J-V Performance Metrics Of 20-Device Sample Set Used For Statistical EQE Measurements.

Jsc Voc FF Pmax η
JSR JSR

[bulk] [λ > 880 nm]
( mA/cm2) ( V) (%) ( mW/cm2) (%) ( mA/cm2) ( mA/cm2)

Baseline
Average 22.5 0.976 84.1 18.4 13.5 21.9 0.093
Std Dev 0.4 0.003 2.0 0.4 0.3 0.3 0.005

QD
Average 20.5 0.775 73.3 11.8 8.7 19.6 0.276
Std Dev 1.6 0.086 5.7 2.7 2.0 1.6 0.026

It is useful to visualize not just how an incoming photon at a given energy will

generate an electron-hole pair, but at what depth in a device. Shorter wavelength, or

high energy photons, will be absorbed at a smaller depth than long wavelength, or low

energy photons. Therefore, EQE spectra are typically split up into the regions of the

device, thus as a simplistic example shorter wavelengths (400-700 nm) correspond

to emitter absorption, and longer (700 nm - near the bandedge) correspond to base

absorption. Increased absorption past the GaAs bandedge observed in the QD ELO

cells is due to the QD superlattice. In many QD cells significant base degradation was

observed, leading to the varying integrated Jsc values. This could be due to residual

strain in the superlattice prior to ELO, which affected the minority carrier diffusion

length and other optical properties of the base.

Table 2.7 summarizes the statistical averages and 1-sigma standard deviation

values of the smaller set of baseline and QD ELO devices used for spectral response

measurements. It is clear that a severe reduction in EQE has lead to a degradation in

Jsc and Voc for several QD ELO cells across the wafer. Measured EQE both in the bulk

as well as beyond the GaAs bandedge (λ >880 nm) was convolved with the AM0 solar

spectrum in space (ASTM E-490) in order to quantify the QD contribution to Jsc. The
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calculation follows Equation 2.11, and these values are also included in Table 2.7. In

order to pinpoint a more definite reason for the overall QE reduction for the QD ELO

devices as compared to the baseline ELO devices, a MATLAB program was used to

model the EQE plots.

A drift-diffusion MATLAB model was used to investigate the variation in cell perfor-

mance across the wafer. Equations following the Hovel-Woodal model outlined pre-

viously were used to extract diffusion length values for all experimental EQE curves.

Due to testing difficulty in making sure the exact same spot in each cell was being

measured, as well as a variation in grid shadowing across many cells, the EQE mea-

surements have an inherent statistical variation. Overall, reflectance may vary from

shape to shape and magnitude may be different depending on the sample. Since not

all samples had corresponding reflectance measurements, a single reflectance file

was used for all simulations. For all simulations, surface and interface recombination

velocities were held constant, and only lifetime values were varied to fit the simulated

curve shape to the experimental data. Figure 2.27 shows example simulation curves

obtained using the model for both a baseline and QD ELO device.

The model is able to show the specific contribution to the total curve that is obtained

in the window, emitter, space-charge, and base regions of the device. Also included

on each curve are the reflectance used in the simulation as well as the experimental

data. Both simulations gave a good match to the experimental data. Figure 2.29 as

well as Table 2.8 help to quantify the degree of variation of EQE measurements shown

in Figure 2.25. The experimental EQE curves from the sample set were modeled to
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Figure 2.27: MATLAB simulations following the Hovel-Woodal model to fit experimental EQE data
and extract out carrier transport properties.

Figure 2.28: MATLAB simulations following the Hovel-Woodal model to fit experimental EQE data
and extract out carrier transport properties.

extract diffusion lengths in the emitter and base regions of each device. Clearly, there

is a large variation in the diffusion length in the base region of the QD curves. Figure

2.28 shows two simulations of QD devices with significantly different base responses

side by side. Similar to the two QD ELO cells described in the dark J-V discussion
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(Figure 2.23), the ”good base” QD cell is located near the top left of the wafer, while

the ”poor base” QD cell is near the anti-flat center location of the wafer. The ”good

base” QD device operates with a minority carrier diffusion length in the base of over

6000 nm compared to the ”poor base” QD cell value of less than 1000 nm. The ”good

base” device is on the order of the baseline devices modeled, showing that the best

performing QD ELO devices are comparable to the baseline devices. High efficiency

devices from the QD ELO and baseline ELO devices are compared in the following

section.

Figure 2.29: Box plots of modeled emitter and base minority carrier diffusion lengths for the sample
set of EQE measurements performed. Baseline ELO cells outperform QD ELO cells on average due to
longer diffusion lengths that allow for improved carrier transport.

Table 2.8: Diffusion Lengths Simulated using MATLAB Drift-Diffusion Model
Emitter Base
( nm) ( nm)

Baseline
Average 50 4450
Std Dev 5 790

QD
Average 40 2430
Std Dev 4 1930
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2.3.4 Comparison of Best Performing Cells Across The 4′′ ELO Wafers

Figure 2.30: High-efficiency device chosen from baseline and QD sample for comparison. A current
enhancement is seen in the QD device as well as a decrease in Voc.

Figure 2.30 shows the J-V curve of best-performing cells across the 4′′ baseline

and QD ELO wafers for comparison. The solar cell metrics for these solar cells are

shown in Table 2.9. Comparison of these values indicates an absolute 0.12 mA/cm2

increase in short circuit current density (Jsc) for the QD device when compared to a

similar baseline device and an 80 mV decrease in open circuit voltage (Voc). The loss in

Voc can be attributed to residual strain from the QD superlattice on the overall structure

as well as increased non-radiative recombination that comes from the inclusion of

the QDs. Additionally, adding QDs decreases the effective bandgap of the solar cell

device, which will result in a lower Voc. Indeed, the fact that the open circuit voltage

of the QD ELO cell was maintained at 0.9 V is a significant improvement over prior
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reports [31]. Moreover, the 80 mV loss in Voc from the baseline ELO device to the QD

ELO device is comparable to reported upright p-i-n QDSCs, which showed a loss of

60 mV between the QD and baseline solar cells [55].

Table 2.9: J-V 1-Sun AM0 High Efficiency Device Results

Jsc Voc FF η
JSR JSR,
Bulk λ > 880 nm

( mA/cm2) ( V) (%) (%) ( mA/cm2) ( mA/cm2)

Baseline 23.0 0.98 85 14.0 22.2 0.10
QD 23.1 0.90 78 11.9 21.8 0.33

Altogether, a Voc near 0.9 V is a very promising initial result for these solar cells,

and the modest increase observed in Jsc is also promising for a device with only 10

QD layers. Note that while a high-reflectance backside mirror was not implemented

in these devices, the bare GaAs to Au rear interface is expected to be nearly 78%

reflective in the near infrared (based on calculation). Index matching of this interface

could improve the reflectance to nearly 98%, resulting in further improvement in Jsc for

the QD ELO device. The reduction in Voc and a lower fill factor for the QD ELO device

gives an absolute reduction in efficiency of 2.1% for the QD cell when compared to

the baseline. Although promising, J-V results indicate that there is much room for

improvement. For instance, strain balancing for these samples was calculated based

on results from previous work with traditional, upright QDSCs. Further optimization

may be necessary for QD ELO devices, and could lead to an improvement in material

quality and Voc.

EQE spectra for the same high efficiency QD and baseline ELO devices compared

in Figure 2.30 are shown in Figure 2.31(a). When compared to the baseline device,
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the QD cell shows a small collection probability loss at shorter wavelengths (400-700

nm), corresponding to emitter absorption, and a close match near the bandedge cor-

responding to base absorption. Integrated spectral response values are also shown

in Table 2.9. Most importantly, the QD ELO sample shows a significantly increased

response for sub-GaAs bandgap wavelengths when compared to the reference cell,

indicating that some of the Jsc contribution is coming from absorption into QD states.

Measured EQE beyond the GaAs bandedge (λ >880 nm) was convolved with the AM0

solar spectrum in space (ASTM E-490) in order to quantify the QD contribution to Jsc,

following Equation 2.11. This was calculated to be 0.23 mA/cm2 after subtracting the

residual current density in the baseline cell due to the thermal distribution of carriers

at the GaAs bandedge. This contribution is greater than comparable upright devices

[45], and can be further enhanced by adding more QD layers or using a high re-

flectance backside mirror to increase the OPL of the cavity. Additionally, the subband

portion of the measured EQE data is expanded in Figure 2.31(b). The plot here shows

ELO baseline and QD cells, an upright QDSC (the details of which are described in

Chapter 4) for comparison, and an EL spectrum of a QD ELO device. The EL peaks,

corresponding to excited states of the QDs, match up in terms of wavelength with the

subband response seen in EQE measurements, indicating that the EQE peaks are

being amplified by QD cavity modes, and will be discussed further.

The slight EQE loss for the QD samples at shorter wavelengths is due to an incom-

plete contact layer etch of the QD ELO wafer. As the devices were grown inverted,
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Figure 2.31: External quantum efficiency calculated from spectral response measurements of baseline
and QD ELO devices. (a) depicts bulk measurements while (b) zooms in on the sub-GaAs bandedge
region of the spectrum, and includes an electroluminescence measurement.

any degradation created by the QD superlattice would logically create threading dis-

locations that would lead to a decreased response in the base region of the solar cell

and thus loss in the QE spectra near the bandedge. An incomplete contact etch would

also lead to a smaller Jsc value than expected observed in light J-V . Figure 2.32

compares Nomarski images taken of baseline ELO and QD ELO solar cells.

Figure 2.32: Nomarski images comparing similar cell regions from baseline ELO and QD ELO devices.
It is clear that the QD ELO wafer suffers from an incomplete contact etch, leading to some current loss
in the short-to-mid wavelength region.
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It is apparent that there is some residual highly-doped GaAs on the surface of

the QD ELO wafer resulting from an incomplete contact etch. This would lead to

degradation in current absorption in short-to-mid wavelengths, and could also be one

cause of the larger statistical spread in response of the QD ELO devices measured.

However, the main cause for the drastic variation in base response and QD device

performance is the temperature profile of the reactor.

It is apparent from Figure 2.31 that the QD contribution to the spectral response

shows resonant peaks that are strongly enhanced when compared to the traditional

upright QD cell [45]. That is, the EQE of sub-GaAs bandedge wavelengths consists of

multiple resonant peaks for the ELO cell that are not seen in a p-i-n upright QD device.

This wavelength region is again zoomed in and depicted in Figure 2.33. This effect

is a result of resonant cavity modes that arise due to the thinning of the device. As

initially proposed, the ELO process creates an avenue for exploiting light management

techniques to enhance the absorption at specific wavelengths. To further demonstrate

this, a finite-differential time-domain (FDTD) simulation was performed. The simulated

structure was identical to the baseline ELO growth design but with a thick i-region, and

included a 2.8 µm bulk GaAs layer with an InGaP front window layer and back surface

field, a thin GaAs back contact and a thick Au reflector.

The electric field intensity was simulated at a depth of 150 nm into this structure,

where the QDs would be placed, and observed as a function of wavelength to com-

pare to sub bandgap EQE peaks. This simulation is also shown on the plot in Figure

2.33. The well-defined sub-GaAs bandgap peaks in the inset of Figure 2.33 occur



61

Figure 2.33: Sub-GaAs bandgap EQE curves showing enhanced absorption in the QD states. The blue
dotted FDTD simulation is a representation of the electric field intensity in a thin cavity of a similar
structure to the ELO devices.

at wavelengths of 882, 908, 939, and 975 nm. The spacing between these peaks

increases by 38% at wavelengths closer to the QD GS transition when compared to

wavelengths near the GaAs bandedge, and is an observed effect in a Fabry-Perot

cavity. Simulated peaks are observed at 884, 906, 938, and 973 nm in close match

to experimental values. This indicates that enhancement of the electric field in the

infrared (due to the cavity formed by the thin ELO device) can be effectively used to

improve QD absorption.
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2.3.5 Temperature Dependent Performance

The two main mechanisms for carrier escape from QDs are thermal activation and

tunneling [56]. At room temperature, the thermal escape rate is much faster than

optical emission from QD states, and is dominant. At much lower temperatures, tun-

neling becomes a dominant carrier escape mechanism. For solar cells that may be

advantageous in space, a study of J-V performance at varying temperatures is use-

ful. Temperature coefficients for both baseline and QD ELO samples were extracted

using linear fits for AM0 1-sun J-V curves taken as a function of temperature between

20 and 80 ◦C. The fits were used to extrapolate temperature curves out to 150 ◦C.

Both the measured data points and fits are depicted in Figure 2.34, and the extracted

temperature coefficients are summarized in Table 2.10.

Figure 2.34: Temperature coefficients for Jsc, Voc, and Pmax for baseline and QD ELO samples.
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J-V results showed a higher Jsc temperature coefficient in the QD cell when com-

pared to the baseline, which has been previously observed in upright QDSCs [57].

As temperature increases, this rate of thermal escape or activation continues to in-

crease, which leads to an increased Jsc temperature coefficient for the QD sample.

In addition, a slightly higher Voc temperature coefficient was observed in the QD cell

when compared to the baseline. An increase in temperature will cause the bandgap

of a semiconductor to decrease. The fact that the Voc decreases less as temperature

increases may indicate that QDs are less affected by bandgap temperature depen-

dence. Overall, this gave a Pmax temperature coefficient increase of 1µW/◦C for the

QD sample as compared to the baseline, which is a relative increase of 10 %.

Table 2.10: Summary of IV temperature coefficients for ELO cells under 1-sun AM0 conditions, per-
centage difference for the QD sample relative to the baseline sample is shown for comparison.

Jsc Voc Pmax FF

(µA/◦C) ( mV/◦C) (µW/◦C) ( %/◦C)

Baseline 4.12 -2.23 -10.64 -0.052

QD 6.25 -2.06 -9.53 -0.064

Rel. % 51.8 7.5 10.4 -21.9

2.4 CONCLUSIONS

In summary, InAs/GaAs QD-ELO solar cells were grown and fabricated to yield thin

solar cells with an increased collection and absorption in sub-GaAs bandgap wave-

lengths. The devices included 10 layers of QDs in the i-region of the cell, forming a
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QD superlattice in the bulk GaAs matrix. This degree of stacking can be extended to

increase the filling factor of the QD superlattice. In order to investigate how the ELO

process affects both optical and material qualities, test structures were grown that

included 5 layers of QDs. The test structures were characterized by AFM, PL, and

HRXRD and then processed via ELO. The thin foil structures were characterized post-

ELO using PL and HRXRD. Optical and materials characterization and analysis of test

structures showed a successful ELO transfer with QD structures, but also that growth

conditions will need to be further optimized to obtain a sufficient degree of uniformity

across a 4′′ wafer.

Analysis of device characterization using J-V characterization gave ranges of sev-

eral solar cell metrics across the wafer. The Jsc of baseline ELO samples ranged from

22.4 ± 0.4 mA/cm2, and for the QD samples 20.5 ± 1.6 mA/cm2. The Voc measured

were 0.976±0.003 V for the baseline ELO samples and 0.775±0.086 V for the QD ELO

samples. The calculated efficiencies under 1-sun conditions for the 0.5x0.5 cm2 cells

were 13.5 ± 0.3 % for the baseline ELO devices measured and 8.7 ± 2.0 % for the QD

ELO devices. The best QD ELO cell had a higher short circuit current density when

compared to the baseline cell by an absolute value of 0.12 mA/cm2.

EQE statistical measurements yielded an integrated short circuit current value for

baseline devices of 21.9± 0.3 mA/cm2, and 19.6± 1.6 mA/cm2 for the range of QD de-

vices measured. Only wavelengths greater than 880 nm were also convolved with the

AM0 spectrum to quantify the QD contribution to the short circuit current density. For

baseline ELO devices, there is a thermal tail of carriers at the bandedge, so the value
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is nonzero. This integrated value is 0.093 ± 0.005 mA/cm2. QD samples had a signifi-

cantly higher subband absorption spectrum, and integrated to 0.276 ± 0.026 mA/cm2.

The integrated EQE past the GaAs bandedge for the QD ELO cell after subtracting

out the baseline ELO value for the best cells measured was 0.23 mA/cm2 due to QD

photocurrent enhancement.
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Chapter 3

Radiation Effects in ELO QDSCs

3.1 MOTIVATION

A never-ending goal in the development of space satellites is increasing mass specific

power while maintaining longevity. Therefore, it is important for the solar cell devices

powering satellites to be both lightweight and tolerant to a degree of radiation. The

main cause of solar cell degradation in space is due to high energy radiation effects

that exist in the Van Allen belts where charge particles are trapped by the Earth’s

magnetic field. Atomic displacements that are created by high electron and proton

fluxes as a result of solar winds are the major cause of degradation, and ultimately

lead to reduced device performance over time. The need for power generation in

space for satellites and space missions has historically led to a significant amount of

research based on determining the effects of radiation damage on semiconductors in a

space environment. Many techniques have been investigated to increase the radiation

tolerance of photovoltaic devices, from simpler design changes such as device polarity

and cover glass shielding [58] to changing to more radiation hard materials [59] to
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moving to lattice-mismatched devices such as the inverted metamorphic (IMM) device,

which takes advantage of inverted growth to yield a thin solar cell [33, 36, 60].

Thin solar cells have an immediate advantage in a space environment because

they are lightweight. One method for processing thin devices is epitaxial lift-off which

both eliminates substrate weight and allows for substrate reuse. This technique has

even been extended to IMM devices, based on a triple junction InGaP/GaAs/InGaAs

structure [34]. However, little research has been performed on the advantages with

respect to radiation tolerance that thin devices have, such as those fabricated by epi-

taxial lift-off. In this study, a sample set of single junction baseline and quantum

dot-enhanced GaAs solar cells discussed in Chapter 2 underwent alpha irradiation

to gauge the radiation tolerance of these devices. Results will be discussed after

an introduction to radioisotopes and effects of high-energy particle interaction with a

semiconductor crystal lattice.

3.2 THEORY

3.2.1 Radioactive Isotopes

Radioactive isotopes, also known as radioisotopes, have unstable nuclei that results

in spontaneous nuclear decays in the form of alpha (α) particles, beta (β) particles, or

gamma (γ) rays. The rate of radioisotope decay is directly proportional to the number

of radionuclides and the probability of decay, and can be used to describe the activity

of the sample as a function of time. This formulation is given in Equation 3.1, where
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N0 is the initial number of radionuclides and λ is the probability of decay. A commonly

used unit of activity is the curie (Ci), equal to 37 billion decays per second. Half-life

is used to describe the lifetime of a radioisotope by its relation to decay probability, as

shown in Equation 3.2.

A = N0λe
(−λt) = A0e

(−λt) (3.1)

t1/2 =
ln(2)

λ
(3.2)

An α-particle is a high energy double-ionized helium nucleus consisting of two

protons and two neutrons. An alpha decay results in an atom that has an atomic

number reduced by two and atom weight reduced by four. A β-particle is a high energy

electron created from neutron decay in a radioisotope. A beta decay results in an atom

with an atomic number increased by one. A γ-ray is an emission of a high energy

photon that can occur spontaneously or with alpha and beta radiation. Gamma rays

result from energetic transitions of nuclei left in an excited state following radioactive

decay. Since the diameter of an atom is much larger than the diameter of its nucleus,

an electron collision is most probable.

3.2.2 Radiation Interaction With Semiconductors

A high energy particle will transfer some or all of its energy to a bonded atom when

incident on a semiconductor lattice, and is back-scattered at some angle. Energy
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losses are divided into two categories: ionizing and non-ionizing interactions. Ionizing

energy loss occurs when the incident particle collides with a bound electron, forcing

it out of position and ionizing the atom. Another electron can be captured by the

ionized atom, neutralizing the charge. Non-ionizing energy loss (NIEL) occurs when

a high-energy particle is incident on an atomic nucleus, which can move the atom

from its position in the lattice, as shown in the schematic in Figure 3.1. The atom is

termed the primary knock-on atom (PKO), which becomes displaced and can disrupt

the periodicity of the lattice by creating a vacancy and an interstitial site along its

path. In this situation the defect pair generated is known as a Frenkel defect. These

defect pairs and other defect complexes can create localized energy states in the

bandgap of the semiconductor, affecting charge transport through carrier generation,

recombination, trapping, compensation, or trap-assisted tunneling [61].

Figure 3.1: Atom displacement in a 2-d lattice due to radiation damage.

The NIEL of a material-particle system is related to the threshold energy for atomic

displacement (Eth), as an increase in Eth means that a greater amount of energy
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transferred to the PKO atom and subsequent collisions is required to generate a de-

fect. The number of vacancies created will be decreased, and overall the material

will appear more tolerant to radiation. It has been shown that strain induced by a QD

superlattice has a significant impact on the value of Eth [62], and that whether the

strain is of a compressive or tensile nature will affect device operation differently [39].

NIEL can be calculated using Equation 3.3, where N is Avogadro’s number, A is the

atomic mass, L is the Lindhard Partition factor (which gives the fraction of transferred

energy that is nonionizing), T is the recoil energy of the target atoms, and dσ/dΩ is the

differential scattering cross-section of atomic displacements. The lower integral limit,

θmin, is the scattering angle for which the recoil energy is equal to Eth [61, 63, 64]. An

introduction of a quantity called the displacement damage dose is useful to compare

radiation damage across different particles and particle energies, and can be used

to predict radiation effects at an equivalent fluence. The displacement damage dose,

Dd, is the amount of displacement damage energy imparted per unit material given in

units of MeV/g, and is the product of NIEL and the particle fluence.

NIEL(E) =
N

A

∫ π

θmin

(dσ(θ, E)

dΩ

)
T (θ, E)L[T (θ, E)]dΩ (3.3)

More fundamentally, the main damage mechanism resulting from radiation is mi-

nority carrier diffusion length degradation due to radiation-induced defects that act as

traps and recombination centers. This reduction in diffusion length lowers the quantum

efficiency of a device because generated carriers are less likely to reach the junction.

Since the base of a solar cell is typically much thicker than the emitter, degradation
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is observed most in longer wavelength response. By determining the minority car-

rier diffusion length at various fluences, a damage coefficient KL can be determined.

Damage coefficients are a typical way to compare different types of radiation [65].

Damage to the lattice is concentrated near the stopping range of the particle, and

increases carrier trapping and scattering events. KL can be determined at a parti-

cle fluence using Equation 3.4, where L0 is the initial diffusion length and Lφ is the

degraded diffusion length.

1

L2
φ

=
1

L2
0

+KLφ (3.4)

3.3 EXPERIMENTAL SET-UP

3.3.1 Testing Setup

In order to gauge the radiation tolerance of devices that have embedded QDs, a set of

samples underwent a series of alpha radiation exposures. Although α-particles are not

present in high fluxes in space, sources are easily available in the lab that are relatively

safe because of their short penetration depth, on the order of the thickness of a sheet

of paper or 40 mm in air. In addition, α-particles are energetic enough to cause the

lattice dislocations that would be seen in a space environment. Compared to electron

or proton radiation, alpha radiation is more harsh and may be more indicative of solar

cells exposed to a nuclear blast.

The 4′′ wafers were diced prior to irradiation. This created some difficulty in getting
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the individual devices flat during subsequent measurements, due to being very thin

and of a small area. However, this did not seem to have an effect on series resistance

measurements, although shunt resistance measurements varied by a few orders of

magnitude. This may have also caused a non-uniform exposure during alpha irradi-

ation, as the flux incident on a cell is emitted isotropically from the α source. The

imparted damage will thus reduce with increasing depth into the cell and radial dis-

tance from the source. If the edges of the cells are curled up because the device is

not perfectly flat, the damage around the cell may vary as well. To account for this,

extra care was taken so that each individual measurement was consistent. Device

performance characteristics under AM0 illumination were measured after each expo-

sure using a dual source solar simulator from TS Space Systems, as discussed in the

previous chapter. Spectral response measurements were taken with a Newport IQE

200 tool.

3.3.2 Alpha Particle Calibration and Setup

An in-house 210Po radioisotope with an activity of 1 mCi was used as the alpha source.

210Po has a half-life of 138.376 days and emits 5.4 MeV α particles. The flux of the

210Po source was measured using a pinhole in parafilm and a geiger counter rest-

ing on the can, which is depicted in Figure 3.2. An acceptance angle of nearly π

was assumed, since the geiger counter head was much larger than the pinhole. A

background “baseline” γ ray measurement was required using an unbroken piece of

parafilm in order to get an accurate reading of counts coming only through the pinhole.
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No additional shielding of the α source was required because of the relatively low flux

and the short penetration depth of the α particles. The flux of the α source was calcu-

lated to be 8.5× 106 α/cm2/s just prior to the experiment. Single devices from baseline

and QD ELO wafers were tested prior to and intermittently following increasing expo-

sure levels. Exposure times were chosen to achieve doses varying in single orders of

magnitude from 5 × 107 α/cm2-5 × 1010 α/cm2.

Figure 3.2: Can containing 210Po source.

The non-ionizing energy loss (NIEL) for an omni-directional alpha source was cal-

culated using the monte-carlo simulation software MCNPX. The calculation of dis-

placement damage dose (Dd) from alpha fluence was completed according to the

formulation developed by Summers [64], which has been shown to be an effec-

tive method to compare various types of radiation exposures. The Dd value was

calculated for upright GaAs devices with a thick substrate, but is the same in this

case for the thinner ELO device of a similar active thickness (2.5 − 3.0µm). Using a

Dd value of 0.125 MeV/g/alpha for GaAs, fluences were converted to a Dd range of

6.25 × 106 MeV/g - 6.25 × 109 MeV/g.
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3.4 RESULTS

3.4.1 Alpha Radiation

A series of alpha radiation exposures was investigated to compare the radiation toler-

ance of ELO devices with and without QDs. J-V and spectral response measurements

were taken following each exposure. J-V plots under 1-sun AM0 conditions are shown

in Figure 3.3. Solar cell metrics as a function of increasing α-particle fluence or calcu-

lated displacement damage dose lends a more insightful visual comparison between

the baseline and QD ELO devices, and will be discussed later. It can be noted from

Figure 3.3 that at lower fluences, the QD ELO cell appears to have a higher initial

threshold for radiation effects, as the first two exposure curves lie almost on top of the

curve from BOL. The QD device also has a smaller ∆Voc than the baseline from BOL

to a Dd value of 6.25 × 109 MeV/g of around 110 mV compared to 150 mV.

Figure 3.3: 1-sun AM0 J-V curves under increasing alpha radiation, given in displacement damage
dose.
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Spectral response measurements were taken at BOL and following the second

exposure, and are shown in Figure 3.4. Clearly, much of the effects of radiation expo-

sure led to a decrease in response in the base region of the device, corresponding to

a reduction in the minority carrier diffusion length in the base. As the radiative particle

imparts damage to the crystal lattice it generates defects, which increases the proba-

bility of carrier trapping and scattering. It is not until higher α fluences that a significant

degradation in response is seen at shorter wavelengths. There was a larger degrada-

tion across all wavelengths observed in the QD cell at a Dd of 6.25 × 109 MeV/g. The

MATLAB code described in the previous chapter was used to match the experimental

EQE curves and extract diffusion length values for the emitter and base regions of the

device. Figure 3.5(a) depicts extracted diffusion lengths in absolute values as a func-

tion of increasing dose, while Figure 3.5(b) shows these as normalized to the diffusion

length values at BOL. The emitter diffusion lengths track similarly for baseline and QD

ELO devices measured. While the QD cell sees a higher degradation initially in the

base diffusion length, this reduction slows with increasing dose and tracks closely to

the baseline cell.

The radiation hardness of the QD ELO cells when compared to the baseline ELO

cells is further illustrated in Figure 3.6. Figure 3.6(a) depicts remaining solar cell

figures of merit for Jsc, Voc, and Pmax for both QD and baseline ELO devices. Clearly,

up to EOL the QD ELO cell outperforms the baseline ELO cell with a slower rate of

decrease in Jsc and notably in Voc. In addition, the absolute difference of FF/FF0

results at EOL between QD and baseline samples was less than 1%. This leads to a
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Figure 3.4: EQE curves for increasing displacement damage dose from alpha irradiation.

Figure 3.5: Diffusion length values extracted from MATLAB simulations as a function of displacement
damage dose, given in absolute values (a) and as remaining factors of BOL (b).

higher η/η0 remaining factor for the QD device with respect to the baseline up to a Dd

of 6.25 × 108 MeV/g, corresponding to an alpha particle fluence of 5 × 109 α/cm2/s.

Furthermore, the EQE curves in Figure 3.4 following each radiation exposure were

used to compare the effect of bulk integrated Jsc values to sub-GaAs bandgap inte-

grated Jsc values in order to further gauge the addition of QDs on cell performance.
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Figure 3.6: (a) Remaining factor solar cell metrics under alpha irradiation for baseline and QD ELO
cells; (b) Remaining factor plot of integrated Jsc for both bulk wavelengths (300-880 nm) and sub-
GaAs wavelengths (880-1050 nm) as a function of radiation displacement damage dose for baseline and
QD cells. EOL is measured at 6 × 108 MeV/g.

Figure 3.6(b) shows integrated Jsc values obtained from the convolution of measured

spectral response with the AM0 spectrum, as explained previously, as a function of

displacement damage dose.

Clearly, there is a more consistent sub-GaAs bandedge integrated Jsc for samples

with embedded QDs. At EOL, remaining factor for the QD cell is 0.90, and for the

baseline cell is 0.62. After the GaAs band edge, collection is maintained at EOL rel-

ative to BOL. This may be due to residual compressive strain local to the QD region

resulting in decreased probability for defect formation by increasing the barrier for a

primary knock-on atom to reach an interstitial site, and has been previously observed

in upright devices with 5 QD layers [62]. In addition, Figure 3.7, which shows EQE

measurements for a QD ELO sample at both beginning of life (BOL) and EOL. It is
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Figure 3.7: EQE curve of sub-GaAs wavelengths (880-1050 nm) of a QD cell device measured prior to
and following alpha irradiation, at BOL and EOL.

evident that after 900 nm there is a negligible difference in the two curves, which indi-

cates the QDs themselves are mainly unaffected by the radiation, or interact less with

alpha particles due to occupying a smaller volume.

During the radiation study discussed in this chapter, temperature coefficients were

measured using similar techniques as described in the previous chapter. The tem-

perature study was completed in nominal temperature steps of 20 ◦C from 20 ◦C to

80 ◦C. Temperature coefficients for both the baseline and QD ELO samples were then

calculated using linear fits for experimental AM0 1-sun J-V curves. Figure 3.8 plots

each temperature coefficient for both the baseline and QD ELO samples together for

ease in comparison of the effects of QD inclusion. At end of life, it is apparent that the

QD device has better temperature coefficients for Jsc and Voc. However, a downward-

trending fill factor and Voc temperature coefficient for the QD device leads to a slightly
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higher η temperature coefficient for the baseline device.

Figure 3.8: Temperature coefficients for Isc, Voc, FF , and η plotted as a function of displacement
damage dose for both a baseline and QD ELO device.

Figure 3.9: Difference in temperature coefficients for solar cell 1-sun figures of merit between the QD
and baseline devices, shown as function of increasing displacement damage dose from α irradiation.

The trend changes between the QD and baseline devices are easily observed
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when compared by the difference between the two, as in Figure 3.9. Clearly, the

Jsc temperature coefficient is higher for the QD device. Voc and FF temperature coeffi-

cients show similar trend shapes as they exhibit trends towards lower values following

increasing dosage, although the temperature coefficient for Voc is higher for the QD

device while the FF temperature coefficient is smaller. The η temperature coefficient

is higher for the QD device up to a Dd value of approximately 1×108 MeV/g, where the

corresponding baseline temperature coefficient becomes higher. Devices in a space

environment will need to withstand high-energy particle radiation and will also be sub-

ject to temperature extremes. At high doses of radiation corresponding to an EOL Dd

of 6.25 × 108 MeV/g, the QD ELO device had a higher Jsc temperature coefficient, but

faster degradation to Voc led to a lower Voc temperature coefficient, resulting in a lower

conversion efficiency.

3.5 CONCLUSIONS

A series of alpha radiation exposures was investigated to compare the radiation tol-

erance of ELO devices with and without QDs. The QD devices outperform baseline

devices with a remaining factor increase of 2% in conversion efficiency at an end of life

alpha particle fluence of 5 × 109 α/cm2/s, corresponding to a calculated displacement

damage dose value of 6.25 × 108 MeV/g. The incident α-particles generate defects in

the crystal lattice, which increases the probability of carrier trapping and scattering.

This manifests as a drastic reduction in the minority carrier diffusion length in the base
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at high fluences. The rate of this reduction in baseline and QD ELO devices is com-

parable based on modeling of experimentally measured EQE curves via drift-diffusion

equations in MATLAB. However, QD solar cell figures of merit under 1-sun AM0 con-

ditions are higher at EOL, particularly Voc, Jsc, and Pmax. The QD device has a smaller

∆Voc than the baseline from BOL to a Dd value of 6.25 × 109 MeV/g of around 110 mV

compared to 150 mV. Furthermore, the radiation study was expanded by taking J-V

curves at several temperatures in order to extract temperature coefficients. The QD

device exhibits better Voc and Jsc temperature coefficients at EOL than the baseline

device, which leads to an overall better performing device with a larger efficiency tem-

perature coefficient. This is promising as it is advantageous for devices in solar orbits

to be both lightweight and radiation hard.
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Chapter 4

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

InAs/GaAs QD-ELO solar cells were grown and fabricated for the first time to yield

thin solar cells with an increased collection and absorption in sub-GaAs bandgap

wavelengths due to carrier absorption into QD states. Optical and materials char-

acterization and analysis of test structures showed a successful ELO transfer with

QD structures. These devices included 10 layers of QDs, which can be extended to

increase the filling factor of the QD superlattice. Analysis of device characterization

showed a higher short circuit current density for QD cells when compared to the base-

line cell by an absolute value of 0.12 mA/cm2. In addition, integrated EQE past the

GaAs bandedge quantified the QD contribution to the short circuit current density as

0.23 mA/cm2 due to QD photocurrent enhancement. Light trapping was an important

factor in increasing the OPL of light through the superlattice, and can be optimized in
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future work to increase the efficiency of these devices. Further efficiency enhance-

ment is expected by optimizing the growth process and incorporating improved back-

side light management techniques to increase the optical path length of incoming IR

light through the QDs. A highly reflective backside mirror could ideally improve reflec-

tivity by almost 20%.

In addition, analysis of alpha radiation effects showed that the QD ELO cells have

a better radiation hardness when compared to the baseline at an end-of-life alpha

particle fluence of 5 × 109 α/cm2/s, which corresponds to a calculated displacement

damage dose value of 6.25 × 108 MeV/g. Furthermore, the QD ELO cell exhibited

larger Voc and Jsc temperature coefficients at end of life, which led to a higher η tem-

perature coefficient up to aDd value of approximately 1×108 MeV/g. Thin, flexible, and

radiation hard solar cells are immensely advantageous in a space environment where

the radiation effects of the Van Allen belts can affect cell performance over time, and

where large temperature fluctuations occur daily. These QD ELO cells are promising

candidates for development in a new ELO TJSC that could potentially outperform the

current state-of-the-art space solar cell due to increased current, radiation hardness,

and flexibility.
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4.2 Future Work

4.2.1 Backside Reflector

As explained in previous sections, the optimization of a high-reflectance mirror on

the backside of ELO wafers could significantly improve the observed sub-bandgap Jsc

enhancement from QD states. As a preliminary step to gauge the effects of improving

the reflectivity of the backside metal, 2′′ upright wafers were grown using MOVPE on

(100) substrates misaligned 2◦ to the [110]. A single side polished (SSP) and a double

side polished (DSP) wafer, each with a 10-layer QD superlattice, were grown and

compared to a baseline (BL) solar cell with no QDs. Zn and Si were used as p- and

n- type dopants, respectively. The wafers were processed in the RIT Semiconductor

Manufacturing and Fabrication Laboratory (SMFL). Both wafers had seven 1x1 cm2

cells defined lithographically on the front side of the wafer, along with several test

structures.

The wafers were fabricated using standard III-V techniques for lithography and layer

etching. General process flow involved backside metallization, annealing of back-

side contact, frontside metallization, MESA isolation etch, contact layer removal, and

annealing of frontside contacts. Heavily doped layers were used as semiconductor

contacts. A lift-off process with a bi-layer resist was used to pattern the frontside de-

vices. Au/Zn/Au p-type metal contacts were thermally evaporated onto the front, and

Ge/Au/Ni/Au n-type metal contacts to the backside. The layer structure is shown in

Figure 4.1.
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Figure 4.1: Upright solar cell structure detailing compounds used in the layer stack.

The DSP sample was put through an initial processing step to deposit a thin layer

of approximately 160 nm of SiO2 on the backside using PECVD. This thickness was

chosen based on MATLAB simulations shown in Figure 4.2. The simulation was

run to determine the optimum thickness for the dielectric layer that would allow for

maximum reflection, as well as show the allowable amount of uncertainty in the depo-

sition process. The simulation iteratively found the optimum SiO2 thickness based on

separately maximizing reflectivity as well as current density generated under AM1.5

illumination. Additional simulations could be performed to optimize the reflectivity with

a stack including a thin back surface field layer.

An array of via holes was patterned lithographically through the SiO2 to serve as a

contact from the metal to the underlying GaAs layer, as depicted in Figure 4.3(a). This

processing step was completed first, prior to backside metallization. Ge/Au/Ni/Au

thermally evaporated contacts were selectively deposited in the via holes, and then
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Figure 4.2: (a) Simulation performed using MATLAB that optimized SiO2 thickness layer based on
maximizing reflectivity and current density; (b) FDTD simulation for a structure with and without SiO2

grading. Note that the electric field intensity is maximized at a different wavelength.

Figure 4.3: (a) Patterned back surface of a 2′′ GaAs QDSC for electrical contact; (b) experimental
reflectivity measured for a 10x QD device with and without the SiO2 dielectric layer included.

the entire backside was coated with Au for reflectivity. The SiO2 layer was used as

a dielectric grading to enhance the optical interface between GaAs and a gold (Au)

metallic reflector, and as depicted in Figure 4.3(b) dramatically increases the reflec-

tivity past 900 nm. The via lithography mask consisted of a 31x31 array of 1x1 mm2

holes spaced 0.23 cm apart, allowing for approximately 10% coverage of the total back
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surface area. The GaAs/SiO2/Au stack serves as a backside reflector to allow for mul-

tiple passes of infrared light through the QD layer, and is hypothesized to act as a

substitute for growing thicker stacks of QDs. Figure 4.4 shows experimental results

for 1-sun AM0 J-V curves and EQE calculated from spectral response, and the re-

sults are summarized in Table 4.1. Even with a thick substrate, the QD cell receives

benefits from the inclusion of the SiO2 layer, resulting in a Voc increase as well as a

subband current enhancement. This can be increased further by combining such a

reflector with a QDSC processed by ELO.

Table 4.1: 1-Sun AM0 Upright Device J-V And Integrated Spectral Response Results

Jsc Voc FF η
JSR JSR,
Bulk λ > 880 nm

( mA/cm2) ( V) (%) (%) ( mA/cm2) ( mA/cm2)

Baseline 23.7 1.06 82 14.5 23.5 0.022
10X QD (no reflector) 23.1 0.87 73 10.8 23.9 0.199
10X QD (with reflector) 22.9 0.88 75 11.1 23.8 0.237

Figure 4.4: 1-sun AM0 J-V curves (left) and EQE spectra (right) for upright 2′′ devices.
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