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Abstract

FPGA Hardware Accelerators -
Case Study on Design Methodologies

and Trade-Offs
Matthew V. Ryan

Supervised by: Dr. Marcin Lukowiak

Previous research has shown that the performance of any computation is
directly related to the architecture on which it is performed. As a result,
the performance of compute intensive applications can be improved using
heterogeneous systems. These systems consist of various processor archi-
tectures such as CPU, FPGA, DSP, and GPU. Individual computations can
be performed in parallel on different processor architecrues within the het-
erogeneous system. Computations are performed by utilizing existing de-
signs from implementation libraries. There is a lack of FPGA accelerators
for use in these libraries and as such additional implementations need to be
designed.

Different design methodologies for developing FPGA accelerators result
in implementations that vary in performance, design time, and resource uti-
lization. A particular method and supporting toolset may produce better
results for one type of design than another.

The customary method for designing FPGA accelerators is to develop
the system architecture from an algorithm and model it using a hardware
decription language (HDL). Another method is to convert directly from a
software implementation to HDL. This process is known as high level syn-
thesis (HLS).

The advantages and disadvantages of these two techniques can be exam-
ined through comparison of different linear algebra operations. Many linear
algebra operations are parallel in nature which makes them potentially good
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choices to speedup through implementation on an FPGA. In particular, ma-
trix multiplication is an excellent candidate for examination due to not only
its parallelism but also its multitude of different algorithms. The goal of this
research is to design different matrix multiplication accelerators and provide
insight into the advantages and disadvantages of each design procedure.
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Chapter 1

Background and Motivation

1.1 Introduction

Compute intensive applications (including stock market evaluation, weather
prediction, and medical diagnosis) often have impractical execution times
when implemented using traditional CPUs. This leads to alternative hard-
ware implementation in GPUs or FPGAs being required. These devices
can be used alongside CPUs in order to increase performance. Individual
computations can be assigned to different devices using a system scheduler
controlled by a CPU. The resulting design is a heterogeneous system. An
example of such a heterogeneous system is presented in Figure 1.1. The
computations of these applications oftentimes consist of linear algebra op-
erations such as matrix inverse, matrix decomposition, matrix-vector multi-
plication, and matrix-matrix multiplication [13].

A number of choices must be made in order to select the hardware im-
plementation that provides the best performance. The first is the selection of
the device that will perform the computation. Both GPUs and FPGAs have
been shown to be suitable alternatives to CPU implementations. This is due
in part to their ability to perform operations simultaneously and to more
directly control the execution of operations. Additional factors also con-
tribute to device selection including the range of the input data, the required
precision, and the available memory bandwidth.

The next step is making the most efficient use of hardware resources
given the chosen computational device. If an FPGA is selected a number
of decisions must be made. A particular architecture must be chosen from
a library along with the number of pipelines or pipeline size. Constraints



such as hardware area and available memory bandwidth of the system influ-
ence these choices. Given the variability in these factors, there is a demand
for a large variety of FPGA accelerators in order to meet the performance
demands of different systems. The traditional process of developing a fully
custom FPGA accelerator limits the practicality of such an approach.

Application

Computations

System Scheduler

A

CPU GPU FPGA

Figure 1.1: Example of a heterogeneous system utilizing CPU, GPU, and FPGA.

Two different methods for developing accelerators are using high level
synthesis (HLS) tools and designing a custom implementation. High level
synthesis tools convert software designs into hardware systems. Optimiza-
tions can be made within the HLS tool in order to improve the performance
of the accelerator by taking advantage of the benefits of the FPGA archi-
tecture. Examples of HLS tools include Impulse C by Impulse Accelerated



Technologies and Vivado HLS which is supported by Xilinx [4]. A custom
implementation is developed as a specific architecture that optimizes perfor-
mance through direct control of the amount of hardware resources dedicated
to the accelerator. A variety of synthesis tools exist for use in designing
a custom implementation including ones supported by Xilinx, Altera, and
Synopsys.

An area yet to be explored is the difference in performance, design time,
and resource utilization between the two design techniques. In order to ob-
tain realistic results, it is necessary to choose a medium for comparison. As
mentioned previously, linear algebra operations consitute a large percentage
of the computations within a class of applications that could benefit from
implementation on a heterogeneous system. Among these, matrix-matrix
multiplication stands out as a premier candidate for examination due to its
exploitable parallelism and variety of different algorithms. The inherent
paralellism is important because it gives incentive to implement the com-
putation on an FPGA rather than on a CPU. The multitude of algorithms
is important because implementing different algorithms provides additional
information on how they vary under different circumstances.

The purpose of this work is to research new techniques of hardware de-
velopment in order to improve the efficiency of accelerator design for use in
hetereogeneous systems. This is accomplished through the design of three
distinct matrix multiplication algorithms (standard, Strassen, and sparse ma-
trices) using three different design techniques (software, HLS, and custom).

The goals for the software portion of this work are to design and test
successful implementations of each of the three algorithms. The algorithms
were implemented in C++ on an Intel Core 17 Sandy Bridge 3.4 GHz pro-
cessor. The designs operated on integers for simplicity.

The design of each of the HLS implementations begins with preparing
the software implementations for conversion using the HLS tool. The ini-
tial architectures of the described multipliers must then be examined. The
result of testing these multipliers demonstrates the ability of the HLS tools
to provide a speedup with a minimal expenditure of design time. The next
step in the design is to utilize the directives within the HLS tool to take
advantage of the FPGA platform and optimize the different architectures.



Many of the directives improve run time at the cost of consuming additional
FPGA resources. Thus a careful balance must be struck between increasing
the performance of the multiplier and straining the resources of the FPGA.
The run time results are saved using the provided evaluation metrics within
the HLS tools.

The custom implementation section of the work begins with research-
ing and understanding the three designs described in the references [5], [2],
and [11]. Each algorithm must be individually examined and implemented
through architecture design and HDL modeling. The design of each custom
implementation is modeled after was has been descibed in the background
section with minor modifications. Each of the designs are developed for im-
plementation on the target platform, the Xilinx XC6VSX475T. Every algo-
rithm implementations is designed for operating on 32 bit precision integer
operands. The run time results are determined through implementation of
each custom design.

After all implementations for each algorithm are completed comparisons
are made between design time and run time for each algorithm. In addi-
tion, comparisons are made between the resource consumption of the HLS
implementations and the custom implementations.



Chapter 2

Supporting Work

2.1 FPGA Overview

FPGAs consist of a set of reconfigurable resources that can be configured
to implement particular function. The resources consist of configurable
logic blocks (CLBs), input-output buffers (IOBs), digital clock managers
(DCMs), digital signal processor slices (DSPs), and block rams (BRAMs).
A high level overview of an FPGA is presented in Figure 2.1 [6]. Figure 2.2
shows the contents of an FPGA configurable logic block [8]. The compo-
nents of an FPGA slice are presented in Figure 2.3 [8].

Configurable
Interconnects 5 8 5 8 ‘ ‘ DCM
[ ] ] ' [ |
I I I I I I
10B - -4 10B
CLB CLB Block DSP CLB
10B - RAM - A 10B
10B Z -4 10B
CLB CLB Block DSP CLB
10B F- RAM -1 10B
[ | [ | [ |
1 1 ; -
fia] m m m fai] m
Q| [ @ o ‘ ‘ © 9

Figure 2.1: Example set of reconfigurable resources available on a Xilinx FPGA [6].
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Figure 2.3: Example contents of a slice on a Xilinx FPGA [8].



FPGAs are very efficient for use in use in digital signal processing appli-
cations due to their highly parallel nature and ability to implement custom
algorithms. Applications that require many binary multipliers and adders
are best implemented using dedicated DSP slices. DSP slices contain built-
in cascade logic that allows multiple DSP slices to be connected together
in order to implement complex functions. Without this ability the FPGA
would have to develop large and inefficient adder trees to implement this
functionality. A diagram demonstrating the basic functionality of the DSP
slices present in the Virtex 6 is presented in Figure 2.4 [9].

48-Bit Accumulator/Logic Unit

25x18
Multiplier

Pre-adder

s )

Figure 2.4: Example architecture of DSP slice on a Xilinx FPGA [9].

Pattern Detector

Xilinx has its own line of memory solutions that provide the interface
between user generated designs and off chip memory components. The
physical layer of the design connects to to the memory device via the on-
board FPGA IOBs. The user interface is connected within the FPGA logic.
Figure 2.5 shows the memory interface solution (MIS) [10].



Virtex-6 FPGA

Virtex-6 FPGA Memory Interface Solution

Interface I I

- 000 -

.
U | |
User lmefgce I Memory | Physical | DDR2/DDR3
Design I Controller | Layer | SDRAM
Block | | |
| | 10B
-t _— —_— I Bl
| | | .
User Native Interface DFI Interface | |i?£g§i
|
|

Figure 2.5: Architecture of the Xilinx memory interface [10].

The user interface block provides a simple interface to the memory com-
ponent from the user logic. It also buffers all read and write data. In addi-
tion, it reorders the read return data to match the request order and presents
a flat address space to the user that it translates to the address space required
by the memory.

The memory controller block receives the requests from the user design
and reorders them to minimize stall states. This feature serves to increase
the performance of the memory component. It also performs high level
management functions such as refresh and activate/precharge.

The physical block interfaces with the memory controller block and trans-
lates the internal signals into the actual signals that connect to the memory
component. This block also synchronizes the control signals and data over
the various clock domains. In additon, it also performs the necessary initial-
ization and management of the memory device.

2.2 Design Methodologies

2.3 Custom Design Flow

Figure 2.6 displays the design flow for a custom hardware design [7].



Design Verification

Design Entry

Behavioral
= Simulation
Design |
Synthesis
¥ h 4
| Functional
| simulation
Design _| Static Timing
Implementation Analysis
Back Timing
— e L g

Annotation Simulation

Device | In-Circuit
Programming | Verification

Figure 2.6: Example flow for custom FPGA design using traditional hardware description
languages [7].

The design is first implemented using a hardware description language
(HDL). Each sub-component within the design is tested for proper func-
tionality using a behavioral simulation. After the full design is complete
it is synthesized and a final behavioral simulation is performed. The next
step in the process is implementation. The implementation stage includes
mapping the design to the target device, placement of the design within the
device, routing of the custom logic, and ultimately bitstream generation.
Throughout this process the design undergoes numerous levels of testing.
The first 1s a functionality simulation, which tests the basic functionality of
the design. Additionally, static timing is performed which determines the
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necessary timing contraints of the implementation. Finally, a timing sim-
ulation is performed which evaluates the design with all timing constraints
implemented. After design implementation the FPGA is programmed with
the resulting bitstream and on-chip verification is performed.

2.4 HLS Design Flow

The design flow for an HLS design is presented in Figure 2.7 [4].

»
Test Bench 1 CJC++
[ E Code Directives
HLS Tools
v v
RTL Wrapper ]
1 HDL
4 Code
¥ v 'f l
RTL Simulation RTL Export

Figure 2.7: Example flow for FPGA design using the Vivado HLS tool [4].

The design for an HLS implementation begins with source code program
a programming language (such as C or C++) that is independently verified
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as functional. From this point the code is imported to the HLS tools. Op-
tionally, directives can be added which can alter performance and resource
consumption. Directives will be discussed in more detail further in the doc-
ument. A register-transistor logic (RTL) wrapper is developed using the
HLS tools which can be used to verify the design. Once the design is suc-
cessfully verified it can be packaged and exported in a convenient fashion
for use in an exisiting system.

2.5 Matrix Multiplication Algorithms

2.6 Standard Algorithm

The standard algorithm for matrix-matrix multiplication multiplies each el-
ement of each row in input matrix A with each element of each column
in input matrix B [5]. The results of each row/column combination are
summed, whichs results in an element of output matrix C'. The algorithm is
demonstrated in Figure 2.8. This particular algorithm requires n X m X p
elementary multiplications and additions, where m and n are the number
of rows and columns in matrix A and n and p are the number of rows and
columns in matrix B. For the special case in which both A and B are square
matrices, the number of additions and multiplications are both equal to N3,
where N is the number of rows and columns in both A and B.

a11 a12 c.. Q1 bl,l b172 Ce bl,p C11 Cl2 ... Cip
A CL2.71 a2'72 .. .. CL2.7n B bg.,l 62'72 Ce b2'7p C’ _ 02,1 Cao ... C2,p
m,1 Qm2 - Qmn bn,l bn,g bn,p Cm1 Cmz2 -+ Cmp

Cn: Ax B

7;7 = A7 7‘
Ci,j Z(alk X bkj)
k=1

Figure 2.8: General description of the standard matrix multiplication algorithm.
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2.7 Block Multiplication

Block based multiplication is a method of matrix-matrix multiplication that
is particularly useful for parallel based implementations. In order to perform
this method of multiplication, it is necessary to partition the source matrices
into separate smaller matrices called blocks. Figure 2.9 shows a matrix P
with 6 rows (m) and 6 columns (n) of elements [12]. Figure 2.10 shows
the process of partitioning matrix P into blocks. The block extends until
it reaches a limit of elements defined by B B, the basic block size. In this
example, BB = 3.

Figure 2.11 shows the procedure of performing block multiplication. The
resulting matrix C' is developed from performing operations on blocks as
opposed to individual elements.

P11 P12 P13 Pi4a P15 DPis
P21 P22 P23 P24 P25 P26
pP— P31 P32 P33 P34 P35 P36
P41 P42 DPa3 Paa Pis5 DPap
P51 P52 D53 DPs4a Pss5 Dse
Pe1 Pe2 P63 DPe4 P65 D66 |

Figure 2.9: Matrix P

[ P11 P12 P13 [ Pia P15 DPie
P = P21 P22 P23 Py = P24 D25 D26
| P31 P32 P33 | | P34 P35 P36 |
[ P41 Pa2 P43 ] [ Paa Pas Pas 1
Py = Ps1 P52 D53 Py = Psa D55 DPs6
| P61 P62 P63 | | P64 D65 P66 |
P Py
P =
{ Py Py

Figure 2.10: Example of block partitioning with BB=3 and N=6.



13

C=AxB

[Cn CIN:|:|:A11 AIN:|><|:BII BIN}
Cni Cnn An1 Ann Byi1 Bnyn

N
Ci; :Z Aj, X By
k=1
Figure 2.11: Example of matrix block multiplication.

2.8 Strassen Algorithm

The Strassen algorithm operates on 2 x 2 matrices and is designed to reduce
the number of multiplications operations at the expense of requiring addi-
tional summations [2]. Intermediary results s; — s7 are defined as functions
of the input elements a7 — as and by — byy. The output results c;; — coo
are defined as additions/subtractions of the intermediary s results [3]. An
overview of the Strassen algorithm is presented in Figure 2.12. Only 7 mul-
tiplications are required in order to complete the operation. This is in con-
trast to the standard algorithm, which would require N* = 8 multiplications
in order to obtain the same result. However, 18 additions/subtractions are
required for the Strassen algorithm to complete the computation, whereas
only 8 are required for the standard algorithm. In order to handle matrix
multiplications of a larger size, a block base approach as described above is
used.



14
C=AxB

Ci1 Ci2 | | Q11 Q12 % bii bio
Co1 C22 Q21 Q22 ba1  ba

s1 = (ai + age) X (b1y + ba2)

S2 = (a91 + ag2) X by

83 = Aqq X (b1g — bag)

S4 = Agy X (521 - 512)

S5 = (a11 + a12) X bay

S¢ = (a1 — a11) X (b1 + b12)
st = (a12 — ag2) X (bar + ba2)
Ci1 = S1 + S4 — S5 + S7
Cio = S3 + Sg

Co1 = So + S4

Cog = 51—82+83+86

Figure 2.12: General description of the Strassen matrix multiplication algorithm.
2.9 Sparse Matrices Algorithm

Both of the aforementioned algorithms have assumed that the source ma-
trices are dense. When matrices consist largely of zero value elements it is
possible to compact the sparse matrix into a form in which its sparsity can be
easily exploited. In this work, sparse matrices are stored in the compressed
sparse row (CSR) and compressed sparse column (CSC) formats. A sparse
matrix displayed in CSR format is comprised of three vectors as shown in
Figure 2.13. The first vector, val, consists of the values of the non-zero
elements of the sparse matrix. The second, col, contains the column index
of each of the non-zero elements of the sparse matrix. Finally, row stores
the index in val of the first non-zero element of row . Conversely, CSC
format stores the row index of each non-zero element in the row vector and
the index of the first non-zero element of each column in the col vector [1].
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0 s12 O 0
0 S22 S23 0
531 0 0 534
541 0 0 0

S:

val S1,2 || S2,2 || $2,3 || S3,1 || S3,4 | S4,1
col 1 1 2 0 3 1
row | O 1 3 5

val | s3; S1,2 || S22 || S2,3 || S3.4
row 2 3 0 1 1 2
col 0 4 5

Figure 2.13: Example sparse matrix (top) compressed in CSR (middle) and CSC (bottom)
formats.

2.10 HLS

HLS is a fairly new form of accelerator development that converts C and
C++ software into a hardware design. HLS tools have numerous means
available which allow for adjusting the architecture of the algorithms for
the FPGA platform. The primary method of improving performance is to
apply directives to a design. Directives are commands that instruct the HLS
tool to implement special functions to an HLS Design. One such directive is
loop pipelining. When used on a loop within the HLS tool, the pipeling di-
rective allows different loop iterations to overlap in time. Figure 2.14 shows
a simple loop that performs three different operations. Table 2.1 shows how
the loop would be executed with no directives (architecture control). Table
2.2 displays the execution of the loop after applying the pipelining directive
[4].

Clock Cycle 1 2 3 4 5 6
Operation | read_op | compute_op | write_op | read_op | compute_op | write_op

Table 2.1: Example loop execution (no architecture control).
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void function(...)
{
for (1i=0;i<=1; 1++)
{
read_op;
compute_op;
write_op;

}

Figure 2.14: Example loop to be pipelined.

Clock Cycle 1 2 3 4
Operation | read_op | compute_op | write_op
Operation read_op compute_op | write_op

Table 2.2: Example loop execution (pipelined).

Another example of an HLS directive is loop-unrolling. Loop-unrolling
separates for-loops into multiple independent operations rather than a single
group of operations. Loops can be unrolled fully or partially. Figure 2.15
shows a multiplication operation performed over 4 iterations of a for-loop.
Table 2.3 shows how the loop would be executed with no architecure con-
trol. Table 2.4 displays the execution of the loop after applying the unroll
directive with a factor of 2. Table 2.5 shows the loop execution after fully
unrolling it [4].

void function(...)

{

for (i=0;1i<=3; i++)

Figure 2.15: Example loop to be unrolled.



Clock Cycle 1 2 3 4
Operation | Read A[0] | Read A[l] | Read A[2] | Read A[3]
Operation | Read B[0] | Read B[1] | Read B[2] | Read B3]
Operation * * * *
Operation | Write C[0] | Write C[1] | Write C[2] | Write C[3]

Table 2.3: Example Loop Execution (No Architecture Control)

Clock Cycle 1 2
Operation | Read A[0] | Read A[2]
Operation | Read B[0] | Read B[2]
Operation | Read A[l] | Read A[2]
Operation | Read B[l] | Read B[2]
Operation * *
Operation * *
Operation | Write C[0] | Write C[2]
Operation | Write C[1] | Write C[3]

Table 2.4: Example loop execution (unrolled factor = 2)

Clock Cycle
Operation | Read A|0]
Operation | Read B[0]
Operation | Read A[l]
Operation | Read B[]
Operation | Read A[2]
Operation | Read B]2]
Operation | Read A[3]
Operation | Read B3]
Operation
Operation
Operation
Operation
Operation
Operation | Write C[0]
Operation | Write C[1]
Operation | Write C[2]
Operation | Write C[3]

Table 2.5: Example loop execution (fully unrolled).

17

Both pipelining and loop unrolling reduce the run times of matrix mul-
tiplication computations. However, these improvements also increase the
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number of hardware components necessary for the HLS design. This in
turn can reduce the maximum operating clock frequency by creating a larger
longer critical path through the design, reducing performance.

2.11 Custom

An interesting custom implementation of the standard algorithm has been
studied in [5]. In said work matrix-matrix multiplication is identified as a
major bottleneck in facial recognition systems. According to the research,
in a sample of facial recognition algorithms examined over eighty percent
of the computation time was spent on matrix multiplication [5].

The technology of choice for this work was the Virtex 5 VSX240T. The
reference architecture was designed to perform the two innermost for-loops
of the standard algorithm in parallel. This means that N x N multiplica-
tions and additions were performed simultaneously. However, as the matrix
multiplication was performed on a block by block basis, NV in this case did
not refer to the size of a source matrix, but rather the size of the matrix
block that is being computed. As such, this value is referred to as the basic
block size (B B) and N maintains its original meaning as the size of an input
matrix. In their work BB = 16, meaning that BB? = 16% = 256 elemen-
tary multiplications and additions were performed simultaneously. Thus
this implementation performs the standard algorithm by partitioning the in-
put matrices into blocks of sixteen elements and then repeatedly performing
calculations until the full matrix computation is complete. The result is a
matrix multiplication computation that was claimed to be more than fourty
times faster than similar systems implemented previously on reconfigurable
devices. Table 2.6 shows the experimental results from [5]. Table 2.16
shows an example implementation with N = 2 and BB = 2.

Several different variants on FPGA implementations of the Strassen al-
gorithm have been studied in [2]. The design with the highest performance
was one in which the input matrices were broken down into block matri-
ces of size 2 x 2. The technology chosen for this work was the Xilinx
XC2V500-FG256-5. A custom 2 x 2 Strassen multiplier was developed
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Matrixz Dimensions Execution Time (ms)
(64 64) (64,64) 0.022
(128 128) (128,128) 0.071
(256, 256) x (256, 256) 0.454
(512 512) (512,512) 3.645
( 024, 1024) (1024, 1024) 29.063
Table 2.6: Results from [5].
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Figure 2.16: Standard algorithm implementation with N=2 and BB=2.

and used to compute the blocks of the result matrix. Several of these mul-
tipliers were used simultaneously in order to speedup the run time of the
matrix multiplication computation. The number of 2 x 2 multipliers used is
the basic element (B E) count.

The paper compares the results of implementing the designs with re-
gards to two factors: computation run time and FPGA slices consumed. The
test matrix sizes were 8 X 8, 32 x 32, 64 x 64, 256 x 256, and 512 x 512.
The results showed that the described implementation consumed half as
many slices as its closest competitor for all matrix sizes tested. In addi-
tion, it equalled the run time of the fastest design for the entire range of data
sizes. Table 2.7 shows the experimental results from [2]. Figure 2.17 shows
the basic element and Figure 2.18 shows an example implementation with



BE =4and N = 4.

Matriz Dimensions | Execution Time (ms)
(3,8) x (8, 8) 0.035
(32,32) x (32,32) 0.120
(64, 64) x (64, 64) 1.523
(256, 256) x (256, 256) 100.562
(512,512) x (512, 512) 045.312

Table 2.7: Results from [2].
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Figure 2.17: Design of Strassen Basic Element (BE).
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Figure 2.18: Example of Strassen implementation with BE=4 and N=4.

Some work has been presented on sparse matrix multiplication imple-
mented on FPGAs. A design of interest is that presented in [11]. The Xilinx
XCS5VLXT110T FPGA was the technology utilized for this work. The cho-
sen architecture for this particular implementation is that of a systolic array.
The systolic array consists of processing elements (P £'s) that pass data back
and forth between one another in order to keep off-chip memory accesses to
a minimum. The PFE is defined as a multiply-accumulator, three memory
elements, registers, and control logic. Like the other custom implementa-
tions, this design relies on block-based multiplication in order to perform
large matrix-matrix multiplication computations. The focus of this work is
on balancing the power-delay product and the energy-delay product. The
power-delay product is used to estimate the tradeoff between energy con-
sumption and delay. The energy-delay product indicates the tradeoff be-
tween performance (run time) and energy consumption of the system.

This work found that there were two defining parameters of importance
when designing the sparse matrix multiplier. These were the number of
PE's and the choice in matrix block size. In order to evaluate the per-
formance of the various designs, two metrics were used: the power-delay
product and the energy-delay product. The power-delay product was the
power consumption of a design multiplied by its computational delay. The
energy-delay product was the energy consumed by the design multiplied by
its computational delay. This work found that a better power-delay product
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was achieved when utilizing a smaller number of PE's and a smaller block
size. Contrarily, a better energy-delay product is obtained by using a large
number of PE's and a large basic block size. Tables 2.8 - 2.11 display the
experimental results presented in [11]. Figure 3.4 shows the design of the
sparse processing element. Figure 3.5 shows an example implementation
with a variable number of processing elements.

Number of PEs | Density =100 | 30 | 20 | 10
4 30.5 38.1139.5|48.2
8 18.0 25.0 | 28.1|37.3
16 13.2 24.8 129.1|29.5
32 10.0 22.1129.5|52.1
64 94 26.2 | 37.5 | 80.8

Table 2.8: Power-delay product (in mW X cycles/operation) versus number of PEs.

Number of PEs | Density = 100 | 30 20 10
4 7.90 11.80 | 13.6 | 18.1
8 2.10 4.62 |5.90 | 9.90
16 1.00 3.10 | 4.00 | 9.50
32 0.33 2.00 | 3.52 | 9.80
64 0.12 1.90 | 3.82 | 16.02

Table 2.9: Energy-delay product (in mJxcycles/operation) versus number of PEs.

Block Size | Density = 100 | 30 20 10
96 7.50 19.50 | 26.11 | 54.30
128 7.41 16.23 | 21.12 | 39.19
192 10.00 19.94 | 31.12 | 39.17
256 13.21 25.02 | 29.82 | 44.32
384 24.13 39.98 | 45.14 | 64.21

Table 2.10: Power-delay (in mW X cycles/operation) versus block size.



Block Size | Density = 100 | 30 | 20 10
4 0.51 4.11 | 7.11 | 24.96
8 0.48 2.5114.92|14.21
16 0.51 2.54|4.56 | 9.93
32 0.63 3.12 (471 9.84
64 2.12 4.95(4.08 |10.44

Table 2.11: Energy-delay (in mJ x cycles/operation) versus block size.
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Figure 2.19: Design of sparse matrices Processing Element (PE).
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Chapter 3

Custom Implementations

3.1 Standard Implementation

The standard custom design was implemented using a block-based multipli-
cation technique in an effort to best take advantage of the FPGA hardware.
The product of large matrices is obtained through performing the multipli-
cation and summation the blocks they are composed of. The size of these
blocks 1s designated by BB. The standard algorithm is performed on the
blocks until the final result for the operation is acquired. The number of
iterations through the matrix multiplier necessary to compute the final re-
sult is represented by |(N/BB)?| where N is the source matrix size. For
this particular design, the decision was made to perform the two innermost
for-loops of the standard algorithm in parallel. This meant that the number
of simultaneous operations performed was equal to B52. Thus a small in-
crease in basic block size resulted in a large increase in resources consumed.
In this implementation the basic block size was chosen to be 16, meaning
that 256 simultaneous multiplications and additions were performed.

In this design an operand of a row in input matrix A was multiplied
with each operand of a row in matrix B. This technique is beneficial as it
successfully saturated all 256 elementary multiplication components with
only 2x BB = 2x16 = 32 operands. Figure 3.1 demonstrates this method
of data sourcing and further clarifies the design of the multiplier compute
logic.
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Figure 3.1: Custom standard matrix multiplier compute logic with BB=16.

3.2 Strassen Implementation

The Strassen custom implementation design began with the designation of
a basic element, BE, as a 2x2 multiplier as depicted in Figure 3.2.

The BE calculates the intermediary matrices S1— 57 as described in the
Strassen algorithm. These matrices are then then summed in order to pro-
duce the resulting output matrix. This design connected four 5B FE's in paral-
lel in order to more efficiently complete a 4 x4 matrix multiplication. Com-
puting a 4x4 operation using only a single BE would take (43)/(2%) = 8
iterations. Given that four multipliers were used in parallel, only 8/4 = 2
iterations were required for this design to complete a 4 x4 matrix multipli-
cation. Control logic determined the flow of data into the B E's. The design
of the 4 x4 Strassen custom multiplier is presented in Figure 3.3.
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Figure 3.3: Custom Strassen compute logic with BE=4.
3.3 Sparse Implementation

The custom sparse implementation was designed as a systolic array of pro-
cessing elements (PE) that operated on the non-zero operands of a sparse
matrix . The design of the processing element is presented in Figure 3.4.
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The PE contained control logic which determined which operands were
written to memory based on their row and column indices. Each PE con-
tained an elementary multiplier and accumulator. In addition, data was
passed from one PE to the next sequential PE. In this way the workload
was evenly distrubuted across all PEs with only the first PE in the array
communicating with the remainder of the system. The design of the sparse
compute logic is presented in Figure 3.5.
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Chapter 4

HLS Implementations

4.1 Standard Implementation

Figure 4.1 shows the standard multiplication algorithm as it was imple-
mented using the HLS tools.

fori =0 — rows(A) do > Rows
for j = 0 — cols(B) do > Cols
for k = 0 — rows(B) do > Product
Cm‘ = Ci,j + Ai,k X Bk,j > Calculation
end for
end for
end for

Figure 4.1: Standard matrix multiply algorithm implementation.

The source code consisted of three nested for-loops. In order to easily
distinguish between the loops they were each assigned a label: Rows, Cols,
and Product respectively. This is important because the architecture con-
trol within the Vivado HLS tools work by modifying individual loops. As
it stands, the exact code presented in Figure 4.1 was processed through Vi-
vado and then exported to Xilinx Design Suite in order to obtain timing and
resource consuption information. Though Vivado does provide an estimate
of resource usage after synthesizing a design it is not as accurate as running
a full place and route in Design Suite. The matrix row and column sizes
were chosen to be 16 in order to establish a basis for comparison between
the different designs. The next goal was to improve the performance of
the developed accelerator by applying architecure control with Vivado. For
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this particular design loop-unrolling and pipelining were chosen as mod-
ifications to be made. Loop-unrolling is the premier choice for a design
that features nested for-loops as it separates the loops into separate opera-
tions that can be performed independently. The pipelining directive adds
efficiency by adding registers which are used to more efficiently load data
into the design. It should also be noted that pipelining a top-level for-loop
unrolls all for-loops nested within the top-level loop. As previously men-
tioned, these directives are applied on a loop-by-loop basis which allows
easy manipulation of FPGA resource consumption. For loop unrolling in
particular, an additional option exists (called factor) that allows partial un-
rolling of a loop, which can further preserve resources. It is also important
to keep in mind that when a top-level for-loop is unrolled all loops within
the for-loop are also unrolled. With these ideas in mind, various versions
of the HLS design were implemented. First, the pipeline directive was ap-
plied to the Product loop. This was followed by pipelining the C'ols and
Rows loops. The next step was to apply various levels of loop-unrolling to
the accelerator. The initial loop to be unrolled was the Product loop. This
was followed by the unrolling of the C'ols loop. Both of these loops were
fully unrolled. However, due to the limited number of DSP slices on the
FPGA the third loop, Rows, could not be fully unrolled. As such, it was
only partially unrolled with factors of 2 and 4. Figures 4.2 - 4.3 show exam-
ples of the RTL generated from a couple of the different variations Standard
HLS design. The number of multiplexers, shift registers, multipliers, and
adders varied depending on the directives applied to the design. Table 4.1
demonstrates the impact that the different directives had on the design of the
hardware accelerator.

The architecture generated for the no directives implementation is a sim-
ple multiply accumulate (MAC) unit. The control logic is not shown for
clarity. Unrolling the Product loop only produced two multipliers sharing
a single adder. However, it was expected that 8 multipliers and adders would
have been generated. Due to the design of the algorithms used within the
HLS tool only two multipliers with a shared adder were generated. Pipelin-
ing the C'ols loop also unrolled the Product loop, but added registers be-
tween the various components as shown in Figure 4.3. After unrolling the
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Reg

Figure 4.2: Standard HLS compute logic: no architecture control.

Reg

Figure 4.3: Standard HLS compute logic: cols pipelined.

Standard Factor | Mult | Add/Sub | 32 Bit Reg | 8 Bit Mux | Shift Reg
No A.C. N.A. 1 1 7 0 9
Product Pipelined | N.A. 1 1 7 1 10
Cols Pipelined N.A. 2 6 18 36 18
Rows Pipelined N.A. 16 20 128 0 144
Product Unrolled 16 2 6 18 40 18
Cols Unrolled 16 32 35 252 295 288
Rows Unrolled 2 182 202 1311 316 1638
Rows Unrolled 4 506 493 3519 378 4600

Table 4.1: Standard HLS component utilization.

Cols loop however, 8 of the two multipliers with shared adders were gener-
ated, as was originally expected.




32

4.2 Strassen Implementation

Unlike the standard design, the Strassen implementation was not based di-
rectly on an existing software implementation. Instead, the Strassen HLS
design was approached with the desired hardware in mind rather than the
sofware. The resulting code is presented in Figure 4.2.

fori=0—1)do > Outer
forj=0— 1do > Mid
fork=0— 1do > Inner

!/

A" = Agivit1 kb1
/

B' = Bop.ok+1,j:j+1

S1 = (A}; + A5y) x (Byy + Byy)
Sy = (Ay; + Ayy) x By
Sy = Aj; X (B2 — By,)
Sy = Apy X (Ba1 — By)
S5 = (A} + Alp) X By,
Se = (Ay — Ay) x (B + Byy)
St = (Aly — Ayy) X (By + Bsy)

Cli=C1+51+84—5+57
Cly =Cl9+ S3+ S5
Cy =Cy + S+ Sy
Cly =Cly+ S — S5+ 55+ S
end for
C2i:2i+1,2j:2j+1 = OQi:2i+1,2j:2j+1 +
end for
end for

Figure 4.4: Strassen matrix multiply algorithm implementation.

The two inner-most for-loops work together to create the BE's of the
hardware design. The outer-most exists to provide the functionality of the
multiplexer in 3.3, that is, to provide two 2 X 2 matrices in series to be
operated on.

Disregarding the outer loop, the trip count of the inner loop is equivalent
to 4. Thus it is easy to see that when these two loops are fully unrolled
the design should be equivalent (at least in terms of hardware components)
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to the custom design. However, the HLS design has the advantage of be-
ing able to unroll the outer-most loop. In theory this would utilize more
hardware resources than the custom design and provide a performance ad-
vantage.

As with the standard algorithm, various versions of the Strassen algo-
rithm were examined. The first implementation tested was the HLS design
with no architecture control added. The second was the design with the bot-
tom level for-loop (/nner) pipelined. This was followed by the pipelining
of the Middle and Outer loops. The next stage of improvement was un-
rolling each of the loops presented in the source code. As before, each of
the loops (beginning with Inner) were successively unrolled for a total of
three additional implementations. Each of the loops was fully unrolled, as
the resource consumption was not as high as in the standard algorithm im-
plementation. Figures 4.5 - 4.6 show two of the variations in RTL generated
from the Strassen HLS design. Table 4.2 displays the component usage for
each of the different HLS Strassen implementations.

Ao Regﬁ
A, > Reg|—| —H Reg

BE

Bo > Reg A A N Reg
y [Reg —

\4
(@]

Figure 4.5: Strassen HLS compute logic: no architecture control.

As mentioned above, the BE computes the matrix multiplication for a
2x2 matrices. The loop bounds were set for a 8x8 matrix, and so unrolling
the Inner loop produced two BEs and unrolling the Mid loop produced four
BEs as shown in Figure 4.6. Additionally, since in this design more results
are being calculated in parallel, the HLS tool generated a design with a
second output port to allow for this increased bandwidth to be written out
to memory. Pipelining the Outer loop just added pipelining to the unrolled
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Figure 4.6: Strassen HLS compute logic: mid unrolled.
Strassen Mult | Add/Sub | 32 Bit Reg | 32 Bit Mux | 4 Bit Mux
No A.C. 7 22 54 5 16
Inner Pipelined 7 21 63 6 20
Middle Pipelined | 14 40 111 ) 20
Outer Pipelined | 28 68 197 10 30
Inner Unrolled 14 40 102 ) 25
Middle Unrolled | 28 70 193 8 34
Outer Unrolled 56 120 367 22 2
Table 4.2: Strassen HLS component utilization.
Mid and Inner loops.

4.3 Sparse Implementation

For the sparse matrices implementation, A and B were input to the hardware
function in compressed sparse row and compressed sparse column form re-
spectively. The code consisted of 3 nested for loops, as with other imple-
mentations. It is presented in Figure 4.3.

This algorithm multiplies each non-zero element in a row of A with every
non-zero element in a column of B and then repeat that process for every
row and colummn of the matrix. Thus the top for-loop was iterated for
each row in A. Given that the chosen block size was 16, the top loop was
iterated 16 times. The middle for-loop needed to be iterated for each non-
zero element in a given row of A. This value was obtained by calculating the
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fori = 0 — rows(A) do > Top
for j = rowu[i| — rowali + 1] do > Midl
for £ = 0 — cols(B) do > Mid2
for m = colg|k] — colp[k + 1] do > Bottom
if colz[j] == rowp|[m] then
Cix = Cix +valalj] x valg[m]
end if
end for
end for
end for
end for

Figure 4.7: Sparse matrix multiply algorithm implementation.

difference between sequential elements in the row pointer array of matrix A.
The bottom for-loop needed to be repeated for each non-zero element in a
particular column of B. This value was found by subtracting the values of
adjacent elements in the column pointer array of matrix 5.

The HLS sparse matrices implementation differed from the other HLS
designs in that the middle and bottom loops iterated for a number of times
based on an input. Thus the number of iterations for the two were variable.
This prevented directives such as unroll and pipeline from having any effect
on the performance of the implementation. Figure 4.8 shows the RTL from
the HLS sparse matrix multiplier. Table 4.3 provides more details as to the
actual hardware utilized.

o8
valA * Reg }
(%) +
valB Reg |
colB ' Reg H Compare |
rowA { Reg H Compare‘

Figure 4.8: Sparse HLS compute logic.
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Sparse

32 Bit Mult

32 Bit Add

32 Bit Adder

32 Bit Mux

32 Bit Comp

4 Bit Mux

No Directives

1

1

73

1

32

44

Table 4.3: Sparse HLS component utilization.

The sparse algorithm is very different from the other two algorithms in
that the bounds on the loops are non-deterministic. The bounds depend on
the sparsity and distribution of non-zero elements in the matrix. However,
the Top loop is bounded to the number of rows in the matrix, and so this loop
1s able to be optimized in the HLS tool. The design with no optimizations
is shown in Figure 4.8. The generated design has at its core a multiplier and
an adder just like the standard algorithm but with extra inputs for the rows
and columns to determine which elements to operate on. Unfortunately, due
to the complexity of this design the HLS tool was not able to parallelize the
algorithm in a beneficial way. As such, only the architecture diagram with
no architecture control is shown here.
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Chapter 5

System Design

5.1 Overview

Figure 5.1 shows the top level design for implementing the hardware accel-
erators.

Control Logic
r | 4t
SDRAM In ‘ l x ‘ SDRAM
i v | Out 1
e
L L]
»MatrixA_In
il 1 . -
. Memory e MatrixC_Out— Memory o
- Interface 1 = Interface .
. Multiplier —
—_—
SDRAM In Component SDRAM
N Out N
FPGA

Figure 5.1: Design of the system from a top level perspective.

In order to provide for additional read and write buffering of the built-
in memories, ping-pong buffers were utilized within the matrix multiplier
component as is displayed in Figure 5.2. Each ping-pong buffer consisted of
16 distinct Block RAM elements which allowed for 16 simultaneous trans-
fers (8 read and 8 write).

A standard DDR SDRAM memory with a 32 bit read/write width and
clock speed of 400 MHz was considered for use in the proposed system.
This device could provide 2x 32 = 64 bits every clock cycle, or 64 bits every
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Figure 5.2: Design of the multiplier component, including the ping-pong buffers used in-
crease throughput.

(1/(400x10°%)) = 2.5 ns. Given that each of the accelerators performed
calculations on 32 bit operands, this data was better expressed as 2 operands
every 2.5 ns or 1 operand every 1.25 ns.

If an implementation required more operands per compute logic clock
cycle then could be provided by a single memory component than a different
approach other than connecting straight to external memory needed to be
taken.

A pipeline was developed in order to satisfy those implementations that
required large amounts of memory bandwidth. The first stage of the pipeline
consisted of writing sub-matrices of size 64x64 to the built-in memories
of the FPGA, located within the input ping-pong buffers of the multiplier
component. The final stage of the top-level pipeline stored the resulting
64 % 64 matrix to external memories.

The second stage of the pipeline was the multiplication of the 64 x 64 ma-
trices. This stage was divided into three separate sub-stages. The first sub-
stage read two 16x16 matrices from built-in memory into internal buffers
located within the multiplier compute block. The second sub-stage per-
formed the multiplication of these matrices and stored the result into an
internal buffer. The final sub-stage wrote the result buffer into the built-in
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memory located in the output ping-pong buffer. Figure 5.3 shows the design

of the pipeline.

Stage 1 Stage 2 Stage 3
Reading 64x64 [——* Execﬁ:tgrii“m I Writing 64x64
Blocks G Block
multiplication
) t
Sub-Stage 1 Sub-Stage 2 Sub-Stage 3

Reading 16x16 Executing 16x16 -
Blocks from matrix o sl
o Block to BRAM
BRAM multiplication
Stage 2

Figure 5.3: Pipeline designed to meet the high memory bandwith needs of the various
matrix multiplier components.

Since the periods of the first and third stages of the pipeline could be
adjusted by adding or removing memory elements the second stage was the
limiting factor of the design. Within the second stage, the second sub-stage
was dependent on the design that was being implemented. However, the
periods of the first and third sub-stages were static regardless of choice of
design.

As previously mentioned, a total of 8 elements could be read from/written
to the built-in memory. A total of 16x16 = 256 operands needed to be
read/written to/from built-in memory in a single cycle. Given a 2 cycle
delay due to necessary control signals the latency of the first and third sub-
stages was calculated as 2 + (256/8) = 34 cycles. If the required cycles for
the second sub-stage were lower than 2 + (256/8) = 34 then the first/third
sub-stage would be the limiting stage and the cycles for the sub-stage would
be equal to 34. If the required cycles for the second sub-stage were greater
than 34 then the number of cycles for the sub-stage would be that value. In
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order to complete the 64 x 64 matrix multiplication (64/16)3 = 64 iterations
through the second stage of the pipeline are required. Given these con-
traints, total number of cycles required for the second stage was calculated
as presented in Equation 5.1.

#of Cycles = (# of Iterations+(# of SubStages—1))xCycles of SubStage
(5.1)
Since first stage of the described pipeline required a transfer of 2 64 x64
matrices(A and B) the total number of operands that needed to be processed
was 2x256x256 = 8192. Given that a single SDRAM element can provide
a single operand every 1.25 ns, one SDRAM component can provide the
requisite number of operands in 8192 x 1.25 = 10240 ns. A pair of SDRAM
elements working in parallel can write the operands in 10240/2 = 5120 ns.
The third stage of the pipeline required the transfer of only a single 64 x 64
matrix. Thus 1 SDRAM completes the operation in 4096 x 1.25 = 5120 ns
or 2 SDRAMs in 2560 ns.

5.2 Pipeline Calculations

5.2.1 Standard Implementations

The compute logic for the custom standard design reads one row and one
column of operands each cycle. The maximum clock frequency of the
compute logic was found to be 213 MHz after implementation. At this
speed each input required 16 operands every (1/(213x10%)) = 4.69 ns or
1 operand every .29 ns. Given that reading directly could only provide an
operand every 1.25 ns it was clear that the standard custom design required
the buffering capability of the pipeline.

As previously mentioned, the latency of the pipeline depended on the
second sub-stage. Reading the entire 16x 16 matrices required (256/16) =
16 cycles. Given that the longest sequence of adders and multipliers for the
custom standard implementation was only 1 and 1, and the recommended
latencies of the multiplier and adder IP cores were 6 and 2 respectively, the
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number of cycles for the second sub-stage was calculated as 6+2+ 16 = 24
cycles. Recall that the latency of the first and second sub-stages was 34
cycles. Thus the latency of the sub-stage was limited by the first/third sub-
stages and was 34 cycles. The final cycle count for the second pipeline stage
was then calculated as (64 + (3 — 1)) x34 = 2244 cycles.

The period of the second stage of the pipeline was calculated as 2244 x
(1/(213x10°%)) = 10535 ns. Recall that utilizing a single SDRAM compo-
nent for the first stage of the pipeline results in a period of 10240 ns. Thus
in order to meet the period of the second stage of the pipeline only a single
SDRAM to be used. The third stage period value of 5120 ns with a single
SDRAM met the standard set forth by the second stage was therefore not a
bottleneck in the design.

The best case maximum clock frequency obtained for any of the HLS
standard matrix multipliers was 266 MHz. Thus the implementation re-
quired 4 operands (2 for A and 2 for B) every 3.76 ns or 1 operand every
.94 ns. A single SDRAM component provided a single operand every 1.25
ns without any buffering. Thus 2 SDRAMSs could be used to provide the
operands to inputs A and B and implementation of the pipeline was not
necessary.

5.2.2 Strassen Implementations

The custom Strassen implementation required 8 operands from both A and
B each cycle. Using the maximum clock frequency (107MHz) the number
of operands required for a single input was calculated as 8 operand every
(1/(107x10%)) = 9.36 ns or 1 operand every .58 ns. Thus the use of the
pipeline was necessary.

As with the standard custom implementation, the cycles of the second
sub-stage needed to be determined in order to determine the latency of the
second pipeline stage. To complete the 16x 16 matrix multiplication within
sub-stage 2 (16/4)3 = 64 iterations through the Strassen 4 x4 multiplier
were required. The longest elementary adder/multiplier chain through the
Strassen custom implementation consisted of 4 additions/subtractions and 1
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multiplications. Given the latencies of the IP cores recommended from Xil-
inx, this totaled to 4x2 + 6 = 14 cycles. One iteration through the Strassen
4 x4 multiplier required 2 cycles worth of operands to complete. Thus the
total number of cycles required to complete a 16x 16 matrix multiplication
was equivalent to 2 x 644-14 = 142 cycles. Given this value, the cycle count
for the second pipeline stage was calculated as (64 + (3 — 1)) x142 = 9372
cycles.

The number of cycles was used with the maximum clock frequency to
calculate the period of the second stage of the pipeline as 9372 x
(1/(107x10°%)) = 87,589 ns. The first stage of the pipeline has a period of
10240 ns or 5120 ns when 1 or 2 SDRAMs are used respectively. Since the
period with only 1 component falls well beneath the value for the second
stage of the pipeline only a single SDRAM needed to be used in the first
stage. The third stage of the pipeline also easily meets the value set by the
second stage with a single SDRAM.

The best case maximum clock frequency obtained for any of the HLS
Strassen matrix multipliers was 180 MHz. The Strassen HLS multiplier
required 4 operands every 1/(180 x 10°) = 5.54 ns or 1 operand every
1.385 ns. Therefore a single SDRAM component capable of providing a 32
bit operand every 1.25 ns could satisfy both inputs A and B of the Strassen
HLS implementation.

5.2.3 Sparse Implementations

A single SDRAM provides 32 bits every 1.25 ns. The maximum clock
frequency for any of the custom sparse designs was 341 MHz. Unlike the
other implementations, indices also needed to be read from memory. The
maximum value for a index was 16, as the implementation was designed to
operate on 16x 16 matrices. Therefore each index needed to be 4 bits wide
(2* = 16 possible values). This meant that a total of 24 bits needed to be
read from memory every (1/(341x10°%)) = 2.93 ns. Thus in order to satisfy
the requirements, 3 distinct SDRAMs need to be utilized for the custom
sparse implementation, 1 for each of the input matrices and 1 to handle the
indices.
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The maximum clock frequency for the HLS sparse implementation was
found to be 121 MHZ. Given that the design required 4 operands every
1/(165x10°) = 6.04 ns and that single SDRAM provided an operand ev-
ery 1.25 ns only 1 SDRAM was required for this implementation with no
pipeline implementation necessary.
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Chapter 6

Results

6.1 Standard Results

The hardware resources consumed by each of the implemented standard
designs are presented alongside the performance speedup compared to the
software design in Table 6.1.

Pipelining the innermost loop Product resulted in a speedup three times
greater than that of the non-optimized design at the cost of very few re-
sources. Likewise, pipelining C'ols yielded a speedup five times greater than
that of the Product pipelined implementation. On the contrary, pipelining
the outermost loop Rows gave a noticeable increase in resource consump-
tion with no improvement in speedup. This is due to the decrease in max-
imum clock frequency associated with the increase in hardware utilization
of the design.

Unrolling Product resulted in an improvement in speedup by a factor
of seven with a minimal increase in resource consumption. However, the
performance to resource compsumption ratio greatly decreases with addi-
tional unrolls. Unrolling C'ols decreased doubled the speedup of the design
but at a cost of using five times the number of DSPs. This trend continued
as an unroll of the Rows loop unrolled with a factor of 2 yielded a slightly
improves speedup but a DSP usage of 27 percent. Again this is due to the
much lower maximum clock frequency of the larger designs.

Given these results it is clear that applying architecure control to loops
within the standard multiplier had diminishing returns in the standard HLS
designs. Though pipelining and unrolling outer loops decreased the latency
(number of clock cycles) of the matrix multiplication computation, it also
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Optimization Resources [Total] Speedup
LUTs FFs SPs
[297760] | [595520] | [2016]

None 1% 1% 1% 0.2x
Product Pipelined 1% 1% 1% 0.6x
Product Unrolled 1% 1% 1% 3.2x

Cols Pipelined 1% 1% 1% 3.2x
Cols Unrolled 1% 1% 5% 1.5x
Rows Pipelined 1% 1% 2% 2.7x
Rows Unrolled - 2 3% 2% 27% 3.1x
Rows Unrolled - 4 T% 5% 75% 4.8x

] Custom | 1% | 1% | 13% [50.6x |

Table 6.1: Percent of resources utilized and speedup compared to software implementation
of standard algorithm.

greatly decreased the clock frequency at which the designs could operate.
This negated much of the performance gain from the decreased latency.
This is due to the inefficiencies associated with the HLS tools in control-
ling large designs. When the designs are small the HLS tools can easily
generate a state machine that controls data flow fairly efficiently. However,
when designs are larger the control logic auto-generated from the HLS tools
is unable to handle the data efficiently, causing the much lower maximum
clock frequencies.

The HLS design with the largest speedup compared to the software de-
sign was the Rows Unrolled - 4 implementation which obtained a speedup
of 4.8. The custom standard design achieved a speedup of 50.6, over 10
times greater than that of the Rows Unrolled - 4 implementation. In addi-
tion, the custom design utilized fewer resources than the Rows Unrolled -
4 implementation. Perhaps the most notable discrepancy between the two
designs lays in the fact that the HLS design only reads 2 elements from each
input matrix into its buffers simultaneously. Recall that in the ping-pong
buffers used in the custom design a total of 8 simultaneous reads were pos-
sible. This difference meant that the custom implementation could read data
4 times as fast as the HLS implementation which contributed greatly to the
inability of the HLS implementation to compete in terms of performance.
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Optimization Resources [Total] Speedup
LUTs FFs SPs
[297760] | [595520] | [2016]

None 1% 1% 1% 0.4x
Inner Pipelined 1% 1% 1% 0.5x
Inner Unrolled 1% 1% 2% 1.0x

Mid Pipelined 1% 1% 2% 2.0x
Mid Unrolled 1% 1% 4% 1.6x
Outer Pipelined 1% 1% 4% 2.0x
Outer Unrolled 1% 1% 8% 2.9x

] Custom [ 1% | 1% | 6% | 4.8x \

Table 6.2: Percent of resources utilized and speedup compared to software implementation
of Strassen algorithm.

6.2 Strassen Results

The hardware resources consumed by each of the Strassen implementations
are presented alongside the speedup over the software implementation in
Table 6.2.

The initial pipeling of the innermost loop did not result in a vast im-
provement in speedup over the unoptimized design. Pipelining the Middle
loop however yielded a 5 times improvement over the Inner pipelined im-
plementation. Contrarily, pipelining the loop Outer resulted in a notable
increase in resource consumption with little improvement in speedup. This
is due to simply the nature of the algorithm and how little it is impacted by
pipelining. Pipelining the Middle loop only provided a large increase in
speedup because by default it unrolled the loop beneath it, Inner.

Unrolling Inner doubled the amount of DSP slices consumed and in-
creased the speedup by a factor of 2. This trend continued as the unrolling
of both the Middle and yielded a doubling of consumed resources and
approximate doubling of speedup. This is due to the decrease in latency
associated with performing more the computation in parallel and the the
steady maximum clock frequency across designs.

Unlike the standard HLS implementation, successive unrolls of the Strassen
implementation did not yield diminishing returns with regards to perfor-
mance. Each unroll provided a steady linear gain in performance. Compar-
ing the resource utiliziation between the two algorithm implementations, it
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is clear that even the largest of Strassen implementations were still small
compared to the large standard implementations. Thus the Strassens de-
signs were small enough for the control logic auto-generated from the HLS
tools to be efficient, resulting in a fairly constant maximum clock frequency
across the different implementations. This meant that the decreased latency
resulting from unrolling the algorithm directly correlated to an increase in
speedup of the computation.

The M1iddle unrolled implementation represents the attempt at replicat-
ing the exact hardware designed for the Strassen custom implementation
through use of the HLS tools. Being able to compare the custom implemen-
tation to an HLS counterpart that utilized the same number of elementary
multipliers gave a unique opportunity to examine the differences in design.
The first thing to note is that the the custom design uses 1.5 times as many
DSP slices as the HLS design. This is due to the optimizations made within
the Xilinx Multiplier IP core of the custom design. The same problem with
the number of simultaneous data reads that existed with the standard HLS
design also exists with the Strassen HLS design. The ability of reading 2
operands simultaneously simply does not compete with the ability of the
custom design to load 8 operands into its buffer simultaneously.

6.3 Sparse Results

The speedup of the sparse matrix multiplier implementations over the soft-
ware design are presented alongside hardware resource usage in Table 6.3.

Optimization Resources [Total Speedup [Density]
LUTs FFs SPs

[297760] | [595520] | [2016] | [30%] [ [20%] [ [10%]
None 1% 1% 1% 1.2x 1.0x | 0.6x
Top Pipelined 1% 1% 1% 0.9x 0.8x | 0.5x
Top Unrolled 12% 4% 1% 0.5x 0.4x [ 0.2x
Custom PE - 4 1% 1% 1% |223.9x | 140.4x | 56.7x
Custom PE - 8 1% 1% 2% 1240.0x [ 132.0x [ 43.8x

Table 6.3: Percent of resources utilized and speedup compared to software implementation
of sparse algorithm.

Unlike the standard and Strassen algorithms, applying optimizations within
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the HLS tool did not provide any performance boost over the non-optimized
design. In fact, each of the tested optimized designs actually reduced the
speedup nwhen compared to the non-optimized design. This is due to the
additional control logic necessary to implement the optimizations. As pre-
viously mentioned, control logic is a weakness of the HLS tools. The sparse
algorithm, with its non-deterministic for-loops, is the most control inten-
sive of the algorithms implemented. The only HLS design that managed a
speedup greater than 1.0 was the non-optimized design in the case of matrix
densities of 30. In general, as matrix density decreased the HLS designs
became less efficient.

The custom design performed better than the HLS designs in all test
cases. The systolic array structure and custom control logic meant that the
custom design was able to utilize additional processing elements and effi-
ciently distribute the workload in a parallel fashion. Given these results,
HLS tools are not well suited for algorithms with non-deterministic loop
bounds.
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Chapter 7

Design Time Comparison

The performance and design time of implementing each of the three matrix

multiplication algorithms in software, HLS, and custom is shown in Figure
7.1.

Design Time vs. Performance
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Figure 7.1: Design time of matrix multiplication algorithms and their various implementa-
tions.

The performance was measured through IOPS (integer operations per
second) and the design time was measured in hours required to complete
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each design. There is a clear pattern that can be established across the dif-
ferent algorithms. In each case the software implementation had the low-
est design time and the custom implementation had the longest design time,
with the HLS implementation falling in the middle. The degree to which the
different implementations varied in design time depended on the algorithm.
In the cases of the standard and sparse algorithms, where the HLS source
codes were ported directly over from established software implementations,
the gap was very large. This was due to the ease in transitioning from a
functional software design to an HL.S design.

The Strassen HLS implementation was designed to mimic the architec-
ture of the developed Strassen custom design. The Strassen HLS design
took significantly longer than that of the other two algorithms due to the
fact that it wasn’t ported from an existing software design. However, the
Strassen HLS design performs closest to its custom implementation when
compared to the other two algorithms. Thus the additional design time of
the Strassen HLS implementation yielded a net gain in performance.

The differing design times of the custom designs depended largely on
the nature of each algorithm and the complexity design. The standard cus-
tom design took the least amount of time due to the fact that it consisted of
large numbers of elementary multipliers and adders connected in parallel.
The Strassen custom design required large elementary operation chains in
order to form the intermediary matrices necessary for the algorithm. In ad-
dition, the input buses needed to be multiplexed in order to switch between
different source matrices. The sparse custom implementation followed a
systolic array structure that needed to be able to easilt toggle between dif-
ferent numbers of processing elements. In terms of complexity, this design
fell between the fairly straightforward standard custom design but far short
of the more complicated Strassen custom design. As such, the design time
for the sparse custom design fell in between that of the other two algorithms.
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Chapter 8

Combined Custom/HLS Design Flow

It is clear that while custom designs outperform HLS designs, they also
take significantly longer to design. In general, this performance gap can be
bridged by applying optimizations to the HLS designs, though cases exist
(such as with the sparse algorithm case) in which the optimizations do not
improve performance In addition, approaching HLS design from an angle
alternative to porting over existing software code (such as was done with
the Strassen algoritm) can also yield increased performance. With these
conclusions in mind, a design flow such as presented in Figure 8.1 is rec-
ommended.

The first step in the design flow would be to research the application and
determine if there is any established software implementation that could
be ported into the HLS tool. Next would be performing a check to make
certain that the application is suitable for implementation using the HLS
tool by checking for things such as non-deterministic loops. If it is not,
then a custom design is necessary and the designer can move directly to
following a design flow similar to that presented in 2.6. If no pitfalls are
found and the application is deemed suitable for HLS implementation than
the designer can move to following a HLS design flow similar to that shown
in 2.7.

After running the HLS tool, the decision must be made as to whether or
not the performance needs of the application have been met. If they have
not, the designer must determine whether or not performance gains can
be made through using optimizations such as loop-unrolling and pipeling
within the HLS tool. If so, then the respective directives should be added
to the design and the HLS design process repeated. If a point is reached
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Figure 8.1: Example of an efficient design flow for developing applications on the FPGA.

where the design still does not meet the performance needs of the applica-
tion and the optimizations within the HLS tool have been exhausted then
the designer will need to develop a custom design. When a design meets the
requirements set forth by the application it is stored in a library for future

use.
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Chapter 9

Conclusions

Design time is a huge barrier to utilizing FPGAs in heterogeneous systems.
For many applications, obtaining maximum performance is not a require-
ment. This paper has shown that speedup over traditional software im-
plementations is achievable with minimal design time using HLS tools for
several different multiplication algorithms. The performance gap between
HLS and custom designs can be lessened by optimizing HLS designs. A
design flow has been presented that, given the performance needs of an ap-
plication, can greatly reduce the design time of an FPGA implementation.
As HLS tools improve in both their usability and performance, the number
of applications that require custom applications will decrease. This makes
FPGAs a significantly more attractive option for implementation within a
heterogeneous system.
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