
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Presentations and other scholarship Faculty & Staff Scholarship

8-2017

LiLAC: Lightweight Low-Latency Anonymous Chat LiLAC: Lightweight Low-Latency Anonymous Chat

John P. Podolanko
University of Texas at Arlington

Revanth Pobala
University of Texas at Arlington

Hussain Mucklai
University of Texas at Arlington

George Danezis
University College London

Matthew Wright

Follow this and additional works at: https://repository.rit.edu/other

Recommended Citation Recommended Citation
J. P. Podolanko, R. Pobala, H. Mucklai, G. Danezis and M. Wright, "LiLAC: Lightweight Low-Latency
Anonymous Chat," 2017 IEEE Symposium on Privacy-Aware Computing (PAC), Washington, DC, USA,
2017, pp. 141-151. doi: 10.1109/PAC.2017.14

This Conference Paper is brought to you for free and open access by the RIT Libraries. For more information,
please contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/other
https://repository.rit.edu/facstaff
https://repository.rit.edu/other?utm_source=repository.rit.edu%2Fother%2F907&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

LiLAC: Lightweight Low-latency Anonymous Chat

John P. Podolanko, Revanth Pobala,
Hussain Mucklai

Dept. of Computer Science and Engineering
University of Texas at Arlington

Email: {john.podolanko | revanth.pobala |
hussain.mucklai}@mavs.uta.edu

George Danezis
Dept. of Computer Science
University College London
Email: g.danezis@ucl.ac.uk

Matthew Wright
Center for Cybersecurity

Rochester Institute of Technology
Email: matthew.wright@rit.edu

Abstract—Low latency anonymity systems, like Tor and
I2P, support private online communications, but offer lim-
ited protection against powerful adversaries with widespread
eavesdropping capabilities. It is known that general-purpose
communications, such as web and file transfer, are difficult to
protect in that setting. However, online instant messaging only
requires a low bandwidth and we show it to be amenable to
strong anonymity protections. In this paper, we describe the
design and engineering of LiLAC, a Lightweight Low-latency
Anonymous Chat service, that offers both strong anonymity
and a lightweight client-side presence. LiLAC implements a set
of anonymizing relays, and offers stronger anonymity protec-
tions by applying dependent link padding on top of constant-
rate traffic flows. This leads to a key trade-off between the
system’s bandwidth overhead and end-to-end delay along the
circuit, which we study. Additionally, we examine the impact of
allowing zero-installation overhead on the client side, by instead
running LiLAC on web browsers. This introduces potential
security risks, by relying on third-party software and requiring
user awareness; yet it also reduces the footprint left on the
client, enhancing deniability and countering forensics. Those
design decisions and trade-offs make LiLAC an interesting case
to study for privacy and security engineers.

Keywords-instant messaging; anonymous chat; onion rout-
ing; dependent link padding; private communication

I. INTRODUCTION

Instant messaging (IM) involves sending short messages
in real-time to one or more intended recipients. Some of its
uses involve sensitive information that needs to be quickly
transmitted back and forth between parties (e.g. military
and intelligence services, political activists, journalists and
whistleblowers). Yet, today’s IM systems are inadequate in
providing those with strong security and anonymity guaran-
tees. While modern IM systems offer end-to-end encryption
and perfect forward secrecy, they provide no protection of
the key meta-data of who is chatting with whom and when.

One system that provides some protection is TorChat,
a chat service running over the Tor anonymity network.
TorChat, however, suffers from known vulnerabilities in
Tor: powerful adversaries that could observe a significant
fraction of Tor traffic may deanonymize users. These at-

tacks have been thoroughly explored, assuming a fraction
of malicious Tor nodes [1], interception at Internet Ex-
changes [2], observed Autonomous Systems [3], [4], and
adversaries actively manipulating Internet routing to enable
interception [5]. Some techniques protect against strong
adversaries, such as Dependent Link Padding (DLP) [6],
[7], but these are typically too expensive for bursty general
purpose communications. However, given the low traffic
requirements of IM, we show that such techniques may be
used at reasonable cost.

Contributions. We make several contributions around the
design and evaluation of LiLAC, a Lightweight Low-latency
Anonymous Chat service offering both strong anonymity
and a lightweight client-side footprint. The novel LiLAC
uses a directory server and circuits, much like Tor, but
stronger anonymity through using DLP over of constant-
rate traffic flows. In LiLAC there is a key trade-off between
the system’s bandwidth overhead and the end-to-end delay
along the circuit. Thus, we experimentally tune LiLAC to
minimize the overheads and keep delays at an acceptable
level for interactive chat.

LiLAC was designed with usability and ease of deploy-
ment in mind. It operates over a web interface that works
in typical browsers, and is very similar to a standard web
chat service. A key contribution of this paper, is to examine
the security trade-offs of this deployment choice, such as
the reduction of the footprint on the client and the increased
risks in relying on third-party software (the browser).

The rest of our paper is organized as follows: background
is presented in Section 2. Section 3 contains the attack model
assumed by LiLAC. In Section 4, we present the LiLAC’s
architecture and subsystems. Our experimental design and
results are presented in Section 5. Open problems are
outlined in Section 6. Related works are compared in Section
7, and we conclude in Section 8.

II. BACKGROUND

We first provide a brief overview of prior work in se-
cure communications, focusing on design elements that we
combine and extent to design LiLAC.

978-1-5386-1027-5/17/$31.00 ©2017 IEEE

A. Chat Content Confidentiality

Off-the-record (OTR) messaging [8] introduces perfect
forward secrecy (PFS) to secure chat. PFS uses frequent
re-keying thought authenticated ephemeral Diffie-Hellman
key exchanges. Thus compromizes of long-term secret keys
do not allow an adversary to obtain symmetric keys used
to encrypt past messages. Alexander and Goldberg improve
this process of mutual user authentication [9] through the
Socialist Millionaire’s Protocol (SMP) [10]: two parties can
derive a fresh strong secret key through a previously shared
weak shared secret, such as a pass phrase. A number of IM
clients, such as CryptoCat [11], deploy OTR with SMP. We
also use SMP for end-to-end secrecy in LiLAC, but also
provide anonymity guarantees.

B. Onion Routing

Tor [12], the popular anonymity system used by millions1,
implements onion routing [13]. Onion routing enables in-
teractive anonymous communications with connections we
now call circuits that pass through multiple relays on the
path from the client to the server. In a circuit, the client
establishes shared keys with each proxy (or onion router)
on the path, and uses these keys to build secure tunnels.
The tunnels are layered inside of each other—hence the
name onion routing—and this prevents any one party from
cryptographically linking the client with the destination
server. LiLAC uses such onion-routing-style circuits for
routing IM messages, and strengthens their security against
passive traffic analysis through padding with cover traffic.

C. Dependent Link Padding

Anonymity systems, including onion routing, can be pro-
tected from traffic analysis by using padding, which is traffic
generated in order conceal patterns. A well-known method
for effective padding is Dependent Link Padding (DLP) [6],
[14]. Consider a proxy (e.g. an onion router) that relays
multiple circuits. DLP ensures that, if a message arrives on
one of the circuits at time t, it is scheduled to be sent at
the latest at time t + δ along with padding on each of the
other circuits. If a message arrives on a second circuit at
time t′ < t + δ, that message replaces the padding for that
circuit, thus reducing bandwidth overhead. The parameter δ
can be tuned to trade delay along the circuit for volume of
padding. We note that this is particularly suitable for chat,
since users can tolerate a moderate amount of delay (e.g. a
few seconds), and that increased delay lowers overhead. A
further extension is Reduced Overhead DLP (RO-DLP) [7],
which takes advantage of the topology of the whole system
to further reduce overhead. We apply RO-DLP in LiLAC.

1https://metrics.torproject.org/

III. THE LILAC ATTACKER MODEL

In this section, we briefly outline the attacker model for
LiLAC. We aim to protect users from a global passive
adversary (GPA), who can observe any packet being sent
and received, including the source and destination addresses
and when it was both sent and received. In vanilla onion
routing observing both ends of the circuit is enough to
perform a traffic confirmation attack and link the sender and
receiver [12]. The GPA can essentially perform this attack on
every sender-receiver pair to trace communications. While
Syverson argues that the GPA is infeasible [15], the Snowden
revelations suggest that it may be more relevant than once
thought. Recently discovered applications of attacks on
Internet routing to breaking anonymity systems make even
a somewhat limited attacker as potent as the GPA [5].

The adversary may also attempt some limited active at-
tacks. For example, a local eavesdropper or ISP may attempt
a man-in-the-middle attack. The attacker may attempt to
compromise one or more nodes in the system, or perhaps
simply trick the people responsible for the system into
accepting his freely volunteered computing and bandwidth
resources. LiLAC assumes that at least one of the nodes
on the circuit is honest. We also assume, in our prototype,
that the directory server must be fully trusted. We explain
this in Section IV-A, and note that this assumption can
be eliminated though the use of standard techniques for
distributing the directory.

Finally, we do not address long-term observation and
intersection attacks in our system. The attacker can watch
when users join and leave the system and look for patterns
that link multiple users over time. The general form of
this is called the statistical disclosure attack [16]–[19]. If
the adversary can directly link two users with a single
connection, as is possible in Tor, then this kind of longer-
term attack is not required. Addressing this attack may be
possible using the method of Wolinsky et al. [20] but leave
this extension for future work.

IV. DESIGN OF THE LILAC ANONYMITY SYSTEM

In this section, we present the details of LiLAC’s design.
Our primary objective is to design and implement a system
that is secure, anonymous, and easy to deploy and use.
LiLAC is composed of four components: the directory
server, the presence server, relays, and clients. The directory
server monitors changes in the network topology and main-
tains information about active relays and presence servers
in the network. The directory server also hosts the LiLAC
website and delivers content to the clients. The presence
server maintains information about online clients and is
the intermediary responsible for connecting two clients who
wish to communicate. The relays operate much like relays
in Tor [12] and use RO-DLP to prevent traffic analysis.

https://metrics.torproject.org/

We examine each of these components as well as how they
support our goals in the following subsections.

A. The Directory Server

The directory server is a trusted server that maintains the
information required for LiLAC to operate as a system, con-
sisting of information about the LiLAC relays and presence
servers. When one of these nodes comes online, they must
first register themselves with the directory server and provide
their IP address, public key, and their role in the system –
relay or presence server. The operator of the directory server
should maintain a white list of nodes that she has determined
can participate, and the system should check against this list
before registering the node. As nodes go up and down in
the system, the directory server maintains the list of which
ones are online. LiLAC currently supports a single presence
server, and so the directory server operates on a first-come-
first-served basis. In other words, the first presence server
to register itself becomes the active presence server; any
additional servers become backups.

The directory server also serves content to LiLAC’s
clients. A LiLAC user enters the domain name or IP address
of the directory server into a modern web browser, and the
directory server responds with the web pages which includes
the JavaScript code that makes up the LiLAC client. The
directory server also provides this client the details of the
current presence server the relays currently online. We chose
the NodeJS framework on which to build our application.
While NodeJS is commonly used for server-side rendering
of JavaScript, we built the directory server so that the only
JavaScript rendered server-side is that which is required for
the directory server to function. To ensure a rogue directory
server doesn’t compromise anonymity and security for the
clients, we allow for client-side rendering of JavaScript for
key generation, circuit building, and conducting handshake
protocols and SMP checks.

Unfortunately, the directory server must be trusted, which
is the primary trade-off of using a web-based design. Since
the Web server has all the client-side code, it could also
modify all the code in arbitrary ways before delivering it
to the client. Tor mitigates trust in the directory server
by using a multi-party signature, in which multiple parties
must agree to the same set of relay information. There is
no point in doing this in LiLAC, however, since the web
server would deliver the code to check this signature as well.
The only way we see to mitigate this is to use a separate
client application that could store the public keys of multiple
entities and validate both code updates and directory updates
using a multi-party signature, like Tor does. For now, the
directory server remains the weakest point in the system.

To overcome this, at the cost of having smaller anonymity
sets, a group of LiLAC users could run their own directory
server and point their browser to the public domain or IP

address on which their directory server is running. LiLAC
pages can be served from any preferred framework (i.e.
Flask, Django, Spring, etc.). This directory server could
point to its own set of relays or piggyback on the existing
relays and presence server, in which case the operator just
downloads the creds.json file from the original LiLAC
site. This file consists of the information of the location of
relays and their public keys. The structure of creds.json
is shown below:

[{"host":"52.62.193.227",
"port":8091,
"publicKey":"5113daa74e909bef24e93f..."},
{"host":"54.169.78.216",
"port":8091,
"publicKey":"37bd39bce2fdb145e8e185..."}]

B. Relays and Creating a Circuit

Relays are volunteer-based onion routing servers that
perform the same functionality in LiLAC as relays do in
Tor [12] – anonymizing traffic. The client chooses three
relays from the list, creds.json, provided by the direc-
tory server to build a circuit. We do not currently address
bandwidth disparities, guards, or other path selection fea-
tures currently used in Tor or proposed by others. With a
large set of relays, these would be important considerations.
Guards seem especially important for security [21]. In Tor,
guards are implemented by retaining state at the client. In
LiLAC, since no state is retained, we could instead use
a consistent hash of the user’s self-selected ID to seed a
random number generator for selecting the guard. We leave
detailed consideration of this issue for future work.

Once a client randomly selects three relays, it begins
building a circuit. First, symmetric keys are generated for
each of the relays starting with the entry relay. LiLAC im-
plements the ACE protocol, which is an efficient adaptation
of the Diffie-Hellman key exchange algorithm that provides
one-way key authentication [22]. Upon establishing a sym-
metric key with the entry, the client can use this to encrypt
and authenticate packets, thereby creating a tunnel. Through
this tunnel, the client can then establish a symmetric key
with the second relay using the ACE protocol, creating a
tunnel within the first tunnel. The same process is repeated
to extend the circuit to the exit (final) relay. Additionally, the
client establishes a symmetric key with the presence server
through the circuit once it is created.

During the period that the circuit is built, a loading screen
is displayed on the client’s web browser. Once the circuit
has been established and extended to the presence server,
the client is able to use the system and is prompted to enter
a username and password.

Figure 1. Connecting to the LiLAC presence server

C. The Presence Server

We now turn our attention to the presence server. Once
the client’s circuit is built, it establishes a shared symmetric
key with the presence server and all communication between
the client and presence server passes through the circuit.

1) Functionality: Unlike the directory server, it does not
serve content to the clients, but it still renders its own
functional JavaScript. The presence server’s central role is
to establish connections between chat partners. To do this,
the presence server performs two functions: it maintains a
list of online clients; and it responds to requests to connect
clients. When a client accesses the LiLAC web application,
it identifies itself by entering a username. This username is
used to mark the client as online for a certain period of time,
the epochs described below (§IV-C2). The client then sends
its username (or a pseudonym derived from its username as
described below) to the presence server which stores it in
memory for future use.

To begin communicating, the client must submit a re-
quest to the presence server to start a chat by providing
the username of the intended chat partner. The presence
server receives this identifying username along with the
username of the requester at which point the presence server
searches for the recipient in its records. If found, it forwards
the request with the requester’s username to the intended
recipient. To protect the recipient’s privacy, no feedback of
this part of the process is sent to the requester. In other
words, if the client does not get connected to the recipient,
then the client is not able to determine if the recipient is
offline or simply ignoring the chat request.

2) Epochs and Time-Stamps: The presence server is
critical to the design of LiLAC. To increase assurance,
we aim to treat the presence server as adversary from the
client’s perspective. Therefore, the client divulges as little
information as possible to this server, and none of that
information can be used to ascertain the real identity of the
client so long as their username is not indicative of their real

identity. Even still, allowing the presence server to see the
username for every client in plaintext may not be acceptable.

To avoid this threat, the LiLAC system operates on
time periods known as epochs, and derived epoch specific
pseudonyms for each username. An epoch is the minimum
length of time for which a client would be marked online
and open to receive chat requests. In our implementation,
we used an epoch length of 15 minutes. We further define a
timestamp TS as the number of epochs which have elapsed
since the 1st of January, 1970.

When a client registers with the presence server, it hashes
its own username concatenated with the timestamp such
that IDA = H(“alice”||TS) where “alice” is the selected
username and TS is the current timestamp. Before the client
sends a chat request to the presence server, it similarly
computes the chat partner’s presence ID for this epoch,
IDB = H(“bob”||TS), and makes a request to connect
to this ID to the presence server. This request is covered
in more detail below (§IV-D). To address moderate time
synchronization issues, a client registers with the presence
server by sending two identifying names – one for the cur-
rent epoch and one for the next. The presence server receives
both identifying names and maintains two collections of
names: one for the current epoch and one for the next. This
process is shown in Figure 1.

We note that this approach to private presence online is
not perfect. The username acts as a key, and if the user
selects a guessable username, then a curious presence server
could apply a dictionary attack on any given epoch. Then,
given one successful guess, it could search all other epochs
for that username and corresponding timestamp. A better
approach to private presence was proposed by Borisov et
al. [23]. However, this approach relies on clients pre-sharing
cryptographic keys, and incorporating this into LiLAC is
future work.

Figure 2. Connecting to a LiLAC chat partner

D. Connecting to a Chat Partner

Once two clients have registered themselves with the
presence server and want to communicate, one of them
initiates the conversation by submitting a chat request to
the presence server. The key challenge is for users to find
each other through the presence server. The ideal mechanism
here is something private and secure like DP5. For our
purposes, we developed a simpler mechanism based on a
hash of the username that we could easily prototype which
is shown in Figure 2. Let’s say that two users, Alice and
Bob, are registered with the presence server and that Alice
wants to submit a chat request to Bob. This request R
consists of five fields: the chat recipient field IDB , the
chat requester field ρ, a nonce N1, the exit relay field,
and the key exchange field. The chat recipient field is just
Bob’s ID as described above (§IV-C2). The chat requester
field is the encryption of Alice’s username using a key K
derived from the hash of Bob’s username with the nonce
N1, i.e. K1 = H(“bob”||N1), and ρ = E(K1, “alice”).
Note that protecting the unlinkability of Alice and Bob
relies on Bob’s username being a secret from the presence
server; again, a stronger private presence technique like
DP5 could strengthen this mechanism. The exit relay field
contains the IP address and circuit ID of Alice’s exit relay,
denoted by IPXA

||CIDA. While the presence server can
determine this information from its own connection with
Alice’s exit relay, Bob will still need this information in
order to connect directly to Alice’s circuit after accepting
the chat request. Finally, the key exchange field will contain
the first message in establishing a shared symmetric key via
the ACE protocol [22], denoted by KACE0

. This request
message is summarized in Table I.

Alice sends R to the presence server. The presence server
extracts IDB and uses it to verify Bob’s online presence. If
IDB is found in its online records, then the presence server
forwards R to Bob via his circuit. Once Bob receives R, he

Chat Recipient: IDB = H(“bob”||TS)
Chat Requester: ρ = E(K1, “alice”)

Nonce: N1

Exit Relay: IPXA
||CIDA

Key Exchange: KACE0

Table I
DATA STRUCTURE OF A CHAT REQUEST MESSAGE R

computes K1 = H(“bob”||N1) and uses it to decrypts and
read Alice’s username. Bob will discover that R came from
Alice (or someone posing as her) and will decide whether
or not he wants to accept her request.

To accept request R, Bob sends a chat acceptance message
to his exit relay. This acceptance message, denoted by Q,
consists of four fields: the chat partner field φ, a nonce N2,
the exit relay field, and the key exchange field. For the chat
partner field, Bob computes a key K2 = H(“alice”||N2)
and then uses the key to encrypt his username, φ =
E(K2, “bob”). This field is required for Alice to verify
that Bob (or someone posing as Bob) is the sender of the
message. The exit relay field contains the information about
Alice’s exit relay, IPXA

||CIDA, which was part of R and
is needed by Bob’s exit relay. The key exchange field holds
the response – specified by the ACE protocol – for Alice
to compute the shared symmetric key, denoted by KACE1

.
This acceptance message Q is summarized in Table II.

Chat Partner: φ = E(K2, “bob”)
Nonce: N2

Exit Relay: IPXA
||CIDA

Key Exchange: KACE1

Table II
DATA STRUCTURE OF A CHAT ACCEPTANCE MESSAGE, Q

Bob sends Q through his circuit to his exit relay, which
extracts IPXA

and uses it to forward Q to Alice’s exit relay

XA. In turn, XA extracts CIDA and identifies the correct
circuit through which it will send Q to Alice. Once Alice
receives Q, she computes K2 = H(“alice”||N2) and uses
K2 to decrypt Bob’s username. Alice will discover that Q
came from Bob, at which point she uses KACE1

compute the
shared symmetric key. Now, Alice is ready to communicate
with Bob. She immediately sends an acknowledgment mes-
sage to Bob to confirm the establishment of the conversation.
Alice’s exit relay now forwards traffic to Bob’s exit relay
until it receives a “Disconnect” message and vice-versa.

E. Security Features

We now discuss two security features of LiLAC: heartbeat
padding and the implementation of the Socialist Million-
aire’s Protocol (SMP).

1) Heartbeat Padding: We aim to prevent traffic analysis
in LiLAC by the use of padding. As discussed in §II-C, we
apply RO-DLP to protect links between nodes. This does
not, however, protect the timing information of real mes-
sages sent. An observer who sees a user sending messages
followed by another user sending messages in a back-and-
forth pattern can see that the two parties are chatting with
each other. To cover this activity, we additionally queue
all messages and send them out at a constant-rate, using
random ciphertext as padding whenever a real message is
not available to be send. Padding messages are generated
to be indistinguishable from real messages: they consist of
a random string S encrypted under a random fresh key
K using AES (thus MH = E(S,K)). We call this the
heartbeat traffic in LiLAC, and we use a value of 300 ms
as the default heartbeat interval. A shorter heartbeat interval
decreases the amount of delay that a message suffers before
being sent, while a longer heartbeat interval reduces the
bandwidth overhead due to padding when real messages
aren’t available. We explore this trade-off in our experiments
(§V).

Because of this heartbeat, the method for sending out-
bound messages needs to be adjusted. Rather than sending
outbound messages immediately, they are placed in a queue.
There is a separate queue kept for each outbound connection.
After the passing of a heartbeat interval (i.e. every 300
milliseconds), the node removes the first message from every
queue and sends it to the respective recipient. If a queue is
empty, the node generates a dummy heartbeat message and
sends it to the queue’s corresponding connection. In this
instance, it is worth noting that the term “node” can refer to
clients, relays, and the presence server.

The implementation of cover traffic is useful in protecting
LiLAC and its clients from statistical analysis of its traffic
flow [18]. However, selecting the heartbeat interval involves
a potential trade-off. Selecting a very short heartbeat interval
may increase congestion in the network whereas selecting
a longer heartbeat interval can increase the latency expe-

rienced by the clients – especially considering the fact that
messages will be queued for the respective heartbeat interval
at each relay. The overheads of operating the system using
several different heartbeat intervals are discussed in our
experimental section.

2) The Socialist Millionaire’s Protocol: LiLAC uses the
Socialist Millionaire’s Protocol (SMP) [9], [10] to assure
both parties that they are speaking with their intended chat
partner, and derive a shared key between them for secure
and authenticated communications. In short, one party asks
a question such as ”What is the pass phrase?” or ”What
is the name of the bar we met at on our second date?”,
and the other party answers the question. If the answer
matches the answer given by the asking party, the protocol
will succeed and a key will be shared. Else, the protocol
will fail, and the users will be alerted. In LiLAC, SMP
occurs after the full circuit and shared key between the
chat parties are established. We use the first shared key
that is established as part of the input to the answer, which
assures both parties that they have both been involved in
the communications so far. SMP needs to be initiated by
one of the two chat partners. Before SMP is invoked, the
user interface is designed to warn the users that their chat
is insecure and that they should click the SMP button. We
leave exploring the design, usability and effectiveness of this
warning for users as future work.

For a malicious user, Mallory, to successfully execute a
MITM attack, she would need to intercept traffic between
Alice and Bob and establish different symmetric keys with
both of them. Alice would falsely believe the symmetric
key she shares with Mallory is shared with Bob. Similarly,
Bob would falsely believe the symmetric key he shares
with Mallory is shared with Alice. However, that’s only
possible if Mallory knows the challenge answers for both
Alice and Bob. When Mallory receives the SMP request
from Alice, she has two options. She may interfere and
provide her own answer reply to the SMP request which
will cause the SMP to fail assuming Mallory does not
know the secret pass phrase entered by Alice. Alternatively,
Mallory could let the SMP take place between Alice and
Bob uninterrupted which will also fail because Alice and
Bob possess different symmetric keys. Therefore, Mallory
has no method of forcing the SMP to evaluate to true, and
Alice and Bob will detect the MITM attack.

3) Application Footprint: LiLAC is lightweight such that
it can be run from any computer with a web browser and an
Internet connection, and it requires no special software, plug-
ins, or client installation. It is entirely browser-based and
allows a user to access the chat service without leaving any
footprints on any trusted computer. Once a user is finished
using LiLAC, the user must simply delete the browser
history and clear the cache to remove any evidence that
the computer was ever used to access the LiLAC website.

We encourage users to access LiLAC in the web browser’s
incognito or private browsing mode, so manual deletion of
browser history and cache becomes unnecessary.

F. The Back-end

LiLAC is designed to be run on popular operating systems
such as Windows, macOS, and most flavors of Linux. It
is written in JavaScript and utilizes the NodeJS framework
to run its processes. LiLAC can easily be deployed using
cloud and container services such as Amazon Web Services
(AWS), Heroku, and Docker. The only software dependen-
cies required to run the LiLAC servers are as follows:
• Node.js
• Node Package Manager (NPM)
• Python 2.7
• Stanford JavaScript Crypto Library (SJCL)
• Google Crypto Library
• Bootstrap
• ecc2519 (to generate private and public keys)
To demonstrate LiLAC’s capabilities, we have deployed

a directory server and presence server on AWS using EC2
instances. Relay servers are placed in AWS EC2 instances,
Heroku containers, and on physical computers in our lab
in Arlington, TX. The complete network map of the LiLAC
network is shown in Figure 3 where the red markers indicate
relay nodes and the green marker indicates the presence
server.

Figure 3. Deployed LiLAC Network

The source code for LiLAC has been made available
to the public, and it can be found at https://github.com/
revanthpobala/Lilac.

V. EXPERIMENT AND RESULTS

To evaluate the LiLAC design, we devise and execute a
set of experiments using a real-world Internet deployment.
Our experimental design consists of running LiLAC with
a single directory server, a single presence server, and
twelve relays. We then measured the performance of the
system under the load of 1,000 clients. These clients were
run on ten systems – one hundred clients per system. To

achieve more accurate results, we had our clients and relays
geographically dispersed. We used Amazon Web Services
(AWS) to run most of our clients, relays, and our Presence
Server. AWS provides server instances in nine geographic
locations – namely Northern Virginia, Oregon, Northern
California, Ireland, Frankfurt, Singapore, Tokyo, Sydney
and São Paulo. These nine locations, along with our lab
in Arlington, Texas, allowed us to globally distribute our
system for experimentation. The summarized architecture is
shown in Table III.

Node Type # of Servers Memory (GB) Location(s)
Directory Server 1 4 Arlington, TX
Presence Server 1 32 Frankfurt

Relay 12 16 Global
Client 10 8 Global

Table III
SUMMARY OF EXPERIMENT ARCHITECTURE

The experiment was run several times with varying
heartbeat intervals. In order to conduct these experiments
effectively, we had to automate the client-side code to
automatically create a circuit and register with the presence
server with a random string. The code base for the relays
was not altered, but the behavior of the presence server was
altered to maintain a variable, called lastRegistered,
for the last client registered. The variable was empty when
initialized. When the presence server received a registration
request, it would check the value of lastRegistered. If
it was empty, the presence server would set the value as the
username it received in the request. If lastRegistered
was not empty, the presence server would return its value
to the client making the request and subsequently setting
lastRegistered to empty. If the client received a user-
name from the presence server, it would immediately send a
request to the presence server to begin a chat with this client.
If not, the client would wait for a chat request. Using this
scheme we are able to continuously initiate communication
channels between random clients. This is better illustrated
in the following steps in which we shall refer to the two
simulated clients as Alice and Bob:

1) The presence server initiates with lastRegistered =
null.

2) Alice registers with username “alice”.
3) The presence server sets lastRegistered = “alice”.
4) Bob registers with username “bob”.
5) The presence server sends back “alice” to Bob and

sets lastRegistered = null.
6) Bob sends chat request for “alice” to the presence

server, and the connection is established.
To measure system performance, the automated clients

first create a circuit and record the circuit build time.
Next, the clients establish a connection with a chat partner

https://github.com/revanthpobala/Lilac
https://github.com/revanthpobala/Lilac

as described above. Clients would then send and receive
messages continuously with their respective chat partners.
A client sends a message and record the time the message
was sent. When the chat partner received a message, it would
calculate the time elapsed since the last message was sent
and record this calculated value in a log file. The client
then sends another message, records the time it was sent,
and continues in this loop indefinitely. The finalized log file
contains the time taken to build the circuit, followed by a
list of times taken for a message to be sent to a chat partner
and returned to the sender – or, simply put, round-trip times
(RTT). The message send time, which is the time it takes for
a message to reach its recipient, are effectively half the RTT.
We ran preliminary experiments using heartbeat intervals
of 150, 200, 300, 400, 500, 600, and 1000 milliseconds.
Intervals of 150 and 200 ms led to high overheads at the
servers that clogged the network, while intervals 600 and
1000 milliseconds led to very slow message delivery. As
there are no hard and fast rules on how long we can make
users wait (see, e.g. Nah’s work on Web waiting times,
which discusses wait times ranging from 2 seconds to more
than one minute [24]), we relied on our own perceptions to
rule out larger intervals. We thus ran the experiments twice
using a heartbeat interval set to 300 and 500 ms, respectively.

Figure 4. Cumulative distribution function for circuit build times

As shown in Figure 4, circuit build times are kept to under
10 seconds in most cases. Note that circuit creation messages
are also forced into the heartbeat time restrictions, and this
slows the process considerably. While this delay could be
seen as lengthy, this is a one-time cost for the user, which
appears like loading the page. The message RTT, as shown
in Figure 5, has a median value of 3.0 seconds for a 300ms
heartbeat interval and 4.6 seconds for a 500ms interval. This
means that most messages reached their recipient in 1.5 or

Figure 5. Cumulative distribution function for message round-trip times

2.3 seconds or less, respectively. We believe that this delay
is reasonable for interactive chat.

VI. DISCUSSION AND FUTURE WORK

To increase the functionality of the LiLAC system and
satisfy more of its users’ requirements, there is still more
work to be done. One feature would be the addition of group
chat into the system. In implementing group chat, we need to
consider the potentially negative effect on performance and
anonymity that such a feature could cause. For example, a
naive approach would be to have all users operate multiple
circuits all the time, enabling multiple parties to be contacted
at once without leaking evidence of the multi-party chat.
This would reduce the number of concurrent users that
the system could handle. Another approach would be to
require messages to be multiplexed over the single circuit,
but this creates contention and might only work for very
small groups.

We would also like to incorporate DP5 [23] into LiLAC.
DP5 provides strong privacy for presence information and
supports high-integrity status updates to facilitate update and
rendezvous protocols. DP5 is designed so that secrets are not
long-term and perfect forward secrecy can be used in the
event of compromise. On the other hand, DP5 requires ad-
ditional back-end infrastructure and pre-shared key material
between users.

DP5 does not entirely prevent attacks based on users’
presence in the system, however, since an eavesdropper
can see when the user connected to the system by direct
observation. This means that a remaining open threat in
LiLAC is the statistical disclosure attack [16]. This can
be partially prevented by encouraging users to remain con-
nected to LiLAC even when they are not actively using
the chat service. Longer connection times make it harder
to isolate users that are chatting with each other. Wolinsky

et al. [20] propose grouping users and forcing them to be
effectively online at the same times by blocking posts from
the whole group while any group members are offline. This
method is interesting, but it forces difficult trade-offs with
communication availability that would need to be evaluated
in our setting.

Another feature to be included in future versions is file
transfer. Given the DLP dummy traffic, file transfers could
be a considerably slow process as larger files are being
transferred, so it would need to be fine-tuned, optimized,
or bandwidth would need to be expanded. We would also
need to limit file transfer sizes so other users aren’t incon-
venienced in the event another user tries sending large files
through a relay they happen to share.

To expand upon the file transfer feature, we could add
voice messaging to LiLAC. This would not be real-time
voice over IP due to quality of service concerns, but we
could allow the users to record voice messages of an
arbitrary length – let’s say 10 or 30 seconds – and transmit
the packaged message to the other user as they would with
any other file. The user would then play the entire voice
message after it has been received and reconstructed.

We would, however, need a larger backbone to accom-
modate file transfers and voice messaging. LiLAC’s current
backbone consists of only one presence server backed by
few load balancers. The presence server also currently acts
as the bottleneck in terms of scalability; a thousand clients
required almost 32GB of memory. As such, we will need to
implement a protocol to utilize multiple presence servers
which must be geographically distributed. One approach
would be to have multiple regional presence servers which
are subordinate to a global presence server. In other words,
if there are five regions, then we deploy a single presence
server to each of the five regions as well as a sixth presence
server to govern them all. If a user in region 1 is looking for
a user in region 3, the region 1 presence server would query
the global presence server which would query the user in
region 3 and establish the connection between users. This,
however, still leaves a single point of failure. We propose
that we cut out the middle man – the global presence server
– and just establish communications links between all the
regional presence servers through which they can broadcast
queries for individual users not found in their region. When
a regional presence server governing the requested user sees
this query, it would respond with connection information.

Future versions should ideally do something to mitigate
LiLAC’s vulnerabilities. Having centralized directory and
presence servers essentially creates multiple single points
of failure for the entire system, not to mention a centralized
authority implies trust. Any powerful DDoS attacker could
essentially bring LiLAC down with little effort. Further,
compromise of the directory server should not lead to
complete privacy exposure.

Lastly, LiLAC will require volunteers to run relays and
servers in support of a strong anonymity service for chat,
much as Tor relies on altruistic volunteers [25].

VII. RELATED WORKS

There have been various approaches to designing and im-
plementing anonymous communication systems. One such
approach was proposed by Chaum [26], in which anonymity
was provided by relaying messages through a series of
nodes referred to as mix nodes. Mix systems require multiple
public key operations to relay every message. A mix node
is a server that accepts incoming connections from multiple
clients, forwards them to their appropriate destinations in
such a way that an eavesdropper is not able to ascertain
relationships between inbound and outbound connections.
Considering the negative implications of a single compro-
mised mix node, messages are relayed through multiple
nodes to increase the strength of the anonymity. LiLAC’s
architecture implements a variant of Chaum’s mix nodes
which are derived by grouping a cascade of nodes that
accept messages from multiple senders. They then shuffle
these messages and send them out in a random order to a
subsequent set of mix nodes or to the circuit’s exit node.

Similar systems, such as ISDN-mixes [27] and the Java
Anon Proxy (JAP) [28], have been previously implemented.
ISDN-mixes and JAP attempt to anonymize phone conver-
sation traffic and web traffic respectively and have been
designed to provide real-time anonymous communication.
However, the synchronous manner in which they work is not
well suited for today’s bi-directional, asynchronous TCP/IP
networks [29]. In contrast, LiLAC is designed to be a low-
latency system that overcomes this drawback while still
enabling real-time, anonymous chat.

Systems such as Mixmaster [30] and Mixminion [31]
provide re-mailer anonymity for sending and receiving email
messages. Email messages are sent to re-mailer servers in
fixed-sized encrypted packets, with instructions on where to
send the packet to next. This architecture has proven to be
practical and effective where delays in data transmission are
not critical to the application’s use. It does not, however,
suit the needs of real-time systems such as IM.

Onion routing, such as Tor [12], only requires public key
operations to build circuits, and a circuit can be maintained
for the duration of the chat session. Tor comes with an
anonymous IM system that uses Tor hidden services [12] as
its underlying network known as TorChat. One of the main
advantages of using TorChat is that it supports file transfers
which is currently unsupported in LiLAC. Viigipuu provides
a good overview of how it works and a detailed analysis
of its security [32]. With respect to anonymity, TorChat
is vulnerable to attacks on Tor and Tor hidden services
in particular. Kwon et al. demonstrate that an attacker
observing a significant fraction of traffic from clients to

guards can link clients to the hidden service they contact
with just 20 Tor cells (fixed-sized units of data in Tor) [33].
More generally, powerful attackers who observe a large
amount of Tor traffic entering and exiting the network can
deanonymize many Tor connections, including both ends of
TorChat sessions. Moreover, the Tor network is becoming
more congested due to the growing number of users and the
increased network traffic from different applications.

Cryptocat [11] is a browser-based IM system that provides
security to the users by implementing SMP and onion
routing similar to LiLAC. Like Tor Chat, Cryptocat also
supports file transfers. However, Cryptocat fails to provide
anonymity to the users which still makes LiLAC the first of
its kind.

VIII. CONCLUSION

We have proposed a system for Lightweight Low-latency
Anonymous Chat (LiLAC) that is customizable and open
source, and we have publicly deployed this platform on the
Internet. Our work aims to provide a simple and efficient
architecture dedicated to anonymous IM. In this paper, we
have discussed the anonymity and security benefits and
other complementary features inherent in LiLAC’s design
that make it unique to its class. We have also addressed
the many trade-offs in performance, the trust model, and
feature set that leave room for improvement. We have shown
through experimentation that the performance of LiLAC
is reasonable for use as a real-time chat medium with an
average round-trip time of 3.5 seconds and an average circuit
build time of 7 seconds.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for pro-
viding great feedback. We thank the University of Texas at
Arlington and the Department of Education for supporting
us with a Graduate Assistance in Areas of National Need
(GAANN) fellowship. This work was also supported in part
by NSF awards number CNS-1423163 and CNS-0954133 as
well as Rochester Institute of Technology and the Signature
Interdisciplinary Research Areas grant.

REFERENCES

[1] B. N. Levine, M. K. Reiter, C. Wang, and M. K. Wright,
“Timing attacks in low-latency mix systems,” in Proc. Inter-
national Conference on Financial Cryptography (FC), 2004.

[2] S. J. Murdoch and P. Zieliński, “Sampled traffic analysis by
Internet-exchange-level adversaries,” in Proc. Workshop on
Privacy Enhancing Technologies (PET), 2007.

[3] M. Edman and P. Syverson, “As-awareness in Tor path
selection,” in Proc. ACM Conference on Computer and Com-
munications Security (CCS), 2009.

[4] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson,
“Users get routed: Traffic correlation on Tor by realistic
adversaries,” in Proc. ACM Conference on Computer and
Communications Security (CCS), 2013.

[5] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford,
M. Chiang, and P. Mittal, “Raptor: Routing attacks on privacy
in Tor,” in Proc. USENIX Security Symposium, 2015.

[6] W. Wang, M. Motani, and V. Srinivasan, “Dependent link
padding algorithms for low latency anonymity systems,” in
Proc. ACM Conference on Computer and Communications
Security (CCS), 2008.

[7] C. Diaz, S. J. Murdoch, and C. Troncoso, “Impact of net-
work topology on anonymity and overhead in low-latency
anonymity networks,” in Proc. Privacy Enhancing Technolo-
gies Symposium (PETS), 2010.

[8] N. Borisov, I. Goldberg, and E. Brewer, “Off-the-record
communication, or, why not to use PGP,” in Proc. ACM
Workshop on Privacy in the Electronic Society (WPES), 2004.

[9] C. Alexander and I. Goldberg, “Improved user authentication
in off-the-record messaging,” in Proc. ACM Workshop on
Privacy in the Electronic Society (WPES), 2007.

[10] F. Boudot, B. Schoenmakers, and J. Traore, “A fair and effi-
cient solution to the socialist millionaires problem,” Discrete,
Applied Mathematics, vol. 111, no. 1, pp. 23–36, 2001.

[11] N. Kobeissi and A. Breault, “Cryptocat: Adopting accessibil-
ity and ease of use as security properties,” 2013.

[12] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
second-generation onion router,” in Proc. USENIX Security
Symposium, 2004.

[13] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing,”
Communications of the ACM, vol. 42, no. 2, pp. 39–41, 1999.

[14] P. Venkitasubramaniam and L. Tong, “Anonymous network-
ing with minimum latency in multihop networks,” in Proc.
IEEE Symposium on Security and Privacy (Oakland), 2008.

[15] P. Syverson, “Why im not an entropist,” in Proc. International
Workshop on Security Protocols, 2009.

[16] G. Danezis, “Statistical disclosure attacks,” in Proc. IFIP
International Conference on Information Security: Security
and Privacy in the Age of Uncertainty, 2003.

[17] N. Mathewson and R. Dingledine, “Practical traffic analysis:
Extending and resisting statistical disclosure,” in Proc. Work-
shop on Privacy Enhancing Technologies (PET), 2004.

[18] N. Mallesh and M. Wright, “Countering statistical disclosure
with receiver-bound cover traffic,” in Proc. European Sympo-
sium On Research In Computer Security (ESORICS), 2007.

[19] G. Danezis and C. Troncoso, “Vida: How to use Bayesian
inference to de-anonymize persistent communications,” in
Proc. Privacy Enhancing Technologies Symposium (PETS),
2009.

[20] D. I. Wolinsky, E. Syta, and B. Ford, “Hang with your buddies
to resist intersection attacks,” in Proc. ACM Conference on
Computer and Communications Security (CCS), 2013.

[21] M. K. Wright, M. Adler, B. N. Levine, and C. Shields,
“Passive-logging attacks against anonymous communications
systems,” ACM Transactions on Information and System
Security (TISSEC), vol. 11, no. 2, p. 3, 2008.

[22] M. Backes, A. Kate, and E. Mohammadi, “Ace: An efficient
key-exchange protocol for onion routing,” in Proc. ACM
Workshop on Privacy in the Electronic Society (WPES), 2012.

[23] N. Borisov, G. Danezis, and I. Goldberg, “DP5: A private
presence service,” Proceedings on Privacy Enhancing Tech-
nologies (PoPETs), vol. 2015, no. 2, pp. 4–24, 2015.

[24] F. F.-H. Nah, “A study on tolerable waiting time: How long
are Web users willing to wait?” Behaviour & Information
Technology, vol. 23, no. 3, pp. 153–163, 2004.

[25] S. Chakravarty, A. Stavrou, and A. D. Keromytis, “Identifying
proxy nodes in a tor anonymization circuit,” in Proceedings
of the 2008 IEEE International Conference on Signal Image
Technology and Internet Based Systems (SITIS ’08), 2008.

[26] D. L. Chaum, “Untraceable electronic mail, return addresses,
and digital pseudonyms,” Communications of the ACM,
vol. 24, no. 2, pp. 84–90, 1981.

[27] A. Pfitzmann, B. Pfitzmann, and M. Waidner, “ISDN-mixes:
Untraceable communication with very small bandwidth over-
head,” in Kommunikation in verteilten Systemen. Springer,
1991, pp. 451–463.

[28] O. Berthold, H. Federrath, and S. Köpsell, “Web MIXes: A
system for anonymous and unobservable Internet access,” in
Designing Privacy Enhancing Technologies. Springer, 2001,
pp. 115–129.

[29] R. Böhme, G. Danezis, C. Diaz, S. Köpsell, and A. Pfitzmann,
“On the PET workshop panel Mix cascades versus peer-to-
peer: Is one concept superior?,” in International Workshop
on Privacy Enhancing Technologies. Springer, 2004, pp.
243–255.

[30] U. Möller, L. Cottrell, P. Palfrader, and L. Sassaman,
“Mixmaster protocolversion 2,” http://www.mixmin.net/
draft-sassaman-mixmaster-XX.html, 2003.

[31] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion:
Design of a type III anonymous remailer protocol,” in Proc.
IEEE Symposium on Security and Privacy (Oakland), 2003.

[32] R. Viigipuu, “Security analysis of instant messenger TorChat,”
University of Tallinn MS Thesis, http://kodu.ut.ee/∼arnis/
torchat thesis.pdf, 2013.

[33] A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and S. Devadas,
“Circuit fingerprinting attacks: Passive deanonymization of
Tor hidden services,” in Proc. USENIX Security Symposium,
2015.

http://www.mixmin.net/draft-sassaman-mixmaster-XX.html
http://www.mixmin.net/draft-sassaman-mixmaster-XX.html
http://kodu.ut.ee/~arnis/torchat_thesis.pdf
http://kodu.ut.ee/~arnis/torchat_thesis.pdf

	LiLAC: Lightweight Low-Latency Anonymous Chat
	Recommended Citation

	tmp.1516647898.pdf.BZmFe

