Rochester Institute of Technology

RIT Digital Institutional Repository

Presentations and other scholarship Faculty & Staff Scholarship

6-2016

Covert Channel in HTTP User-Agents

Susan Heilman
Jonathan Williams

Daryl Johnson

Follow this and additional works at: https://repository.rit.edu/other

Recommended Citation
S. Heilman, J. Williams, and D. Johnson, "Covert Channel in HTTP User-Agents," 11th Annual Symposium
on Information Assurance (ASIA'16), Albany, NY, 2016, pp. 68-73.

This Conference Paper is brought to you for free and open access by the RIT Libraries. For more information,
please contact repository@rit.edu.


https://repository.rit.edu/
https://repository.rit.edu/other
https://repository.rit.edu/facstaff
https://repository.rit.edu/other?utm_source=repository.rit.edu%2Fother%2F886&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Covert Channel in HTTP User-Agents

Susan Heilman
B. Thomas Golisano College of
Computing and Information Sciences
Rochester Institute of Technology
Rochester, New York 14623
sih4146@rit.edu

Abstract—A subliminal covert channel establishes a nearly
undetectable communication session within a pre-established data
stream between two separate entities.This document explains how
HTTP can be utilized to facilitate a covert channel over both
local and wide area networks. The Hypertext Transfer Protocol
(HTTP) accounts for a majority of the Internet’s daily web traffic
and is permitted within almost all network topologies. Therefore,
HTTP is a prime medium for hiding messages and information
communicated between separate parties. This paper illustrates
a new approach to covertly encoding messages in the an HTTP
message through use of the User-Agent and referer strings in the
HTTP Request Header.

Index Terms—Covert, Covert Channel, HTTP, User-Agent,
HTTP Request

I. INTRODUCTION

Research in the field of covert communications and covert
channels has grown steadily since the topic was first introduced
in the 1970s. Four decades later the Internet has expanded
to include several hundred networking and application-based
protocols. This means that data and information can be hidden
in almost any level of the Internet’s hierarchical structure.
One of the most commonly used Internet protocols is the
Hypertext Transfer Protocol, abbreviated HTTP for short. This
protocol is responsible for the delivery of web pages and web
content to a particular user or device. With 3,585,000,000
users in just North America and over 8.7 billion devices
connected to the Internet, thousands of HTTP requests and
HTTP responses are generated every minute accounting for
nearly half of all traffic on the Internet [1]. This opens up
a myriad of possible places to store hidden data as a means
of communication. Some individuals have already discovered
different methods hiding messages using the HTTP protocol.
The covert channel that is proposed below provides a new
way of hiding multiple messages in the Hypertext Transfer
Protocol by manipulating fields within the HTTP request
header. In some cases modifying the HTTP request header
can be problematic if certain network security or web server
security mechanisms are in place. When properly deployed
these mechanisms may possibly cause the HTTP request to
not be recorded into a security access log. The proposed covert
channel manipulates areas of the HTTPS request header that
have been known to not be kept under surveillance or are not
policed often. This characteristic of the covert channel, among

Jonathan Williams
B. Thomas Golisano College of
Computing and Information Sciences
Rochester Institute of Technology
Rochester, New York 14623
jpw2408 @rit.edu

Daryl Johnson
B. Thomas Golisano College of
Computing and Information Sciences
Rochester Institute of Technology
Rochester, New York 14623
dgjics @rit.edu

many others, increases the likelihood that the covert message
will successfully reach the intended recipient.

In the following text below you will be introduced to
the definition of what a covert channel consists of and a
summary of the Hypertext Transfer Protocol. Next, there is
a demonstration of how the proposed covert channel hides
a message within the HTTP request header with a detailed
analysis of the channel’s design and properties followed by
data that illustrates a proof of concept of the covert channel
on a local network and over the Internet. Finally, there is
an analysis of the proposed covert channel to measure the
channel’s effectiveness as well as examine its disadvantages.

II. COVERT CHANNELS

A covert channel uses the structure of an existing medium
to send and receive small parts of data through unused portions
of the medium. A covert channel hides in the nooks and
crannies of the formal structure of the operation and is virtually
undetectable. In Lampson’s famous paper [2] he coins the idea
of covert channels by describing them as “those not intended
for information transfer at all, such as the service program’s
effect on the system load”. For our purposes, we rely on the
dismissive behavior towards HTTP User-Agents and referrer
fields to hide discrete messages in the User-Agent string.

A. Characteristics of Covert Channel

The characteristics of a covert channel help define and
gauge the effectiveness of a given covert channel when it is
being used. There are three main characteristics that establish
the foundation for a covert channel which are stealthiness,
followed by bandwidth and last timing. In the subsections
below each individual characteristic will be further explained.

1) Stealthiness: If a covert channel is described as stealthy
it means that the channel does not provide an obvious view
of the conversation to outside parties. In essence, if the
two parties of the covert communication session were to
have their network traffic monitored no flags or warnings
would be generated by the monitoring party. It is as if the
communication is not taking place at all.

2) Bandwidth: Bandwidth is a very sensitive factor when
developing a reliable and robust covert channel. Bandwidth
refers to the ratio of total messages sent in a given unit of
time. Typically with overt channels a higher bandwidth rate is



a good characteristic of networking communication. However,
for covert channels a higher bandwidth of the secret messages
sent to and from two parties means that the covert channel is
creating more traffic thus rendering it more detectable. That
is to say, the more bandwidth used to send a secret message
the more likely the communication will be seen by an outside

party.

B. Types of Covert Channels

Below are five of the commonly known ways to implement
a covert communication channel into a Internet networking or
application-based protocol.

1) Steganographic: Steganographic channels involve hid-
den covert information within a overt information medium.
Steganography on the Internet usually entails hiding a covert
message or photo within another image file like the .jpg or
.png file extensions. [3].

2) Subliminal: Subliminal Covert channels are similar to
Steganographic channels in that it hides a message within
a normal pre-existing channel. However, when compared the
subliminal channel and the overt channel are virtually indis-
tinguishable from each other when compared against each
other. [4].

3) Behavioral: A behavior-based covert channel is defined
as a communication channel achieved by modulating the
internal states of the sender or receiver by purposely selecting
certain inputs to the systems. [5]. [4]

4) Storage: Storage channels involve directly or indirectly
writing to a storage location by one application and the
directly or indirectly reading the bits of a storage location by
another application. This is different from regular file reading
and writing information because a storage channel will write
information to the file in a way that communicates a secret
message instead of reading the intended information that the
file is storing [3].

5) Timing: Timing channels work by one party signaling
the other party with a message via the modulation of system
resources that cause a change in response time that is noticed
by the second party. A clock value or time measurement would
convey the value being sent. For example, the clock or time
measurement would be altered by the first party so as to
communicate with the second party [3].

III. RELATED WORK

Applications exist to generate covert messages using
steganography. Snow [6], for example, uses steganography as
its means of covertly communicating messages from one party
to another by relying on whitespace - the spaces and tabs that
naturally appear in writing that are invisible to the human eye
when displayed at the end of lines in text viewing applications.
This way, the hidden message can be placed in regular ASCII
without modifying the original message’s appearance.

On the other hand, [7] hides messages via steganography by
mapping known ASCII characters to unused ASCII symbols
that are visibly indistinguishable to the human eye.

Moving to the HTTP protocol, a covert channel can exist in
HTTPT by manipulating the Query_String field when a HTTP
redirect is executed. Such examples have been demonstrated
by [8] through HTTP redirects.

IV. HTTP: HYPERTEXT TRANSFER PROTOCOL

The Hypertext Transfer Protocol was first standardized for
use in June of 1999. The revolutionary protocol provided a
simple and scalable hypertext and media delivery solution.
HTTP is a stateless protocol with an open ended set of
methods and headers that indicate the purpose of each HTTP
request [9]. HTTP request chains and response chains are
sent between a User-Agent and the origin server. Participants
in the HTTP request and response chains can be known
to initiate multiple simultaneous communications. This same
protocol is used in other application layer information delivery
mechanisms such as the FTP and SMTP Internet protocols.

The combination of widespread HTTP 1.1 use and the
HTTP 1.1 design qualifies the Hypertext Transfer Protocol to
be the best candidate for a robust, reliable covert channel.
Because of the HTTP standard communicating properties a
large number or requests or replies may be generated to
facilitate a minimal request. This covert channel uses this
HTTP communication property to its advantage in order to
send multiple characters of a message to a HTTP origin server
where it will be received and processed into a human readable
format.

A. The HTTP Message Format

HTTP messages exist in two different types; They are either
requests or responses. In a typical environment, the client is
the one sending requests and receiving responses while the
server receives requests and sends responses. It is not likely for
a client to send HTTP responses, which is why the proposed
covert channel avoids this interaction. The format for an HTTP
message (without specifying request or response) follows this
structure:

<start-line>
<message—headers>
<empty-line>
[<message—-body>]
[<message-trailers>]

To get a better understanding of where the proposed mes-
sage location fits into the HTTP message, a breakdown of the
HTTP request message is needed. Figure 1 visually explains
where the User-Agent string fits into the request.

The HTTP request “Host” variable shows the URL that
is being requested. The “User-Agent” field is filled by the
browser that is being used to send the request. The above User-
Agent was filled by a Mozilla Firefox browser. This is where
the message is hidden. An additional field to note in order to
better understand the covert channel is the optional “referer”
field that fits into the Request Header. This field identifies
the original address of the webpage from which the current
resource was linked. The referer field is typically populated



GET findex_html HTTP/M 1
Date: Thu, 20 May 2004 21:12:55 GMT
Connection: close

Host: www. myfavoriteamazingsite.com
From: joebloe@somewebsitesomewhere. com
Accept: text/html, text/plain

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Request Line

General Headers

Request Headers
HTTP

Entity Headers el

Message Body

Fig. 1: HTTP Request

when the user clicks on a link on a webpage. The webpage
that had the link is referring the user to the new link, so the
address of the first page is put in the referer field [10].

For the purpose of the this covert channel, the HTTP
response is not a concern. The HTTP request solely exists
to confirm that the HTTP request sent in the channel was
successful in reaching the server.

V. A COVERT CHANNEL IN THE USER-AGENT STRING

The proposed covert channel works by altering the User-
Agent string that is present in the HTTP request header. In
order for the message to be covertly communicated through
this string, the message must undergo changes and mapping
before being relayed to the server.

A. Encoding

The ASCII message entered by the user is converted
to hexadecimal which is then hidden by modulating the
User-Agent string. The chosen User-Agent string is a
commonly seen User-Agent of "Mozilla/5.0 (Windows NT
6.1; WOWG64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/46.0.2490.71 Safari/537.36." In this string there are
several white spaces that are utilized to hide the message. In
order to send the “0” hexadecimal value to the receiving server,
the first white space that appears in the chosen User-Agent
string is doubled. That is to say, instead of there being one
white space, “ “, there becomes two, *“ ““. This is very difficult
for the naked eye to notice. To convey a “1”, the second
available white space is doubled, and so on. Figure 2 outlines
which hexadecimal value corresponds to the extra space or
spaces. The highlighted values that contain two hyphens are
the areas where the extra spaces can be found.

Common User-Agent validation tools use regular expres-
sions to parse the User-Agent field to detect bots and other
malicious requests. If User-Agent validation tools were used

parse our selected User-Agent string it would most likely focus
on the "Chrome/46.0.2490.71" substring. To avoid running the
risk of throwing an error, we avoided manipulating this specific
substring of the User-Agent field.

B. Design

The implementation of the proposed covert channel relies
on the following components:

e Server

— Acts as message receiver
e Client

— Acts as message sender

e Linux "curl" command

e Linux "xxd" command

o Defined table mapped to hexadecimal characters (See

Figure 2)

The channel works in the following manner: A server
running Apache with port 80 open awaits a message. The
client machine or sender runs the client.sh script that takes
input from the user. The user input is then converted from
an ASCII message to a hexadecimal string, and depending
on the hexadecimal character a different User-Agent string is
crafted as outlined in Figure 2. Once the User-Agent string is
crafted with the necessary added spaces, the script executes
a curl command to send an HTTP request to the server. The
server response to the curl request is irrelevant to the channel
for two reasons. Firstly, the client.sh script is setup to only
send messages to a specified IP address and will discard the
response. Secondly, even if the receiving server processing the
curl request and does not provide a usable resource to the user
encoded message characters are still logged and stored in the
access.log file.

The “-A” and “-e” flags for curl are used to specify the User-
Agent string and the referer field, respectively. The purpose of



Hexadecimal User-Agent String with Hidden Component Bit Location in
Value (denoted by two dashes “--" and highlighting) User-Agent
String
0 Mozilla/5.0--(Windows NT 6.1; WOW64) AppleWebKit/537.36 1s
(KHTML, like Gecko) Chrome/46.0.2490.71 Safari/537.36
1 Mozilla/5.0 (Windows—NT 6.1; WOW64) AppleWebKit/537.36 2s
(KHTML, like Gecko) Chrome/46.0.2490.71 Safari/537.36
2 Mozilla/5.0 (Windows NT—6.1; WOWG64) AppleWebkit/537.36 3s
(KHTML, like Gecko) Chrome/46.0.2490.71 Safari/537.36
3 Mozilla/5.0 (Windows NT 6.1;—-WOWG6G4) AppleWebKit/537.36 ds
(KHTML, like Gecko) Chrome/46.0.2490.71 Safari/537.36
4 Mozilla/5.0 (Windows NT 6.1; WOW6E4)--AppleWebKit/537.36 55
(KHTML, like Gecko) Chrome/46.0.2490.71 Safari/537.36
5 Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 65
—-(KHTML, like Gecko) Chrome/46.0.2490.71 Safari/537.36
6 Mozilla/5.0 (Windows NT 6.1; WOWG64) AppleWebKit/537.36 7s
(KHTML,—like Gecko) Chrome/46.0.2490.71 Safari/537.36
7 Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWwebKit/537.36 8s
(KHTML, like—-Gecko) Chrome/46.0.24590.71 Safari/537.36
8 Mozilla/5.0 —(Windows NT 6.1; WOW64) AppleWebKit/537.326 1S&1L S
(KHTML, like Gecko) Chrome/46.0.2490.71--Safari/537.36
9 Mozilla/5.0--(Windows NT 6.1; WOW64) AppleWebKit/537.36 15821 5
(KHTML, like Gecko)--Chrome/46.0.2490.71 Safari/537.36
A Mozilla/5.0—{Windows NT 6.1; WOW64) AppleWebkKit/537.36 1S&3L S
(KHTML, like—-Gecko) Chrome/46.0.2490.71 Safari/537.36
B Mozilla/5.0—(Windows NT 6.1; WOWG64) AppleWebkit/537.36 15841 5
(KHTML,like Gecko) Chrome/46.0.2490.71 Safari/537.36
C Mozilla/5.0--(Windows NT 6.1; WOW64) AppleWebKit/537.36 1585L 5
—(KHTML, like Gecko) Chrome/46.0.2490.71 Safari/537.36
D Mozilla/5.0 (Windows—NT 6.1; WOW64) AppleWebKit/537.36 2S81L S
(KHTML, like Gecko) Chrome/46.0.2490.71--Safari/537.36
E Mozilla/5.0 (Windows—NT 6.1; WOWG64) AppleWebkit/537.36 25821 5
(KHTML, like Gecko)--Chrome/46.0.2490.71 Safari/537.36
F Morzilla/5.0 (Windows—NT 6.1; WOW6G4) AppleWebKit/537.36 2583LS
(KHTML, like—Gecko) Chrome/46.0.2490.71 Safari/537.36

Fig. 2: User-Agent to Character Mapping Table. Note, the denotation of yellow in this table is to provide visual aid to a notation of a double
dash marking, and does not reflect any meaning to the content provided.

the referer field for the proposed covert channel is to signify
when a message is at the beginning, middle, or end stage. In
other words, the referer field of the HTTP request header is
a delimiter that is used by the receiver to distinguish between
the start and stop of messages.

The client will deliver one HTTP request for each character
sent. Once the client has completed sending the server has
received and processed numerous requests with seemingly
normal parameters that are stored in Apache access log.

For Apache, the default path is “/var/log/apache2/access.log".
Once the client has sent the message through HTTP requests
with the curl command, the server.sh script need only pull
the message from the access log. The script that is run on
the server reads in the access.log file and performs a series
of checks to search for the double spaces and reassembles
the message in hexadecimal. Finally, the message is then
converted from hexadecimal to ASCII.

This concludes the sending and receiving of a message over



Client/Sender
Only base networking
configuration required.
Runs client.sh script that crafts
specific URLs with messages
hidden in the User Agent string.

Server/Receiver
Configured to run Apache and
allow traffic on port 80.
Runs the server.sh script to pull

hidden message from access.log
file.

Fig. 3: Client/Server Environment

a network given the proposed covert channel.

C. Testing

In order to test the proposed covert channel implementation,
a virtual machine running a Linux OS was created. Apache
was installed and configured on this server to ensure that
the client/sender would have some webpage to which the the
curl commands could send messages. The sender script was
run from a Bash terminal window which prompted the user
for a desired message that the script would then convert to
hexadecimal prior to sending. Once the sender script finished
its execution, the receiver script was run against the apache2
access.log file which converted the delivered message back to
ASCII before printing it to Standard Output.

The rate at which data can be sent through the channel was
tested by determining how many HTTP requests the server
could process and log from the same client. In order to ensure
that all requests would be logged on the server side, which
also ensures that the entirety of the message is logged, sleep
timers were used to guarantee that the requests were sent
consecutively and in the correct order.

Further testing was performed by sending the proposed
covert channel through a commonly used proxy service.
By modifying the curl command to include proxy support,
the sender.sh script forwarded the encoded covert traffic to
a squid3 proxy server that used the ’combined’ logging
setting. When the message was sent from the client each
hexadecimal encoded character was received in order in the
’Ivar/log/squid3/access.log’. To read the message in this case
the receiver script was modified to parse the squid access.log
rather than the ’/var/log/apache2/access.log’ file. Considering
that the proxy service stores the User-Agent and referer fields
by default in its access.log, our covert channel can effectively
deliver its message to a HTTP proxy log file as well.

VI. QUALITIES AND PROPERTIES OF THE CHANNEL
A. Categorization

Covert channels exist in various classifications and imple-
mentations. The proposed covert channel is best described as

a subliminal covert channel. A subliminal channel hides its
secret message in a normal channel’s medium. The subliminal
channel and regular channel are indistinguishable without prior
knowledge of the secret. The proposed channel’s secret is the
hexadecimal conversion and its mapping to different User-
Agent strings.

B. Stealthiness

The scripts written for the client and server are written in the
command language, Bash. The Bash programming language
was selected because nearly all Linux distributions are capable,
at the very least, of running a bash shell. Furthermore, all
commands and string manipulation used within the scripts is
done solely in bash without relying on any interpretation other
than bash. This is done through regular expressions and bash
commands such as ’curl’, ’tr’ (trim) and ’xxd’ (to convert to
and from hexadecimal).

C. Data Rate

As mentioned in the Testing section, a long message means
many ’curl’ command executions to send many HTTP requests
to the server. The proposed channel uses a one second delay
to avoid loss of data transmission between the sender and
receiver. With this in mind, the two parties communicating
are not severely limited by the length of the message to be
sent.

D. Robustness

The proposed covert channel is transmitted through one of
the most commonly seen protocols in the wild: HTTP. In
addition to its popularity, HTTP is rarely monitored or policed
for discrepancies such as a referer field manipulation. It is also
routable over wide area networks which allows the sender and
receiver to be geographically separated.

E. Potential Issues

The scenario for which the covert channel must be success-
ful is commonly available but relies on certain key aspects.



o There must be an existing and running web service with
an open port, namely, Apache since the proposed channel
searches in the folder path for Apache’s log file.

o If the server has disabled logging then there is no access
log for the message to be sent.

o The rate at which HTTP requests can hit the server is
also an area of caution for the covert channel. If the
Apache server sees too many requests from on particular
client within a given time value, the server may ignore
the requests.

F. Benefits

Thought simplistic in nature, the covert channel contains
design specifications that enhance its usability and stealthiness.
HTTP traffic is common and unlikely to be flagged by a
firewall, especially since the covert channel uses legitimate
User-Agent strings. By using whitespace to code the message,
the communication is obfuscated in the log fie and nearly
undetectable to the human eye. The script was intentionally
written in Bash due to the language’s popularity across Linux
distributions (and now in Microsoft’s newest Windows 10
update). The script also contains the minimal number of
commands needed to avoid detection in respect to system
resources. Overall, the decisions made to use Bash and limited
commands was done to avoid dependencies across different
operating systems. Finally, the issue of HTTP encryption
(SSL/TLS) is moot since the receiver script is run server side.

VII. FUTURE WORK

Some future improvements to the proposed covert channel
include dynamic User-Agent white space manipulation and
a feature where HTTP requests can be tailored to the web
page being requested. Rather than having to manually add
the extra white space characters into the User-Agent string
for each character in the hexadecimal encoding, the code
would incorporate a looping feature that would automatically
detect spaces in the User-Agent string and add additional
spaces where necessary. This may be more complicated to
implement, however it will allow the proposed covert channel
to be used with other future User-Agent strings if a particular
User-Agent becomes flagged as malicious or unauthorized.
The other feature that will be implemented into the proposed
covert channel involves using the URLSs that are returned from
the first "curl’ command to legitimized the web traffic that
is being sent to the receiving server. After the first ’curl’
command returns the web-page’s HTML text it will parse
through the returned HTML text line by line searching for
any 'HREF’ links that are on the web-page. Once all of the
"HREF’ links have been stored into an array the following
hexadecimal characters that are transmitted to the receiver will
cycle through and use one of the array entries of web-page
links to help legitimized the web traffic, thus making the covert
channel harder to detect.

VIII. CONCLUSION

This paper introduced an implementation of a covert channel
that utilizes the User-Agent string in the HTTP Request

Header. In order to fully detail the mechanism of this covert
channel, the paper first discuss the various types of covert
channels, the characteristics a covert channel possess, and the
the basis of the HTTP Message Format. This covert channel
mimics stealthy behavior by relying minimally on system re-
sources and calling up the most base Linux shell and command
language. Furthermore, the transmission of the message is
carried through a widely and abundantly used protocol: HTTP.
The use of HTTP not only allows this channel to hide within
network traffic, but it stretches across wide area networks to
allow the two parties in the channel to be virtually anywhere in
the world. As more and more business is conducted online, the
availability of this HTTP User-Agent channel has the potential
to become more widespread, accessible, and available to users
capable of running the Bash shell.

REFERENCES

[1] B. M., “Ellacoya data shows web traffic overtakes peer-to-peer (p2p) as
largest percentage of bandwidth on the network,” 2007.

[2] B. W. Lampson, “A note on the confinement problem,” Communications
of the ACM, vol. 16, no. 10, pp. 613-615, 1973.

[3] S.E.J. W. E. Pennington, W. Oblitey, “An overview of covert channels.”

[4] S.E.J. W.R. Trimble, W. Oblitey, “Covert channels: The hidden threat.”

[5] D. Johnson, B. Yuan, P. Lutz et al., “Behavior-based covert channel in
cyberspace,” 2009.

[6] The snow home page.

[7]1 S. Bhattacharyya, P. Indu, and G. Sanyal, “Hiding data in text using
ascii mapping technology (amt),” International Journal of Computer
Applications, vol. 70, no. 18, 2013.

[8] E. Brown, B. Yuan, D. Johnson, and P. Lutz, “Covert channels in the http
network protocol: Channel characterization and detecting man-in-the-
middle attacks,” The Proceedings of the 5th International Conference on
Information Warfare and Security: The Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, USA, 8-9 April 2010, p. 56, 2010.

[9] R.T. Fielding, T. Berners-Lee, and H. Frystyk. Hypertext transfer proto-

col — HTTP/1.0. [Online]. Available: https://tools.ietf.org/html/rfc1945

C. M. Kozierok, The TCP/IP Guide a Comprehensive, Illustrated Inter-

net Protocols Reference. No Starch, 2005.

(10]



	Covert Channel in HTTP User-Agents
	Recommended Citation

	tmp.1500660593.pdf.sw5Ni

