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Abstract
Recent advancements in the accuracy of Automated Speech
Recognition (ASR) technologies have made them a potential
candidate for the task of captioning. However, the presence of
errors in the output may present challenges in their use in a fully
automatic system. In this research, we are looking more closely
into the impact of different inaccurate transcriptions from the
ASR system on the understandability of captions for Deaf or
Hard-of-Hearing (DHH) individuals. Through a user study with
30 DHH users, we studied the effect of the presence of an error
in a text on its understandability for DHH users. We also inves-
tigated different prediction models to capture this relation ac-
curately. Among other models, our random forest based model
provided the best mean accuracy of 62.04% on the task. Fur-
ther, we plan to improve this model with more data and use it
to advance our investigation on ASR technologies to improve
ASR based captioning for DHH users.
Index Terms: Accessibility for People who are Deaf or Hard-
of-Hearing; Captioning System; Speech Recognition; Human
Computer Interaction; Computer Linguistics

1. Introduction
Captions provide a way to represent aural information in visual
text for people who are Deaf or Hard-of-Hearing (DHH). Today
there are more than 360 million people worldwide with hearing
loss [1] and they use services such as captioning to get access
to information existing in the form of speech such as informa-
tion from mainstream classes, meetings, and live events. Sev-
eral methods have been explored in providing such a service; a
popular alternative includes the use of captionist to transcribe
audio information to text using a keyboard, with the captions
displayed on a screen for those in attendance. Captioning ser-
vices produce a digital textual output which can be processed
and represented in various forms easily, or it can be stored as a
transcript, making it useful in various scenarios such as class-
rooms and meetings, where it could be reviewed later.

Over the past few decades, automated speech recognition
(ASR) technologies have seen major progress in their accuracy
and speed. With its increasing maturity, ASR technologies are
now being used commercially for many consumer applications.
Due to their cheap and scalable ability (compared to other cap-
tioning alternatives) to generate real-time text from live audio
or recordings, ASR systems have a potential for the task of cap-
tioning. Researchers have begun to investigate the suitability
of ASR to automate or semi-automate the process of captioning
with the use of ASR systems [2, 3, 4, 5] in various application
settings.

Despite the growing use of ASR systems, accurate, large-
vocabulary, continuous speech recognition is still considered an
unsolved problem; the performance of ASR system is not on par
with humans [6], who currently provide most caption text for
DHH users. Due to unpredictable ambiguity in human speech
and ever existing noise, ASR systems often make errors, and it
is likely that this technology will continue to be imperfect in the
near future as well. Researchers have also argued that ASR gen-
erated errors on captions are more comprehension-demanding
than human produced errors [7, 8]. While all users of ASR
technology must cope with errors in the output, there is poten-
tial that this issue has greater significance when focusing on
applications for DHH users. Past research has indicated that
the majority of deaf high school graduates in the U.S. have an
English literacy level at the fourth grade or below [9], and ap-
proximately 20% leave school with a reading level at or below
second-grade [10]. This presents a huge challenge for caption
acceptance by DHH individuals given the error-probable output
from ASR.

For a successful use of an ASR system in captioning, errors
that affect comprehension of a caption for DHH users might
need to be appropriately reduced or at least sufficiently modu-
lated. It may be the case that some classes of errors from an
ASR system are especially problematic for DHH users (per-
haps based on their unique English literacy profile), and other
classes of errors are less problematic. Understanding this trade-
off could make way for designing an adaptive ASR system op-
timized for the task of captioning, specifically for DHH users.

In this paper, we present a method to study the effect of dif-
ferent ASR-generated errors on the understandability of a text
for DHH users. For our task, we formulate a user study with
DHH users who are given imperfect English texts (containing
ASR errors) and asked to answer some questions based on the
information from the text. With the data collected from the user
study, we model the relationship between ASR errors and the
impact it has on the understandability of a text for DHH users.
We also discuss the possible application of this model in de-
signing a custom loss function that could be utilized during the
decision making process of the ASR to produce better outputs
for captioning for DHH users.

2. Background: N-best list Rescoring
Technique

In an ASR system, the function of the decoder is to find the most
likely word sequence given the sequence of audio features. Al-
though decoders are designed primarily to find a single solution,
in practice, it is relatively simple to generate not just the most
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Transcription WER loss Avg. Understandability loss
Reference The meeting today has been cancelled

and is scheduled for next Thursday.
NA NA

ASR Hypothesis 1 The meet in today has been cancelled an
is scheduled for next Thursday.

25% 8.425%

ASR Hypothesis 2 The meeting today has been capital and
is skidoo for next Thursday.

16.67% 46.425%

Table 1: Example shows how Understandability loss penalizes texts containing different errors as compared to WER loss. Higher loss
value indicates worse output for the metric.

likely hypothesis but the n-best set of hypotheses. Therefore, in
most ASR systems, along with the most likely word sequence,
a list of n-best hypotheses can also be obtained as output. Other
compact forms of representation of this n-best hypotheses list
are also commonly used such as a word lattice representation
[11] or a confusion network [12].

These representations have been popular especially because
they provide a reduced search-space (out of all possible word
sequence) that can be further decoded, with more flexibility,
to improve the ASR output. This post processing technique of
“rescoring” or “reranking” candidate hypotheses also allows for
general-purpose hypothesis to be tuned in a domain-specific or
user specific way without having to design the whole ASR en-
gine to do so [13]. Furthermore, the n-best hypotheses gener-
ated as an output from the ASR system can be processed with
complete independence from the ASR system; thus, it can be
treated as a separate stage in an ASR pipeline.

Researchers [14, 15, 16, 17, 18, 19] have utilized various
rescoring techniques to select the best hypothesis from an ASR
n-best hypotheses. In [19], Stockle et al. presented an N-best
list rescoring algorithm to improve upon the shortcomings of
the ASR decoding process to produce more accurate output.
A standard Hidden Markov Model (HMM) based ASR system
uses Maximum A Posteriori (MAP) technique as a decoding
criterion. The problem with the application of the MAP ap-
proach to speech recognition is that it is sub-optimal with re-
spect to minimizing the number of word errors in the system
output. Instead, it has been shown to minimize sentence error
rate which is only loosely linked to the recognition Word Error
Rate (WER) [19]. Subsequently, Stolcke et al. [19] proposed
a rescoring algorithm that explicitly minimizes expected word
error for recognition hypotheses. In [20] researchers provided a
Decision Theoretic perspective to the work from [19] as a Bayes
decision rule under word error loss, as shown in Equation (1).

δ(X) = argmin
W∈W

∑
W

′∈W

WER(W, δ(X))P (W
′
|X). (1)

Goel et al. [20] proposed a modified loss function (as shown
in Equation (2)) to be minimized during the modified decod-
ing process by adding additional degree of freedom which can
be “tuned” appropriately during training. Additionally, [20]
also make simplifying assumptions to compute P (W |X) with
joint distribution P (X,W ) which are accessible from the n-
best lists.

l(W, δ(X)) = [WER(W, δ(X))]x. (2)

This framework suggested by [20] provides a flexible way
to incorporate a custom loss function in the decoding process
of ASR, and this approach is how we intend to adapt ASR in

our work. This Minimum Bayes Risk (MBR) based decod-
ing has been shown to provide statistically significant improve-
ments in recognition task compared to MAP based decoding as
it explicitly incorporates task performance criterion to the de-
coding process of ASR. Successes of hypotheses scoring sys-
tems like ROVER [14] (and its variants) has been credited to
MBR based decoding to directly improve WER. Several re-
search groups have investigated this method of decoding in re-
cent years [21, 22, 23].

3. Design & Implementation

The approaches discussed above utilize an n-best list rescoring
technique to improve the WER of an ASR system. We propose
to compare the efficacy of these rescoring approaches for op-
timizing ASR for real-time captioning, a task for which there
may be better metrics than WER. We propose to learn a cus-
tom loss function (based on the analysis of data from experi-
ments with DHH users) to optimize the comprehensibility of
ASR output for DHH users. Unlike WER, our loss function
may provide a better measure of text understandability for this
group of users. Table (1) shows a comparative example of our
loss function (based on the data and modeling presented later
in Section 3.2 of the paper) against the traditional WER loss.
In the example, we can see how our Understandability model
prefers Hypothesis 1 over Hypothesis 2 as compared to WER
metric which does the opposite.

This paper, in general, is about creating this loss function
using a prediction model which captures the relation between
different types of error and their impact on the understandability
of sentence for DHH users. As a final step (in the future), we
will be looking to see if this loss function can be incorporated
into the decision-making process of an ASR system, following
the framework provided by [20], such that the ASR can produce
output that is optimized to be more comprehensive for our user
group.

3.1. User Study

We performed a user study with a goal of understanding how
ASR errors affect DHH users’ performance on a comprehen-
sion task, given that a text contains some ASR generated er-
rors. In this study, users were presented with imperfect English
text passages (containing artificially inserted errors, based on
real ASR errors for that passage) and were asked to answer
questions that required understanding the information content
of those passages. Based on the answers, we collected Com-
prehension Scores for the respective questions, which we sub-
sequently used to model the relationship between errors in the
text and its comprehensibility.



3.1.1. Error Categories used in Designing Stimuli

To guide our creation of stimuli for the user study, we estab-
lished a hierarchical classification of various sub-types of ASR
errors (based on a time-alignment between the ASR output and
the gold-standard). Broadly, ASR errors can be categorized into
three types: substitution, deletion and insertion errors. Further,
we divided substitution errors into four types: one to one substi-
tution, one to many substitution, many to one substitution and
many to many substitution. One to one substitution refers to
the errors when one word is substituted by the other. One to
many substitution errors are the error due to substitution of one
word by many (for e.g., undistinguished substituted by on dis-
tinguished). Similarly, many to one errors are the errors when
many words are substituted by a single word. Many to many
errors corresponds to a multi-word span of text in the refer-
ence transcript with inaccurate recognition such that none of
the word boundaries within the span align with those within the
corresponding span of ASR output. We further subcategorized
one to one substitution errors into three types namely, morpho-
logically similar substitution, phonetically similar substitution
and remaining other types of substitution errors. The morpho-
logically similar errors are the errors where the actual word is
substituted by another word with an inflectional or derivational
morphological relationship to the first (for e.g., developed sub-
stituted by develop). The phonetically similar errors are the
errors due to the substitution of a word by another word with
similar phoneme representation; for example, the words table
(T EY B AH L) and stable (S T EY B AH L) have a very close
(≥ 60% match) phoneme structure so they are considered as a
phone neighbor of each other.

These categories of different error types were meant to be
a coarse categorization of the errors and was used as a basis for
ensuring that the stimuli presented in our user study contained
a good mixture of different error types.

3.1.2. Study Resources

For the user study, we created a dataset of 20 passages (average
length 117 words), with each passage containing three sen-
tences marked as our Region Of Interest (ROI). For example,
the text below shows a sample text passage used in the study
with three bold sentences representing the three ROIs in the text.

People who study film music often complain about the lack
of recognition their field receives. The study of film music is
an interdisciplinary field, falling in between cinema studies
and musicology. This is one of the reasons why it receives so
little attention. For example, when film music scholars, who
often do not have music-degree credentials on par with the
pure musicologists, write about film soundtracks, their articles
are often ignored by the musicologists. Conversely, when the
work of film music scholars touches on the visual aspects of
film, the cinema studies people often treat it as the work of
amateurs. So with the members of the two fields most closely
related to it ignoring it, it is easy to understand why members
of the film music field feel a degree of frustration.

The questions for passages was designed in such a way
that each question was based on information from only one of
the ROI sentences in that passage. In total, each passage had
three text-explicit questions. As described in [9], text-explicit
questions measure exact recall from the text without requiring
any inferential use of information from the reader’s memory.

The text below shows an example of a question asked
during the user study. The question is based on the reading text
shown above as an example. This question, in particular, is
based on information from the first ROI sentence of the reading
text.

A. According to the passage, what do film music students often
complain about:

� that their field doesn’t receive the recognition they
deserve.
� people who study film music are not recognized.
� film music study is not up-to the par.
� extra attention that their field receives.

For each ROI sentence, an average of 8 different varia-
tions were generated where each variation was produced by
inserting at most one category of ASR error into the ROI
sentence. To produce each variation of the ROI, we began
with a perfect text and inserted one of those errors. The text
below shows an example of an ROI sentence without any errors:

Conversely, when the work of film music scholars touches on
the visual aspects of film, the cinema studies people often treat
it as the work of amateurs.

We produced different variations of this ROI text by adding
ASR generated errors into the sentence. ASR generated errors
were collected by creating an audio recording of a male En-
glish speaker performing each ROI sentence (multiple times)
and running it against the ASR system. Since our goal was to
obtain output containing a variety of errors, we used the CMU
Sphinx system with its distributed trained models [24]. Some
variations of the ROI text are shown below:

• Conversely, when the work of film music scholars
touches on the visual aspects of film, the cinema stud-
ies people often cricket as the work of amateurs.

• Conversely, when the working of film music scholars
touches on the visual aspects of film, the cinema stud-
ies people often treat it as the work of amateurs.

• Conversely, when the work of film music scholars
touches on the region aspects of film, the cinema stud-
ies people often treat it as the work of amateurs.

• Conversely, when the work of film music scholars
touches on the visual aspects of film, the cinema stud-
ies people often treat it has worked amateurs.

This procedure ensured that the artificially created varia-
tions of the ROI sentence agreed with the actual imperfect out-
put produced by an ASR system.

3.1.3. Participants

Participants for the study were recruited from among associate
degree students at the National Technical Institute for the Deaf
(NTID) at Rochester Institute of Technology (RIT). We col-
lected data from 30 DHH participants (age distribution with
µ=22.63 and σ=2.63), 12 men and 18 women, where 26 par-
ticipants self-identified as Deaf and 4 of participants as Hard-
of-Hearing.



3.1.4. Procedure

Each participant was given 10 different comprehension pas-
sages to read, each containing three multiple choice questions
that needed to be answered in a time period of 70 minutes. A
pilot test with a DHH member of our research team helped us to
determine an appropriate number of question items for the 70-
minute experiment. The comprehension passages given to the
participants were generated by replacing each ROI sentence by
its erroneous counterpart (one of the variations). The number of
errors of each category that were displayed to each participant
was balanced among all participants in the study to ensure that
individual human differences in task performance did not dis-
proportionately affect the scores for any one category of error.
Further, each ROI appeared several times throughout the entire
study in a form without any errors inserted so that we could
obtain baseline measurements for the difficulty of the particular
comprehension question, to enable subsequent normalization of
the collected scores. Scores of answers from each question were
binary with correct answer receiving the Comprehension Score
of 1 and incorrect answer receiving the score of 0.

3.2. Model Fitting

The data collected from the user study enabled us to determine
whether there is a relation between the presence of an error with
specific linguistic characteristics (see Table (2)) in a sentence
and its impact on the comprehension of the sentence (whether
or not participants answered the question referring to the sen-
tence). However, the relation between the presence of an error
and its impact on sentence is not straightforward. A wide va-
riety of complex semantic factors can lead some ASR errors to
be more confusing than others for end-users who are reading
the text. For our automatic captioning application, we are in-
terested in focusing on a subset of those aspects of a text that
could be automatically computed, using modern computational
linguistic software.

Table 2: List of features extracted from the error regions in the
hypothesized text for analysis.

Feature Description Type
1. WordLength Average length of the word in the region. Numeric
2. SaliencyIndex Average TF-IDF score of the word in the region

representing the importance of the word.
Numeric

3. POSTag Priority order based Part of Speech tag assigned
to the region. The order is described in Sec-
tion(3.2.2).

Categorical

4. SyllableLength Average number of syllables of the word in the
region.

Numeric

5. SentimentOrientation Indicates whether the region alters the original
sentiment (broadly, positive or negative) of the
reference word(s) or not.

Categorical

6. ContentOrFunction Whether the region contains content word or
not.

Categorical

3.2.1. Feature Identification

After consulting prior research on reading skills of deaf users
[10, 25], we identified a list of 6 features of each error that we
would examine as part of our analysis. The features are summa-
rized in Table 2. Some features (for e.g. row 5 in Table (2)) are
computationally more expensive than others. Since this model
will eventually be used to produce a loss function to optimize
a real-time ASR system, using these computationally expensive
features may not be efficient. But, we considered these features
in our preliminary analysis to understand their significance in
the model.

3.2.2. Feature Extraction

Along with the Comprehension Scores for the text in the pas-
sages used in the study, we also extracted some linguistic fea-
tures, summarized in Table (2). These features were obtained
from the imperfect ROI texts in the passage which the users
referred to when answering the questions provided during the
study.

Each variation of ROI text contained at most one type of
error which was created by replacing the actual (reference)
word(s) from the error-free ROI text with a different (hypothe-
sized) word(s). Thus, the first step of the feature extraction pro-
cess involved alignment of error-free ROI text with its erroneous
variation to identify the reference word(s) and the hypothesized
word(s) pair. As the ROI texts were not time-aligned and there
were few errors in each ROI text, we could utilize Levenshtein
distance based word alignment technique to align the texts. We
utilized CELEX2 [26] as our lexical database for syllable infor-
mation for calculating the SyllableLength feature. A frequency-
based Part-of-Speech (POS) tagger, Unigram Tagger [27], was
utilized for POS tagging of words. The tagger was modified to
output one of 11 different POS tags (in priority order: noun,
verb, pronoun, adverb, adjective, preposition, conjunction, in-
terjection, determiner, number and others) to an input word.
The ContentOrFunction feature was calculated with the help of
POS tag(s) of the word (a word is labeled as a Content word if it
is a Noun, Verb, Adverb, or Adjective). The SaliencyIndex fea-
ture represented the general importance of the word and was es-
timated by calculating Term Frequency-Inverse Document Fre-
quency (TF-IDF) score of a word(s). Scikit-learn’s [28] Tfid-
fVectorizer was used as our TF-IDF Scorer, and it was trained
with a portion of dataset (N=18 books) from Project Gutenberg
[29] corpus and Web Text corpus from NLTK [27]. TextBlob
[30] library for python was used to compute the SentimentOri-
entation feature.

For each type of error, the features were extracted from the
reference word (the actual word), except for the insertion error
type (an insertion error doesn’t have a reference word as it is
produced due to an insertion of an extra word) whose features
were extracted from hypothesized word(s).

Figure 1: A plot showing the importance of each feature vari-
able in-terms of their contribution to model accuracy and impu-
rity.

3.2.3. Feature Selection

We utilized random forest to rank our 6 features and selected 3
features based on the measure of average accuracy decrease and
average impurity decrease in the model without each of these
features. As shown in Figure (1), features WordLength, Salien-
cyIndex and POSTag were among the best contributors to the
Gini impurity and the accuracy of the model.



Evaluation Metrics
Models AUC Cutoff Accuracy F-measure Precision Recall Bal. Accuracy

Logit (Ml) 0.496 0.539 0.618 0.754 0.618 0.968 0.498
Random Forest (Mrf ) 0.572 0.444 0.620 0.744 0.631 0.844 0.533
SVM (Ms) 0.496 0.605 0.617 0.738 0.625 0.919 0.497

Table 3: Summary of the evaluation of each prediction model on our test dataset. Value on each metric represents the average perfor-
mance of the model in 5 different train and test partitions of our dataset.

3.2.4. Model Evaluation & Selection

We investigated three models for prediction and evaluated the
performance of each model for our task. Table (3) summaries
the result our evaluation. For the purpose, we selected 80%
of our total observation (N= 862, excluding the baseline mea-
surements) to train the model and used 20% of our remaining
observation of test the model. For each model, five-fold cross
validation with this 80/20 split was used to build each model,
and the performance scores reported in Table (3) are based on
the average of the models for each fold. We observed the per-
formance of Random Forest model (Mrf ) to be slightly better
than other models with accuracy of (µ = 62.04%, σ = 4.41).

Figure 2: Example of Accuracy vs Cutoff graph for Random
Forest Model on a test dataset. The marker represented by the
red-cross represents the point of maximum accuracy at a cutoff
value of 0.31.

During the testing process, the cutoff probability for each
classification model, which was used to label output probability
to our binary class, was chosen as the mode of the accuracy vs
cutoff graph; the graph represented the accuracy of the model
considering different cutoff values. Figure (2) shows the accu-
racy vs cutoff curve of Random Forest model on a test dataset.

4. Discussion
While its performance is above chance, the Random Forest
model Accuracy results presented above are modest, but we
view these results as preliminary. This study was based on a
small amount of data (30 participants on 20 passages), and the
set of features explored was relatively small. We view this ef-
fort as an initial proof-of-concept of our ability to identify useful
features in a loss-function for predicting the comprehensibility
of a text for DHH users.

Obviously, if we are to make use of this loss function in
real-time captioning system, we would not know which words
are errors. Our intention is to use the confidence value of the
ASR system as a proxy for this information, and to use our loss-
function to guide the hypothesis selection. Specifically, the pre-
diction model (Mrf ) we built from the user study results will be
used in designing our loss function, as shown in Equation (3).

`(W, δ(Y )) = −
( ∑
fi=f(W,δ(Y ))

Mrf (fi)
)

(3)

where δ(Y ) represents our decision rule that maps audio input
(Y ) to word sequence output (Ŵ ). We need a function f(R,H)
that returns set of features (listed is Table (2)) for each error type
in the hypothesis text (H) when compared to the reference text
(R).

This loss function looks to penalize the harsh errors that
have significant ‘predicted’ impact on output comprehension
(obtained from Mrf ) for DHH users.

5. Conclusion & Future Work
The work described in the paper has been concerned with the
development of a prediction model that represents the impact
of ASR errors present in the text on its comprehension, specifi-
cally for DHH users. Beyond our intended application for ASR,
we note that research on understanding the relationship between
text characteristics and comprehensibility for DHH users may
have other applications, such as automatic text readability de-
tection software for these users. Further, we plan to extend our
user study and improve our prediction model with more data.
As we move on, we will look to investigate the Decision The-
oretic framework for n-best list rescoring proposed by [20] to
incorporate our custom loss function in to the ASR decoding
process.

In addition, we will look to contrast its performance with
other discriminative training techniques to optimize ASR com-
ponents with our loss function. We also intend to do experi-
mental analyses of the effectiveness of the final tool for DHH
users.
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