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ABSTRACT

American Sign Language (ASL) is a visual gestural language
which is used by many people who are deaf or hard-of-
hearing. In this paper, we design a visual recognition system
based on action recognition techniques to recognize indi-
vidual ASL signs. Specifically, we focus on recognition of
words in videos of continuous ASL signing. The proposed
framework combines multiple signal modalities because ASL
includes gestures of both hands, body movements, and facial
expressions. We have collected a corpus of RBG + depth
videos of multi-sentence ASL performances, from both flu-
ent signers and ASL students; this corpus has served as a
source for training and testing sets for multiple evaluation
experiments reported in this paper. Experimental results
demonstrate that the proposed framework can automatically
recognize ASL.

Index Terms— American Sign Language, Action Recog-
nition, Multi-Modality

1. INTRODUCTION

Within the field of computer accessibility for people with dis-
abilities, many researchers investigate assistive technologies
(also called “adaptive technology”), which consists of soft-
ware and devices that benefit people with disabilities. This
technology may enable users to perform tasks with greater
efficacy or efficiency, thereby increasing independence and
quality of life. People who are deaf or hard-of-hearing (DHH)
utilize a variety of methods to communicate, including signed
languages, which are natural languages that consist of move-
ments of the hands, arms, torso, head, eyes, and facial ex-
pressions. There are more than one hundred sign languages
in the world [1]; American Sign Language (ASL) is used
throughout the U.S. and Canada, as well as other regions of
the world, including West Africa and Southeast Asia. Within
the U.S., some researchers estimate that there are approxi-
mately 500,000 people who use ASL as a primary language
[2]. To promote information access for people who are DHH
and to provide more natural methods by which they can in-
teract with computer systems, additional research is needed

for automatically recognizing ASL signing from videos of a
human.

In addition to enabling new methods by which DHH users
could interact with computers, ASL recognition technology
could serve as an initial step for future automatic translation
technologies from ASL to English. Further, software for au-
tomatically recognizing ASL from video could enable new
educational tools for students learning the language [3]. Cre-
ating a system that could automatically analyze the ASL per-
formance of a student and provide feedback is a key goal of
our project, and the sign language recognition work presented
in this paper is a necessary component of our future system.
ASL is essentially a language communicated by components
of human action, therefore it is highly related to human action
recognition, gesture recognition and facial expression recog-
nition.

Recognizing human activities from images and videos is a
challenging task, one of the challenges is extracting useful vi-
sual features from noisy signals. This can be severe when the
visual signals vary significantly due to illumination changes,
background clutter and scale uncertainties. In recent years,
with the success of low-cost depth sensors (such as Microsoft
Kinect) many researchers and engineers no longer have to im-
plement tedious signal processing such as human body detec-
tion, foreground detection, and illumination normalization by
taking advantage of depth sensors [4, 5, 6, 7, 8, 9, 10, 11].
As for automatic ASL recognition, Pugeault et al. proposed
to learn alphabets from static hand shapes [12]. While much
research in this area focuses on the hands, there is also some
research work focusing on linguistic information conveyed by
the face and head of a human performing sign language, such
as [13, 14].

Different from the previous proposed approaches, in this
paper, we propose an ASL recognition system which is based
on utilization of a Kinect depth sensor and the combination
multiple features extracted from different information modal-
ities. Our contributions are: 1) the system will automatically
predict lexicon and grammar components for ASL videos in
a data-driven manner. 2) Multiple modalities including raw
depth sequences, face expressions, and hand gestures signals
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are fused to extract compositional visual features. 3) We col-
laborate with ASL linguistic researchers and record an accu-
rately annotated dataset for ASL sentences, which can benefit
the ASL recognition research community. The rest of this pa-
per is organized as follows: Section 2 describes the proposed
framework and Section 3 describes our dataset and perfor-
mance analysis. Finally we conclude this paper in Section 4.

2. PROPOSED FRAMEWORK

The pipeline of our proposed framework is illustrated in Fig-
ure 1. The main features of the system are two-fold: 1) it takes
into account multiple signal modalities including depth im-
age sequences, RGB image-based facial expression attributes,
hand shapes and keypoint detections for both body joints and
facial landmarks. 2) By learning from signing sequences per-
formed by fluent ASL signers and annotations provided by
professional linguisticians, our system can recognize different
components such as English words and special ASL grammar
components, such as facial expressions or head movements
that have grammatical meaning during sentences.

2.1. Signal Modalities

There are five signal modalities employed in our system: 1)
Depth image sequence. These are raw depth images with
resolution at 512 ⇥ 424. Each depth image is pre-processed
by cropping out the smallest bounding box which contains the
detected human body. 2) Body skeleton joints. The skele-
ton joints are estimated positions for 25 different body parts
ranging from SpineBase, SpineMid to ThumbLeft and Thum-
bRight. X and Y coordinates are used for each body joint, thus
the feature vector for this modality has 50 dimensions in each
video frame. 3) Facial landmarks. There are five facial land-
marks are tracked for each RGB video frame: left and right
eyes, left and right mouth corners, and nose. X and Y coor-
dinates are used for each landmark. 4) Hand shapes. There
are five states for each hand: open, close, lasso, unknown and
not tracked. 5) Facial expressions/attributes. There are 8
facial expressions or attributes for each face detected: happy,
engaged, wearing glasses, left eye closed, right eye closed,
mouth open, mouth moved and looking away.

2.2. Feature Extraction

To extract the information from each modality, the input sig-
nals are encoded into fixed dimensional spaces. We employ
three feature extraction strategies for the five modalities, as
follows:

Depth image sequence. Suppose there are L depth im-
ages in the input depth sequence, {D0, ..., DL�1}. Depth Mo-
tion Maps (DMMs) [15] are computed by accumulating con-
secutive Motion Energy Images (MEIs) [16] of depth maps:

DMM = ⌃L�1
i=1 �(kDi �Di�1k) (1)

where �(·) is a point-wise delta function. Since the subtrac-
tion in Di �Di�1 is also point-wise, the resulted DMM is a
2D map which has the same dimension as each depth image
Di.

Body joints & Facial landmarks. The body joints and
facial landmarks are essentially similar in the aspect that both
are 2D tracked locations of a sequence of key-points. There-
fore we apply the same strategy to encode these two signal
modalities. The information is encoded into two perspectives:
structure and motion.

The structure feature encodes the layout information of
set of tracked key-points, i.e., their relative positions:

Sl = {Vi,l � V̂l, 8i}, l 2 {0, ..., L� 1} (2)

where Vi,l is the ith keypoint of the lth set of points in the
sequence V = {V0, ..., VL�1}. V can be either a body joint
sequence or a facial landmark sequence. V̂l denotes the lth

anchor point such as SpineMid for body joints and Nose for
facial landmarks.

The motion feature encodes the temporal offset between
two consecutive sets of tracked key-points:

Ml = {Vi,l � Vi,l�1, 8i}, l 2 {1, ..., L� 1} (3)

Hand shapes & facial expressions/attributes. These
two channels are computed by the Kinect API 1 which pro-
vides access to some primary facial and hand gestural charac-
teristics. Hand states include: 1) Open, 2) Closed, 3) Lasso,
4) Unknown, and 5) Not Tracked. Facial states include: 1)
Happy, 2) Engaged, 3) Wearing Glasses, 4-5) Left/Right Eye
Closed, 6) Mouth Open, 7) Mouth Moved, and 8) Looking
Away.

For the hand states, “Unknown” and “Not Tracked” are
combined as one state. Since the hand states are exclusive,
i.e., one hand cannot be both “Open” and “Closed” at the
same time. For two hands (left and right), there are 4⇥4 = 16
combinations. Therefore a 16-dimensional binary vector is
used to represent the hand state feature. For facial expres-
sions, since the states are not exclusive, we use “on(1)” or
“off(0)” to represent each facial expression state. Therefore
a 27 = 128-dimensional binary vector is used to encode the
face states (“Wearing Glasses” is excluded since it is not re-
lated to facial expressions.) We name the encoded informa-
tion of face and hand as binary facial expression (BFE) fea-
tures and binary hand shape (BHS) features in the rest of this
paper, respectively. Consequently, for a video clip containing
L frames, the two types of encoded features (BFE and BHS)
are: BFE 2 {0, 1}L⇥128 and BHS 2 {0, 1}L⇥16, respec-
tively.

1https://msdn.microsoft.com/en-us/library/dn758675.aspx
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Fig. 1. Pipeline of our system. The input ASL video clip extracts five modalities of signals including different aspects of ASL.
Features are extracted from each of the five signals and then combined together to represent that ASL video clip. Then the
compositional features are used to train an ASL word classifier.

2.3. Representation and Recognition of ASL Lexical
Items

For each feature modality, we need to encode varied length
video clips into the same embedding space (fixed dimension)
except for the DMM feature, because the resulted energy
map is already summed over the temporal dimension. For
the feature channels of body joints and facial landmarks, we
apply a bag-of-words model which maps the input feature set
into a fixed-length vector. K-means and soft assignment are
then applied to encode the feature vector. For the latter two
feature channels (BFE feature and BHS feature), a histogram
over all possible states is used to generate the representation
of ASL words and grammars. Linear SVM is employed for
ASL word and grammar recognition.

Face Information

Body Information

Channel Information

Fig. 2. Top: our interactive UI which shows all extracted
information includes RGB, depth, body joints and other fa-
cial/body information. Bottom: sample frames from our col-
lected dataset showing the ASL word “I” in both RGB and
depth channels (blue dots are body joints.) Faces are blocked
for privacy. Please zoom in for more details.

3. EXPERIMENTS

3.1. Dataset

The dataset in this paper is collected by ourselves with a
Kinect-based recorder shown in Fig 2. It contains 61 video se-
quences recorded from five fluent ASL signers, each of which
is a multi-sentence performance. All the video sequences are
annotated by a team of ASL linguists, who produced a time-
line of the words in the video (and a set of facial expressions
or head movements with grammatical significance). Using
the timeline annotation, we segmented the video collection
along word boundaries into a set of 673 video clips, each of
which is either a single word (e.g., “I” as in Fig. 2) or an ASL
grammar component (e.g. “FACE WHQ”– facial expression
for wh-word question). There are total of 99 unique lexical
items and 27 of them with sample number larger than 5 are
selected in our experiment. 2 For each lexical item, 50% of
the samples are used for training the rest half are used for
testing.

3.2. Recognition Results

Firstly, two concepts about experiment settings will be dis-
cussed:

Feature Pairs. ASL is a language that conveys infor-
mation through simultaneous movements of the hands, arms,
torso, head, face, and eyes. We previously discussed how
our system uses five feature channels: 1) DMM-HoG [15],
2) Bag-of-Skeleton, 3) Bag-of-Landmarks, 4) Binary Facial
Expression feature, and 5) Binary Hand Shape feature. Since
features 2) 3) and also 4) 5) are similar but contain comple-
mentary information (gestural and facial), we group them into
two feature pairs.

Vocabulary Groups. The 27 lexical items are divided
into 4 groups according to their frequencies in the corpus
because 1) mean accuracies on class categories with similar
frequencies are more informative than on unbalanced corpus.
The full listings of lexical items can be seen in Fig. 3. We
also compare the accuracies with different feature combina-
tions among all groups and without grouping (putting all lex-
ical items into the same big group.)

2The 27 lexical items are: where, father, mother, there, animal, favorite
and etc. Please zoom Fig 3 for the full list.
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Fig. 3. Confusion matrices for (a-d) group 1 to 4 lexical items and (e) all 27 lexical items. In each pair, the left shows results of
DMM only and the right shows using all features. Due to the space limitation, the text for (e) is omitted. Red arrow shows an
undesired classification result due to unbalanced data.

Recognition results across all feature combinations and
vocabulary groupings are shown in Table 1. By comparing
with DMM, feature pairs 1 and 2, we observe that for low-
frequency group (Group-1), feature pair 2 reaches the best
result (45.45%). The reason is that the cardinality of the train-
ing set is small (due to low vocabulary frequency) and feature
pair 2 contains the lowest dimensional feature while other fea-
ture channels are of higher dimensions, which make the data
scarcity more severe. But with the cardinality of the train-
ing samples per class increases (Group-2, 3, 4 and “All”), this
phenomenon is not severe any more. In general, combining
all features together performs the best, especially in Group-4
and “All”. As expected, in Group-4 test, features without suf-
ficient information from facial expression (only DMM) per-
forms inferior than all other groups with facial information.

Further observation can be obtained from Figure 3 by
comparing DMM-HOG and all feature combination. In gen-
eral, feature combination is superior to DMM-HOG in all
cases except for (c) Group-3. The performance gap is more
obvious in (d) Group-4 and (e) All lexical items. In (e),
the red arrow indicates DMM-HOG tends to generate many
false-positives by assigning many incorrect samples to the
most frequent term (the corresponding vocabulary class is
“YOU”, which is the most frequent word in our vocabulary)
and feature combination has no such issue.

Table 1. Recognition results of the proposed framework with
different combinations of feature modalities.

Group-1 Group-2 Group-3 Group-4 All
DMM[15] 36.36% 22.64% 50.88% 56.32% 28.77%

Pair-1 36.36% 28.30% 50.88% 62.07% 15.98%
Pair-2 45.45% 24.53% 28.07% 63.22% 24.66%

All 40.91% 32.08% 49.12% 70.11% 36.07%

3.3. Discussion

Since our data collection is on-going and we are expecting
more data, the complexity and the size of vocabulary of this
problem will be also growing. In the future, we will scale this
framework so that the system’s accuracy is maintained as it
is expanded to include a larger vocabulary of lexical items.
We note that the feature combination in the current system is
performed through simple concatenation. As the complex-
ity of the system increases in the future (as we attempt to
recognize larger vocabulary sizes) there will be more feature
channels included; thus, more effective fusion techniques and
automatic ASL sentence segmentation will be explored.

4. CONCLUSION

In this paper, we have described how to identify specific lex-
ical items in a video recording (RGB+depth) of ASL sign-
ing. This research is part of a project to develop educational
tools to provide feedback for ASL students [3]. The pro-
posed system learn from labeled ASL videos captured by a
Kinect depth sensor and predict ASL components in new in-
put videos. In addition to the system we are developing, the
corpus of ASL videos that we are collecting (using a Kinect
sensor, along with linguistic annotations of lexical items and
other grammatical features) will serve as a valuable dataset
for research on sign recognition technologies.
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