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Abstract 
Analysis of eyetracking data can serve as an alternative method of evaluation 

when assessing the quality of computer-synthesized animations of American 

Sign Language (ASL), technology which can make information accessible to 

people who are deaf or hard-of-hearing, who may have lower levels of written 

language literacy.  In this work, we build and evaluate the efficacy of descriptive 

models of subjective scores that native signers assign to ASL animations, based 

on eye-tracking metrics.  
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Introduction 

Automatic synthesis of sign language animations can increase information accessibility 

for people who are deaf and use signing as a primary means of communication. In the US, this 

population is estimated to be over half a million (Mitchell et al. 328-329). Standardized testing 

has revealed that many US deaf adults have lower levels of English reading literacy (Traxler), 

and thus complexity in the reading level of the text on websites or media can be too high. 

Linguistically accurate and natural-looking animations of American Sign Language (ASL) that 

are automatically synthesized from an easy-to-update script would make it easier to add ASL 

content to websites and media. 

Researchers must regularly evaluate whether animations are grammatically correct and 

understandable, often through participation of signers, e.g. (Gibet et al. 18-23; Kipp et al. 107-

114; Schnepp et al. 250). We have previously proposed the use of eyetracking to evaluate 

participants’ reactions to animations without obtrusively directing their attention to any 

particular aspect of the animation (Kacorri, Harper, and Huenerfauth, Comparing; Kacorri, 

Harper, and Huenerfauth, Measuring 549-559). In this work, through multiple regression 

analysis on data from a user study, we identify relationships between (a) eyetracking metrics 

defined on recorded eye movements of participants watching ASL animations and (b) the 

subjective scores on grammaticality, understandability, and naturalness that participants assigned 

to those animations.  

Discussion 

Eyetracking and Sign Language Animations 

As discussed in (Kacorri, Lu, and Huenerfauth, 514-516; Huenerfauth and Kacorri), in 

the context of research on incorporating new capabilities into ASL animation technology, it is 

difficult to design experimental stimuli and questions to measure participants’ comprehension of 

information content specifically conveyed by some new feature of an animation.   

To address this concern, we examined research using eyetracking to unobtrusively probe 

where participants are looking during an experiment, which can allow researchers to infer the 

cognitive strategies of those users, e.g. (Jacob and Karn). In fact, researchers have used 

eyetracking with participants who are deaf to investigate comprehension of videos of humans 
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performing sign language (Cavendar et al.; Muir and Richardson; Emmorey et al.), but not of 

sign language animations. In our prior work (Kacorri, Harper, and Huenerfauth, Comparing; 

Kacorri, Harper, and Huenerfauth, Measuring), we examined whether these eyetracking methods 

could be adapted to the evaluation of sign language animations. However, in this earlier work, 

we examined one-to-one correlation relationships between the evaluation scores that participants 

assigned to the stimuli (video and animations) and specific eyetracking metrics. In this paper we 

focus on sign language animations only, and we systematically investigate the contribution of 

multiple metrics in indicating the subjective responses that native signers assign to ASL 

animations via multiple regression modeling. 

User Study and Collected Data 

Participants. Eleven ASL signers were recruited using ads posted on New York City 

Deaf community websites: 4 men and 7 women of ages 24-44 (average age 33.4).  Seven learned 

ASL since birth, three prior to age 4, and one learned ASL at age 8 (attending schools for the 

deaf with instruction in ASL until age 18 and continuing to use ASL at home and work).  

Experiment. Participants viewed 21 short stories in ASL performed by an animated 

character, created by a native ASL signer using the VCom3D (2015) SignSmith animation tool; 

we previously shared these stimuli with the research community (Huenerfauth and Kacorri).  The 

video size, resolution, and frame-rate for all stimuli were identical. During the study, after 

viewing a story, participants responded to 1-to-10 scalar-response questions about their 

subjective impression of the animation. All questions were presented onscreen (embedded in the 

stimuli interface) as HTML forms to minimize possible loss of tracking accuracy due to head 

movements of participants between the screen and a paper questionnaire on a tabletop. The 

following English question text was shown onscreen: 

(a) Good ASL grammar? (10=Perfect, 1=Bad) 

(b) Easy to understand? (10=Clear, 1=Confusing) 

(c) Natural? (10=Moves like person, 1=Like robot) 

An initial sample animation familiarized the participants with the experiment and the eye 

tracking system. All of the instructions and interactions were conducted in ASL; subjective 

questions were explained in ASL. Some introductory information about the study was conveyed 

via a video recording of a native ASL signer. As discussed in (Kacorri, Harper, and Huenerfauth, 
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Comparing), participants were seated in front of an Applied Science Labs D6 desktop-mounted 

eye-tracker, which sat below a 19-inch computer screen at a typical viewing distance. 

Eyetracking Metrics. We recorded eye-tracking data while the participant viewed each 

animation, and then participants answered the questionnaire. Since eyetrackers occasionally lose 

the tracking of the participant's eye (e.g., if the participant rubbed their face with their hand), we 

needed to filter out any eye-tracking data in which there was a loss of tracking accuracy, as 

discussed in (Kacorri, Harper, and Huenerfauth, Comparing). For analysis, we defined 4 areas of 

interest in our stimuli: the virtual signer’s head/face, body (including hands), upper face, and 

lower face; eye fixations elsewhere were coded as “off.” Based on these areas of interest, we 

describe a participant’s eye movements during each animation with 28 eyetracking metrics. 

Table 1. Eyetracking Metrics 

Category Eyetracking Metrics 
Total Fixation Time: 
duration when the eyes are 
on this area of interest 

BodyTotalFixTime, UpperFaceTotalFixTime, 
LowerFaceTotalFixTime, FaceTotalFixTime 

Proportional Fixation Time: 
percentage of time with the 
eyes on this area of interest 

PercentFaceFix, PercentUpperFaceFix, PercentLowerFaceFix 

Proportional Fixation Time 
(discounting “Off” time): 
same as above, but the 
fixation time spent “off” is 
not included in denominator 

PercentFaceFixNoOff, PercentUpperFaceFixNoOff, 
PercentLowerFaceFixNoOff 

Transitions: count of the 
movements of the eyes from 
one area of interest to 
another 

NumFaceToBody, NumBodyToFace, NumBodyToOff, 
NumOffToBody, UpperFaceToBody, LowerFaceToBody, 
UpperFaceToLowerFace, LowerFaceToUpperFace, 
BodyToUpperFace, BodyToLowerFace, OffToUpperFace,  

Proportional Transitions: 
same as above, but 
normalized by the total time 
duration of the stimulus 

NormFaceToFromHands, NormUpperFaceToFromHands, 
NormLowerFaceToFromHands, 
NormUpperFaceToFromLowerFace 

Overall: counts of 
transitions or length of the 
eye movement trail 

NumTotalTran, TotalDetailedTrans, NormTrailDistance 
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Results and Analysis 

The goal of our analysis is to examine how eye movements of participants relate to their 

responses to subjective questions about ASL animations. In addition, we wanted to know which 

eyetracking metrics best capture variance in score for each of the subjective questions evaluating 

the grammar, understandability, naturalness of the animations. We therefore used multiple 

regression to analyze the data. Our independent variables included all of the eyetracking metrics, 

listed in the above table. We trained a separate model for each of our dependent variables 

(Grammar, Understand, and Natural). 

Since we have calculated many eyetracking variables, it was important to explore 

combinations of variables in a systematic manner. We used the ‘leaps’ package (Lumley) to 

build models of all possible subsets of features to identify the model with the highest adjusted R-

squared value, i.e. the percentage of total variability accounted for by the model. 

 For a meaningful interpretation of the relative contribution of each of the eyetracking 

metrics, we calculated the relative importance of each independent variable in the Grammar, 

Understand, and Natural models, using the Linderman-Merenda-Gold (LMG) metric (Lindeman, 

Merenda, Gold), using the ‘relaimpo’ package (Grömping). This analysis assigns an R-squared 

percent contribution to each correlated variable obtained from all possible orderings of the 

variables in the regression model. Higher bars in Figures 1-3 indicate that the metric had greater 

importance in the model. We employed bootstrap to estimate the variability of the obtained 

relative importance value, to determine 95% confidence intervals (whiskers in the graphs). 

Importance values may be considered significant when whiskers do not cross the zero line in the 

graph.  As illustrated by Figures 1-3, we see that the eyemetrics relating to the ‘Head/Face’ area 

of interest features prominently in many of the best models. 
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Fig. 1. Relative importance of each eyetracking metric in the model with the highest R-squared 
value (28.2%) for the “Grammar” subjective response score; the most important metrics include: 

NormFaceToFromHands and FaceTotalFixTime. 

 

Fig. 2. Relative importance of metrics in the model with highest R-squared value (29.83%) of the 
“Understand” subjective response score; the most important metrics include: PercentFaceFix and 

LowerFaceTotalFixTime. 
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Fig. 3. Relative importance of each eyetracking metric in the model with the highest R-squared 
value (39.7%) for the “Natural” subjective response score; the most important metrics include: 

PercentFaceFix and FaceTotalFixTime. 

 

Fig. 4. Comparison of the best multiple-metric regression model and best single-metric 
regression model for each of the subjective response scores. 

In order to determine whether these multiple-metric models outperformed single-metric 

models (as we had explored in earlier work), for each of the subjective scores we build a model 
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using a single eyetracking metric (chosen by ‘leaps’ as the one yielding the highest adjusted R-

squared value). As shown in Figure 4, we found that in each case, the single-metric model 

accounts for significantly less variance than the multiple-metrics model (ANOVA, p<0.05).  

Conclusions 

We have offered guidance on which eyetracking metrics can be used to predict ASL 

signers’ subjective judgments about the grammaticality, understandability, and naturalness of 

sign language animations.  Future researchers who need to unobtrusively collect subjective 

judgments about sign language animations can use regression models based on these metrics. 
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