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ABSTRACT

An experimental/numerical analysis of two types of
compliant pins is presented: dynamic retention pins
and cantilever pins. It is shown that there is a trade-
off between the performances of both types of pins. For the
same range of retention force, the cantilever pin, with a
smaller stiffness, is more forgiving and gives a broader range
of deflection. The dynamic retention pin is shown to be
more reliable with time and replacement frequency, since it
exhibits less plastic deformation for the same range of

retention force.
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NOMENCLATURE

Stiffness matrix and linear stiffness matrix
Nodal value of displacement

Number of elements in finite element structure
MacNeal Schwendler Corporation

NAsa STRuctural ANalysis

Yield stress

Major principal stress

Minor principal stress

Modulus of elasticity

Poisson ratio

Shear modulus of elasticity

Shear stress

Max shear stress

Stiffness matrix used in Newton and Modified
Newton Raphson methods

Applied load vector

Vector of unbalanced forces acting at all grid
points

Is the unknown vector of constraint forces due
to constraints

Is the vector of grid point forces due to
forces generated by element motion and stress

Reference stiffness matrix
Corrective load vector
Degree of freedom
Directional strain

Directional shear stress
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Mils

[D]
[Dep]

[(B]

Directional shear strain
Directional stresses

Tensor notation for strain

Tensor notation for displacement

Pounds per square inch

10—3 Inch

Shape function

Boundary

Domain

Moment of inertia

Printed circuit

Hardening parameter

Plastic work

Effective plastic strain
Plastic component of strain
Strain hardening parameter
Effective stress

Plastic strain increment
Flow vector

Plastic multiplier

Matrix of elastic constants
Elasto-plastic matrix
Density

Body force vector

Strain/Displacement matrix



INTRODUCTION

1.1 PRESS-FIT PINS (COMPLIANT PINS)

The interconnection of electrical components has been
achieved by various techniques over the last twenty years.
Initially, soldering was the most widely used method for
reliability and longevity of the connection. With the arrival
of solderless wrap technology [1,3), and the significant
economic advantages it brought about, without compromise
to reliability and longevity of the connection, pressure
connections have been gaining wider acceptance in printed

circuit (PC) boards.

The Press-Fit pin connection technology is based on
the principle of providing a pressure connection, so that there
is adequate and continous metal-to-metal contact during
the expected life of the two connecting components. The elastic
energy that is necessary to maintain the pressure connection is

stored in one or both of the components [1,2,3].

Easier manufacturing, assembly, repair and replacements
make pressure connection technology very effective. Also, the
absence of related soldering problems such as contamination,
solder splashes and localized heating ([1,3), favors the
economic and practical acceptance of the Press-Fit pin

technology.



A good Press~Fit pin has to satisfy several design

objectives [1]:

. The pin could be used over a wider range of hole sizes in the
PC board.

. The pin had to store most of its elastic energy.

. Less damage to the expensive PC board during insertion of the
pins.

. Less plastic deformation for the same level of retention
force.

. Reliability of connection and inexpensive replacement.

A compliant pin with a wide range of elasticity and

moderate stiffness would satisfy the above objectives.

1.2 SCOPE OF STUDY

This study is devoted to analyzing the performance of
two types of compliant pins: the dynamic retention pin, which
is presently in use; and the cantilever pin, which is proposed
herein (Figures 1 and 2). The analysis is carried out using a
numerical technique, the finite element method (MSC/NASTRAN) as

well as experimental testing.

Most engineering designs are based exclusively on the
theory of elasticity, although it is widely recognized that the
yield stress is often exceeded. In this study, both pins are
compared within the same range of retention force for a wide

range of deflection.
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Figure 1 Schematic e Dynamic

Figure 2  Schematic of the
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In the numerical models, sections within the printed
circuit boards are loaded uniformly and other sections are
assumed to have small gaps. Symmetrical boundary conditions are

applied to other appropriate sections of the models.

Experimental work is conducted using an Instron TTD
machine. A qualitative analysis of the flexibility of both
types of pins is performed from their load-deflection

diagrams.



2. FINITE ELEMENT ANALYSIS

2.1 MSC/NASTRAN

NASTRAN was formulated and developed under the
sponsorship of the National Aeronautics And Space Administration
(NASA) based on requirements of the aerospace industry for
structural analysis. MSC (MacNeal Schwendler Cofporation)
markets its own version, MSC/NASTRAN, that has the capability

of solving a wide range of engineering problems.

MSC/NASTRAN non-linear analysis, SOL 66, with plastic

deformation option is the numerical tool of this study-

2.2 FINITE ELEMENT THEORY

2.2.1 NON-LINEAR ANALYSIS

Non-linearities occur in two different forms in
finite element analysis. The first is geometric non-linearity,
which results from finite changes in the geometry of the
deforming body. The second is material or physical non-
linerity, which results from the non-linear constitutive

laws [4,5]. Material non-linearity is easier to



visualize. It entails problems in which stresses are non-
linearly proportional to the strains, but in which only small

displacements and small strains are considered.

For the solution of Mechanics problems, the basic finite

element equation is utilized (see Equation (n), Appendix 2).

[K] (U} = (F} (1)
Where [K] is the structual stiffness matrix
{U} is the nodal displacement vector

{F} is the applied nodal forces

For non-linear problem, such as plasticity. the non-
linearity occurs in the stiffness matrix [K] (see Equation
(v) ,Appendix 3). 1In general, when the coefficients of the
matrix [K]) depend on the unknown displacememts (U}, or their

derivatives, the problem becomes non-linear [6].

The solution of Equation (1) is tedious to solve directly.

As a result, an iterative approach has to be taken.

2.2.2 ITERATIVE TECHNIQUES AND STIFFNESS MATRIX UPDATE

The Newton-Raphson and Modified Newton-Raphson
iteration techniques are used to solve the non-linear equation

systems.



A single degree-of-freedom non-linear force function,

F(u), (Figures 3 and 4) can be written as:

/ ~+'

Nt N
F(u) = F(u) + (@@ =-u") %’)
(by using Taylor's series expansion neglecting higher order
terms)

Stiffness concept can be defined as :

AF )

K(u) = U

The Newton-Raphson iteration recurrsion equation can be written

as

[(K"1{U""" - Uy = (P} - (F") (2)
Where at a given iteration n

[K”] is the current value of the stiffness matrix

{(U”"’} is the new value of the displacement vector

{U”} is the current value of the displacement vector

{P} is the vector for applied external loads

{F”} is the current value of the grid point force

vector

{Fﬂ} has to be computed accurately as a function of {UN}

and [K"] may be approximated, but convergence will be dependent

on the choice of [K'V].

In the Modified Newton-Raphson iteration recurrsion

equation:

k™ 1u” -uYy = (pty - (F7) (3)



(Path taken with
stiffness matrix

updates)
(Path taken without stiffness matrix updates) .

$olution

Figure 3  Single DFF Iteration - Updates of Stiffness Matrix,



Figure 4 Single DF Iteration - No Stiffness Matrix Updates.



Where: {F"} changed at each iteration
[K™ ] changed less frequently or not at all

{PL‘} changed less frequently or not at all

Figures 3 and 4 show the procedures of both methods,
Newton-Raphson and Modified Newton-Raphson respectively,
employed by MSC/NASTRAN for non-linear iteration. The curves
show a single DOF non-linear force function. The dashed lines

show the iteration paths, with slopes equal to the reference

R

matrix [K" J. The method of Figure 3 is to be used in this

study.

In MSC/NASTRAN the method used to obtain a solution

is by minimizing the error vector {5 } given by [8] :
(§) = (P} + {Q) - (F) (4)

where {8 } 1is the error vector of unbalanced forces acting at

grid point components.

{ P} is the vector of applied external loads, which
may change with displacements.

{ Q } is the unknown vector of constraint forces.

{ F } is the vector of grid point forces generated by
element motion and stress. The terms are
functions of displacement, temperature and stress

history-

It should be noted that degrees of freedom not involved

in constraints produce null terms in {Q)} and that dependent

-10-



constraint points produce no errors. Therefore, when Equation
(4) is reduced to the solution coordinates the constraint forces
{Q) disappear. Terms in the vector (F} are dependent on the
deformations of the finite elements. 1In linear static analysis

the vector (F)} becomes :
3 T
{Femmvear } = [K'] {U} = P (T) (5)
where P7 is the "Thermal load vector"

For non-linear solution a "Reference" matrix [Kg ] (slopes
of Figures 3 and 4, that change stiffness matrix update) is
used, in which the terms are derivatives in the form [8] :

kA = 0Ei (6)
d”j u:(/“
If UJR } is a known displacement with error { S(UL )}, then
Newton's method may be used to predict a new vector { Ué+’ }
with smaller error. Using Taylor's Series expansion and

negelecting higher order terms the non-linear force is

approximately:

( F(U)} = (F (U¢)) + [K*21(U - U9 (7)

Substituting Equation (7) into Equation (4) with {5 } =0
(KA )U -USy ¥ (P) + (Q) - (FU')) (8)

Which can be written in terms of the error vector {6 } to

provide the format of the Newton-Raphson iteration method:

-11-



kKA1 (v"-véy=¢§(u‘fy ) (9)

When [K‘q] is inverted , Equation (9) may be used to solve

for (U7’ }) = { U}, a new estimate of the solution.

Equation (9) provides an incremental form for solution

iteration. Another form of the iteration equation is obtained

from Equations (4) and (9):

KI(U - Uy =(P)+(Q)+(P)-(£°) (10)
Where :
(£€) = (F (U¥)) - [RAJ(u®)y + (P ) (11)

{f‘ } equal zero when { F } is linear and [KR] contains

linear elastic terms.

Equation (9) is quite useful since load error {6 } and

CHr

incremental displacements (U - Ui ) are available for

testing convergence [8].

Equations (9), (10) and (11) are used in MSC/NASTRAN

for non-linear iteration.

2.2.3 YIELD CRITERION

For a material in simple tension, there exist a yield
point at which the material will begin to deform plastically.
For a general state of stress, a yield criterion is required to

define which combination of stresses will cause yielding [6,11].

-12-



The Von-Mises yield criterion, also known as the
Hencky-Mises yield criterion, states that yielding begins when
the distortion energy exceeds a critical value [6,8,11]. 1In

simple tension, this critical value is equal to the yield stress

[ Sy ] , that is :

1/2 { [6,-C1°+ [6, - &1 + [6;-61" ) = Oy* (12)

For the case of pure shear in two dimensions :

d/:-OZ=T }63=O
Equation (12) becomes :
T:gy_ (13)
V3

Equation (13) states that the yield stress in pure shear is

1//3 times the yield stress in tension.

Another yield criterion, referred to as the Maximum Shear
Theory or Tresca yield criterion states that when the maximum
shear stress reaches the value of the maximum shear stress

occuring under simple tension, yielding will occur [6,8,11].

For the case of pure shear :

The maximum shear stress theory predicts yielding to occur

when :

or o= 1/2 Oy (14)

-13-



That is, the yield stress in pure shear is one-half (1/2)

the yield stress in simple tension.

The Von-Mises yield criterion predicts a pure shear yield

stress which is about fifteen percent higher than that predicted

by the Tresca criterion.

The Von-Mises yield criterion usually fits the
experimental data better than the other theories, and it is
generally easier to apply than the Tresca criterion, because the
relative magnitudes of the principal stresses need not be known

[11]. For these reasons, the Von-Mises yield criterion is used

in this study.-

2.2.4 HARDENING EFFECT

When a plastically deformed specimen is unloaded,
residual stresses on a microscopic scale remain and influence
the plastic yielding if the specimen undergoes additional loads.
If the previous strain was a uniform extension and the specimen
is then reloaded in compression in the opposite direction, it is

observed that yielding occurs at a much reduced stress [6,7,8],

-14-



giving rise to hardening effects, the Bauschinger effect.

The Bauschinger effect is represented in Figure 5. It is
assumed that the elastic unloading range is twice the initial
yield stress. If the initial yield stress in tension is Sy and
the specimen is loaded up to stress ¢, and unloaded, the

new plastic yielding in compression at dz' given by :
62=6/ = ZGY

This is shown by path OABCD, which states that the total
elastic range of the material remains constant since the initial
compressive yield is reduced by the same amount as the tensile

yield is raised. This strain hardening model is said to be

" kinematic (Figure 5).

The path OABGH shows that the hardening mechanism is
acting equally in tension and compresion, that is o,, =-6,

(Figure 5). This is referred to as isotropic hardening.

When it is assumed that the tensile and compressive
yields are independent of each other, then the compressive yield
is at - 0y, which is not dependent on the amount of tensile
hardening (path OABEF). This phenomenom is referred to as

combined isotropic and kinematic hardening.

These three hardening options can be programmed into
MSC/NASTRAN for the models. Isotropic hardening option is used

in this study.

-15-
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2.3 FINITE ELEMENT MODEL

The finite element method is used as the basic numerical
technique to study the elastic-plastic deformation of the two

compliant pins (Figures 1 and 2).

The compliant pins have symmetrical characteristics, and
these are used to reduce modelling effort and subsequent
computer run time. In general, when a structure has symmetrical
boundary conditions and loading, the resultant stress field will
also be symmetrical. As a result, no additional
information is gained by reproducing identical stress fields

across planes of symmetry [10].

Model data such as coordinates, element definition, element
"connectivity", and material properties are generated and
programmed into the computer for finite element analysis. The
pins are modelled using MSC/NASTRAN QUAD4 and TRIA3 elements

[see Programs].

In this study GAP elements, specified on CGAP and PGAP Bulk
Data cards, are used to model surfaces of the complaint pins and
PC boards which may come into contact. A GAP element connects
two grid points which initially is coincident [8]. Within the
PC boards (60 +/- 3 Mils thick) GAP elements are used for 30-40
Mils sections for the dynamic retention and cantilever pins

respectively.-

_17_



Loading of sections of the cantilever and dynamic retention
pins within the PC boards (20-30 Mils) are achieved by using
enforced displacements (SPCD in Bulk Data [16]) of 0.65, 1.5 and
3 Mils for the three SUBCASES. The loading sequence is
controlled by LOAD request in the Case Control Data. Also,

FORCE Bulk Data cards with directions of loading are used.

Boundary conditions are applied to the symmetrical and load
sections of the compliant pins (SPCl Bulk Data cards [16]).
Along these sections the displacements are constrained (Ux = 0).
The point O shown on Figures 6(a) and 7(a) for the element
layouts are constrained both for Ux=0 and Uy=0 in order to fix

that point.

NLPARM cards [15] used in Case Control and Bulk Data
selects and defines a set of parameters for non-linear analysis
iteration strategy. Each SUBCASE (in Case Control) defines a
new total load and iteration method defined by the NLPARM Bulk
Data. The change in loads between the three SUBCASES is further
subdivided into evenly spaced increments by the LINC field on
the requested NLPARM card. AUTO and AUTOQN are the iteration
methods used for modelling. The AUTO method provides automatic
matrix update and the AUTOQN method provides additional accuracy
over the AUTO method (additional internal searching and less
chance of a diverging solution). The number of iterations per
load increment are controlled by using the MAXITER option in the

NLPARM Bulk Data. Also, the number of diverging solutions

-18-
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Figure 6 Finite Element Layout of the Dynamic Retention Pin
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allowed before the non-linear iterations stop are controlled by

the MAXDIV option in the NLPARM Bulk Data.

The selection of the type of non-linearity and the non-
linear characteristics of the material of the compliant pins are
modelled using the MATS1 Bulk Data card [15]. PLASTIC
(Elastoplastic) option is used as the type of material non-
linearity. Other options that are used include work hardening
slope (slope of stress vs. plastic strain) of zero for elastic-
perfectly plastic case, isotropic hardening effect and the Von-
Mises yield criterion. Also used is the factor for yield
stress, COy- On a stress-strain relation the slope of the line
joining the origin to the yield stress is equal to the value of

the Modulus of Elasticity, E.

Figures 6(a & b) and 7(a & b) show the finite element
layouts and shrink plots of the dynamic retention and cantilever
pins. Since the pins are retangular in cross section, plane
stress conditions are assumed for the models. Also, damage due
to insertion of pins in PC boards, sliding and frictional

effects are neglected.
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3. EXPERIMENTAL TESTING

Large scale models (25 X )of the two types of compliant
pins (Figures 8 and 9) were tested in compression using an

Instron TTD machine. Figure 10 shows a schematic of an Instron

machine and model set up.

During experimental testing, loadings are to be applied
in approximately the same area as the numerical models. Also,

loadings are to be applied at reasonable speeds (0.05 - 0.1

inch/min).

The Load-Deflection diagram is to be used to provide
information on the flexibility of both pins, so that qualitative

analysis can be made and compared with results obtained from the

numerical models.

-22-
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4. RESULTS AND DISCUSSION

Following are the material parameters of the compliant

pins which are used for calculations:

E = 17 * lO6 PSI
v = 0.28
Sy = 4.5 * 107 ps1
Hole size = 40 +/- 3 mils

Length of pins = 160 mils

Thickness of PC board = 60 +/- 3 mils

Range of Retention Force = 10 - 25 LBS.

Range of Normal Force = 30 - 75 LBS. (for Coefficient

of friction approximately 0.33, Retention Force

Coefficient of friction * Normal Force)
Note : For the cantilever pin, maximum Normal Force = 175

LBS. (Figure 11) which is equivalent to Retention

Force of 57 LBS.

The numerical result of Normal Force vs Deflection at
load points is shown in Figure 11 for the two compliant pins.
For the same range of retention force, in the elastic region,
the cantilever pin is more forgiving. As a result, a larger
deflection is expected (Figure 12) making the cantilever pin
more flexible for different hole sizes in PC boards. A
resultant larger deflection would also eliminate loosely fitted

pins in PC boards.

_26_
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Figure 11 Load Deflection for Numerical Models
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Figure 13  Simplified Models of the Two Types of Pins
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The propagation of the plastic deformation zone with
increasing applied load is depicted in Figures 14 and 15 for
both pins. It can be shown that the cantilever pin undergoes
more plastic deformation in the transition regions of the

compliant part of the pin for the same range of retention force.

The above numerical results agree with the results
obtained from simplified models of both pins, a cantilever beam
and fixed ends beam (Figure 13). From strength of materials
[13,14] the stiffness of the fixed ends and cantilever beams are
24 EI/L3 and 3 EI/LS. Hence, for the same retention force, the
cantilever pin is eight times more forgiving. On the
other hand, the maximum bending moment for the fixed ends beam
is PL/4, which is four times less than that of the cantilever
beam, PL. This means that for the same retention force, the

cantilever pin undergoes more plastic deformation.

From the experimental results (Figure 16) the cantilever
pin model is more forgiving. That is, it has a smaller
equivalent stiffness than the dynamic retention pin model. This
qualitative analysis compares favorable with the results
obtained from the numerical analysis about the flexibility of

both pins.
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Propagation of Plastic Deformation Zone in
Dynamic Retention Pin at Various Loadings
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Figure 14
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Figure 15

Propagation of Plastic Deformation Zone in
Cantilever Pin at Various Loadings.
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5. CONCLUSION

From the experimental testing as well as the numerical

results it is seen that:

1. The cantilever pin has a smaller stiffness and gives a
wider range of deflection for the same range of applied

normal force.

2. More plastic deformation occurs in the cantilever pin for
the same level of retention force. This implies that the
dynamic retention pin (with less plastic deformation) is

reliable with both time and frequent replacement.

From a mechanical point of view, the cantilever pin is
more advantageous in applications where time and frequent
replacement are not factors. For retention forces less than 57
LBS., the cantilever pin has proven to be the better choice for
practical applications, since it has a wider range of
deflection. On the the other hand, for retention forces
over 57 LBS., the dynamic retention pin is still within its
elastic range. As a result, it is able to recover and prevent

damage to the PC board during the replacement process.

The above analysis implies that there is a trade-off in

the utilization of both pins in the PC board industry.
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This work can be extended to include creep effect
(viscoplasticity) and thermal cyclic effect on the retention
forces. Also, parametric analysis can be done to provide

optimal dimensions and materials for the pins.

_34_



REFERENCES

R. Geol, "An Analysis of Press Fit Pin Technology",

Electronic Components Conference, Atlanta Georgia, May 11 -

13, 1981.

S. M. Ambekar, and I. Farkass ,"Studies On The Performance
of The Compliant Pins In The Plated Through Hole Of Printed

Circuit Boards", IPC Fall Meeting, September, 1983, Denver

Colorado.

R.Cobaugh, and F.Miller, "Compliant Pin An Idea Whose Time

Has Come", Electronic Component Conference, 1978.

Harry G. Schaeffer, "MSC/NASTRAN Primer", Schaeffer Analysis

Inc., Mount Vernon, New Hampshire, 1979, pp 76-77.

D. R. J. Owens, and E. Hinton, "Finite Elements In
Plasticity", Pineridge Press Limited, Swansea, U. K., 1980,

PP 25-29.

D. R. J. Owens, and E. Hinton, "Finite Elements In
Plasticity", Pineridge Press Limited, Swansea, U.K., 1980,

pp 215-229.

A. Mendelson, "Plasticity : Theory And Application", The

MacMillian Company, New York, 1968, pp 13-14.

MSC/NASTRAN, "Application Manual", November/December 1984,

Vol. 1, Section 2.14.

-35-



10.

11.

12.

13.

14.

15.

16.

17.

A. C. Ugural, and S. K. Fenster, "Advanced Strength and

Applied Elasticity", American Elsevier Publishing Company,

New York, 1975, pp 46-68.

John K. Krouse, Staff Editor, "Stress Analysis On A Budget",

Machine Design, March 8, 1979.

A. Mendelson, "Plasticity : Theory And Application", The

MacMillian Company, New York, 1968, pp 70-79.

J. N. Reddy, "Introduction To The Finite Element Method",

McGraw Hill, 1984, pp 265-280.

Marks' Standard Handbook For Mechanical Engineers, McGraw-

Hill Book Company, 1978, Section 5, pp 24.

G.H.Ryder, "Strength of Materials", The MacMillian Press

Ltd, London, 1971, pp 175.

MSC/NASTRAN, "User Manual", November/December 1984, Vol. 1,

Section 2.4, pp 199-218.

MSC/NASTRAN, "User Manual", November/December 1984, Vol. 1,

Section 2.4, pp 327-330.

A. C. Ugural, and S. K. Fenster, "Advanced Strength And
Applied Elasticity", American Elsevier Publishing Company,

New York, 1975, pp 36-37.

-36-



APPENDIX 1

STRESS, STRAIN AND ELASTICITY MATRIX

Oy
t ™ 7
£ Y
M t -
-.: r—V?y —_—> Ty
t
Ox &— | '—O—é‘;‘ l T
by
b
I —
————————— - [ — x
l — fo—0x - vGy
Gy £ r
Figure A
From generalized Hooke's Law [9]:
E = O (Definition)
€
From which €, =_O« ()
E
For lateral strain in y direction
Oy =-yv Ox (B)
E

For a two dimmensional homogenous isotropic element of
unit thickness, Figure A, subjected to biaxial stresses,
applying the principle of superposition and considering the
simultaneous action of &x and Oy :

€x = Q_;f__z_gx (c)



€y = Oy _ vOx

——

E E

For pure shear, in the elastic range

X Xy = Txy or ?xy = G Xxy
G

Where G =
2(1 + v)

Rearranging Equations (C) and (D)

6x = E€x +v 6y

and

6y = E€y +v O6x

substituting Equation (G) into Equation (F)

6Gx = E €x + VEEY + v¥Ox
simplfying
Gx(L -v>) =E (€x + vEy)
or Ox =_E (€Ex + v€y)
7-v?

substituting Equation (F) into Equation (G)
6y =E€Ey +VvEE€x + vigy
simplfying and rearranging

oy =_E (vé€x+ €y)
l - v*
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(D)

(E)

(F)

(G)

(H)

(1)



writing Equations (E) , (H) and (I) in matrix form :

Ox = E v E 0
1 - vt 1 - v?
Oy = v E E 0
1l - v 1 - vz
Txy = 0 0 E
| 2(1 + v)_
or
Ox Dy, D, 0 €x
Oy = Dy, D, 0 €y
T3
Xy L_.o | DBSJ Xxy
where D, = D = E H D =D = VE
’ 22 = v 12, 2/ =z
and D = E
2 2(1 + v)

Equation (J) can be written as :

S = [D]l¢

_39_

€Ex
€y

Yxy

(3)
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APPENDIX 2

FORMULATION OF THE FINITE ELEMENT EQUATION

From elasticity theory, displacement method [12]:

Work done by the applied forces = Strain energy

5pj Edﬂ+Sa’§dP =Jéé"gd-ﬂ- (a)
(N

=

(V]

2]

(1]
(G B
QQ‘

R

Yo

dil is the work done by the body forces

St
5‘ QTZ ar is the work done by the surface tractions
n

?

j A ¢’0df is the strain energy
s

From theory of elasticity [9]:

General strain tensor:

€ij = 172 3&' + é_uL)

X ox;

which can be written for plane stress problems as:

d 3
veo(eE o) @

€ xx

€yy 1/2 duy + Ou Ju (c)
3 oy oy
The shear strain denoted by Xxy is defined as [17]:

Xxy = _a.ﬂ + QHY (4)
oy ox

_40_



writing Equations (b), (c) and (d) in matrix form:

6)0{ 2 0 ] Ux
ox

€ = )

vy 0 A uy

¥ )

X 5% 52

or
€= 11131 (e)

From Equation (K), Appendix 1:

g = [DIg (£)
Combining Equations (e) and (f)

S = [(D1[L]Y (g)

From finite element theory:

N
a = ‘Z_I%UL
Where u is-the displacement vector
%. is the shape function (linear interpolation
function [12])

U. nodal displacement value

In two dimensions:

o
Ux = > Yuxe

41—



In matrix form:

o -
Ux Y, 0 % 0 Ux,
= Uy’
Uy o ¥ o 4 Ux,
L . UYZ
or
U = [ ¢] u (h)
Combining Equétions (h) and (e)
€ =[Liy1U
or
€=1B1U (1)

where [ B ] = Strain/Displacement matrix
Combining Equations (i) and (f)
6 =[(DI[B]U (3)
Substituting Equations (h), (i) and (j) into equation (a)
éSE (B 1 [DIlBIYdR= jpf{}"]ﬁg af

e
+JILT[V]7'ZdF (X)
,1

Using the Raleigh-Ritz method, variational functional

I(u) [12]:

I(u) =fjt,1 (B1[DI[BIY dﬂ-jgf[y]ﬁg as
S

=42~



- f}rf[}”]w/ﬁ (1)

r
Minimizing dI(u) = 0
Y
0o = <f[B]’[D][B]dn_>U - j[y]sz)lgv an
“n - L
-(t¢rzer @
r
Equation (m) can be written as
[ XK 11U = F (n)
where
-
[K ] = gtB] [D][B]af
/I
F = J[}ﬂ]ﬁg dJL+f[V]T£d/"

The force vector F combine the effects of external applied

loads and boundary conditions.
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APPENDIX 3

FORMULATION OF THE ELASTO-PLASTIC MATRIX

STRESS,
_E_ Y
dc 7 /4
4 SLOPE E,~- ELASTO PLASTIC
T s TANGENT MODULUS
V/ dEF

Oy de€,

de¢

SLOPE E - ELASTIC MODULUS

STRAIN
Figure B Elasto-Plastic Strain Hardening

Behavior For The Uniaxial Case.

The classical theory of plasticity deals with materials

which are elastic until yielding commences at the yield stress

Oy- Thereafter the material response is elasto-plastic with
the local tangent to the curve continually varying and is termed

the elasto-plastic Tangent Modulus, E, which is a function of

strain.

The progressive development of the yield surface can be
defined by relating the yield stress, Gy, to the plastic

deformation by means of the hardening parameter k [6].
k = Wp (a)

Where Wp is the plastic work

YA



Wp = jﬁg(déLJ)P (b)
in which ( d€;j )p are the plastic components of the

strain occuring during a strain increment.

The effective or equivalent plastic strain is defined

incrementally as:

d€p = JZ((ae&y)p (d€jp) (c)

+

For situations where the assumption that yielding is
independent of any hydrostatic stress is valid, (dé&ij)p=0

and hence ( dé,;J" )p = (d€i; )p

Equation (c) can be written as:

afp = 2 ((ae€p (A€ )p )y (d)

Then the hardening parameter, kX, is assumed to be defined as:

k = ép (e)

where Ep is the result of integrating d€p over the

strain path.
’
Also, the strain hardening parameter H, is defined as

' = 4o (£)
dé€p

Using Equation (e), equation (f) can be written in terms

of the effective stress, ©

6 = H( p) (9)
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or differentiating

a5 = H'(€p) (h)
déep

For the uniaxial case §,=¢6, 6, = Gz = O and thus from
s -~ Y
effective stress 6 = \/% {Cy' 6y’ 1+

we have [6]:

o\

= O (i)

If the plastic strain increment in the direction of
loading is d€p, then ( dé,)p = d€p and since plastic
straining is assumed to be incompressible, poissons's ratio is
effectively 0.5 and ( d€,)p =éd€p and ( d€4)p = --édép .

Then from Equation (c) the effective plastic strain becomes:
¢ L ( (€33%p (€337)p )% -
dép = J= ( (€i3)p (€i3)p }* = 4afp (3)

Using Equations (i) and (j) then Equation (h) becomes

H ’ (Ep ) = ;_‘0_ = ____ 4o = 1
dEP ae - d€. de - g€,
dc de
where de = d€, + dép (From Figure B)
or = — E7 (k)
1 - Er
E

H’ can be determined experimentally from a simple

uniaxial test.
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The yield function at which plastic deformation begins

can be written in the general form

£ (S) = K (k) (1)

Where & is the stress vector and k is the hardening

~

parameter.

From Equations (a) and (b)
dx = gd €p
and dkx = a€p from Equationn (e)

Rearranging Equation (1)

dF = JF ds  + OF dk = 0
26 oK
or
-
a a6 - Adr = 0

o6 o0% oy
A = - 1 4F a4k
and 5 Sk

=-47-

(m)

(n)

(o)

(P)

(q)



The vector a is termed the flow vector.

The incremental relationship between stress and strain

for elasto-plastic deformation is defined as [6]:

d€ij = d6ij + (1L -2v ) dij d0w+ aNIf
Zp E 00

Equation (r) can be written as:

-’
d€ = [D] ds + dar OF

where [D]
Pre-multiplying Equation (s) by ap’ = a’ [ D] and
eliminating Efvdd‘ by using Equation (o), the plastic
multiplier:

dr = 1 a’ dD d&
A + a’”[ D] a -~

Substituting Equation (t) into Equation (s)

dfi = [Dep] déﬂ
with [Dep] = [D] - abab ; db = [D]a
A + 9%

Where [Dep] is the Elasto-Plastic matrix

Stiffness matrix (from Equation (n), Appendix 2)

(K] = J (8]” [Dep] [B] dS.
S

Which shows that the non-linearities occur in [K].

48~

(r)

(s)

is the matrix of elastic constants (Appendix 1)

(t)

(u)

(v)



1%
4*
%
1
#*
4%
I
%
i#*
4
1
44
3
1#
1*
‘t
1*
1#
1*
1%
1#
1
4
4
1*
1*
44!
1
1*
%
1
4%
%
4%
‘l
b
3
13
1
3
3
3+
3

v
b
o
(4]
b
o
X
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M3C/NASTRAN SILUTICN 66
NON - LINcAR ANALYSIS

PROGRAMMER LINCCLN G. MILLER

DATE WRITTEN

DEC. 17,2385
OBJECTIVE T3 STUDY THZ CANTILEV:=R PIN
CCOMPLINT PIN) SUosJ=ECTED 1O
PLASTIC DEFORMATIGN.

4 30 4F 4% 24 4P 4F 3 4F 4P 9 4 4

IC MILLER,LG

TIME 60

SCL 66

CEND

TITLE = CANTILEVZIR PIN PRO3LEM
SUDBTITLE =CONPLIANT PIN

SPC = 100 )

SEALL = AlLi

STRESS = ALL

DISP = ALL

SPCFORLCE = ALL

SUECAS: 1

LDAC = 10

NLPARM = 10

SUBCASE 2

LG4 = 20

NLPARM = 2¢C

SUBCASE 3

LOALC = 30

NLPARM = 30

DUTPUT(FLOT)

PLOTTER NASTRAN

CSCALE 2.2

PAPER SIZE 26« X 20.

SET 1 = ALL

AXES 24XsY

VIE“ 00030’00

MAXI CEF2 0.0000¢C1

FIND SCALZ ¢SET 1,CRIGIN 1°

PLOT SET 1,0RIGIN 1eLAEEL SRIT PJINTS
PLOTY SET 1,0RZGIN 1,LABEL ELEMENTS
PLIOT SET 1,0RIGIN 1,SHRINK

PLCT STATIC DEFD 0s1 SET 1,0R1GIN 1
CONTOLR MAXSHEAR LIST 4.5+«

PLOT CCNTODUR SET 1 DRIGIN 1 CUTLINE
CONTDOUR MAXSHEAR LIST 4.4+4

PLCY CONTCUR  SET 1 ORIGIN 1 CUTLING
BEGIN EULK

PARAMySU3IDs3

PARAMGLOADINC g«

PARAM,LCOPIDs24

GRCSET 99999934656
GRIDs159De090.0839063
GRIL92990eU90e06390.0

OR1De2990e 09900250500
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GRID9%#990090.040,0.0

GRID 95999090030, 0.0

GRID 9699040900209 0.0
GRID97990e6050.0150.0
GRID965990e090e050.0
GRID9999004-0.010,0.0
GRIU910990.09=-0.02050.0
GRID911990G09=-0.0275,0.0
GRID912990.09=0.04050.9
GRID913990e09-0.05050.0
GRID914990.C9=0.06090.C
GRID915990.09=0.07050.0
GRID916990.09-0.02090.3
GRIL917990.030G9-0.08350.0
GRIDy15990.01C9~0.070390.0
GRID$19990.01G,-0.06252.0
GRID920990.0159~0.05090.2
GRILC$21990.0209-0.04050.0
GRIC922990.02C9=0.0275050.0
GRID23990e02C0=0.02290.0
GRID,Z‘..0.0:.‘0.0IO.C.O
GRID925990.02090.050.0
GRID,ZO.,0.0Z0.0.0I.0.0
GRID'Z7"°.°ZG'°.°2°'°.°
GRID923990.0200.035040.0
GRID929990.0209C.0405C.0
GRID930990.02090.050,C0C
GRILC$931990.352090.05759049
GRID.BZ..0.0Z0.0.0&0.0.0
GRID9y33990.04090.06050.C
GRID93%990.04090.C30,0.0
GRIC$35930.C2C90.0:040.0
GRID936990.007590405050.0
GRID937990.007590.0640.0
ORIU$35990.007590.0550.0
GRID939990.007590.04050.0
GRIDy40990.007590403090.0
GRIC341990.007590.02090.9
GRIDy42990.007590.0123500
GRID943990.007590e09002
GRIL 964990.00759-0e03190e3
GRIC 945990.00739-0.02CyC.C
GRID 948990601259 -0e029062
GRIDy495990e0i259-C.01050.C
GRID950990.012590eC9062
GRID'SI"000125'00010'303
GRIDyS52990.04i2590.0250.C
GRID953990.0125992.0390.0
ORID9S%990.0i259)ei%sC.C
GRID 5599001259005 9CaU
GRID9p 6990012904057 %40.C
GRID9609y9Ce0109=~0.04090.2
GRIC961990.0109-0.027590.0
GkID962990.00759-0.02550.0
GRIDy63990.01259-0.02590.0
ORIC 964490.0113759-Ca02625,0a0
GRIU$65990.0061259=0002€259060
GRID960990.008759=0.020E390.9
GRID9€ET990.0i1259=0.0258290.0
GRID96899Ce0093759,-0.027395.0
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GRID969990.0106259=-0.02739C.0
GRIC»70990.02,-0.026550.0
GRID»71990.02,-0.02690.0
GRIDy72990.025-0.025550.0
GRIDy»73,550.02,-0.02590.0
GRIDy74590.09=0.0259040
GRIDy75990.04=0.025590.0
GRIDy76990.09=0.0259040
GRID¢77990.09=0.02659Co0
GRIDy78990.00375,0.08,0.0
GRIDy735990.0037550.0690.0
GRID,80990.0037590.059049
GRIDyB8199y0.0037590.0450.0
GRIDy6E299C.0037590.03,0.0
GRID963990.00375,0.02,50.9
GRIDy654990.0037550.010,0.C
GRIDy85950.00375,0.0,0.0
GRIDy86990.003754-0.01,0.0
GRIC987990.003759-0.02050C.0
GRID|88||0000375|‘00025|0.0
GRIC989990.0049-0.02555C.C
GRID950990.004259-0.02690.0
GRID'91||0000‘5|-000265. 0.0
GRID992590.0054-0.02754C.0
GRID993990.0059~0.0490.0
GRID39%9p90e0059-0.C59CaC
GRID'GS"OOOO"'0.0é.O.C
GRID.96..0.005.-0.07.0.0
GRID997990.0059-0.0890.0
GRID.98..0o°1|°0005|000
GKkIDy93990.0159=0e04C90.9
GKkID9100990e3159-0.027592.9
GRIDQIOI..0-0155.‘0.0235.0.0
GRIDy102990.015759~-0.0269C.0
ORID»10399060159-0.02559060
GRIC9104990.015259-0.C2550.0
GRIC 9105990012259 -0.029000
GRIC9106990e013259-CaCipdeb
5RIL|1°7||0.31025.0.0.0.0
GRID»108990.02352590.0150.0
GRIG.109..0.01o25.0.02.0.0
GRIC,11Cy90.015259Ce0390.0
GRIDy111l,y90e21525 Delep0.C
ORIC$P1312990e02025900590.0
GRID113990e0102590035759C.0
CQUAUG9195C 916997936915
CQUAD&9295093793iT918993
CQUAD‘.3.5°.15.95|;5|14
CQULDGee950995915919995
CCUADL ¢595Upiepd39349l3
CTRIA2,6950935995994
CCUAC4sT7950935919920993
CQUAQ4|B|50|13|94|’3|12
CQUA3‘|9|5309“|95|5°|93
CTRIA3,1u9509939939060
CQUAD& 9119209939209 2193¢
CQUAB‘|1£|5CQIZOS3|92|11
CCUAD&913,509939050961952
CGUAD‘.15.50.60.99.100.61
CCUAD4 915,5C9999219229100
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CQUAC4+10950911,532,91,77
CQUADG317450,925061968y31
CQUAD4,18,450577,91,5C,76
CQUAD4319,50,5146L966530
“CQUAD43235,50,75990,589,75
CQUAD"21’5C|90|°6|65|59
CQUAD4 322,45C,754395483,74
CQUADG 259509895659 62958
CQUACL442445C5514100,5101465
CQUAD4,25,50,12C22,70,101
CQUAD6$2695C96591015102457
CQUAD4,27,50,101,70,715102
CQUAD4 32895C967910U29105964
CQUADG$25950,0102,7497293053
CQUAD49304509649103,104963
CQUAD4$3:,50,103,72573,104
CQUAD‘|32'50'7" 58'87|10
CQUAD43324509585962945457
CQUAE"3‘|50|10|57.56.9
CQUAD4 335950487965 564,356
CQUA3‘|36|50'9|85|55|8
CQUAD43374505869%0963,25
CQUADG 335950909859 36s7
CQU‘D‘|39|50|55|¢3|62|86
CQUAD4 4255097 95495346
CQUADG4195093%942,41,3>
CCUADG 4 95C98983598295
CQUADA 6595095594194 0982
CQUﬂD4a‘4aSO.5a82.al.a
CQUADG4545098294C933,21
CGU434'4005G'6.51|53.3
CQUACG47450921935928,50
CQUAD4360950935E0979C
CQUAD4963,509335938937,75
CQUA3‘|50|50'2|75|76|1
CCUAJ‘QSIQ%C|79|37|3:|75
CQUAD4|52|5CQJ7|32035|36
CGUAD‘QSSQSCQ3$|3J'3Q.35
CQUADG 9549353090291 Uwel05,68
CLUADG3559509134973923,125
CQU“Q‘QS@QiCQH3|105|1Ub'49
CQUADG57935091059239249196
CQUAD‘QS&QEL.“;|100|107.50
CQUA34.59.50.106.24.25.107
CQUADG6U095C95u910T791C5,51
CQUAS4 9€1950913T79259269106
CQUAT46295095191089105,52
CQUAIG 363950923892 D92749135
CQUARADG 964950952940 391139353
COUADG 9659309209927 9254110
CRUADG 366950955911 049111,54
CQUADG36795C911C925929,y111
CQUAD®s6395095691119112,55
CCUADG 963595091119299300112
CQUADG 3709509352911 2911 3,586
CLUADG$T19509112930931,112
PSNELL9509«Cel.0ye0
HAT1|‘0’107’7..0.25
MATS1964099FPLASTiCs0a09l91y4%5+4
SPC15100,141,THRUs IO
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SPC19100921s749759706477
SPC1,1004291
SPC1,10041,425426
SPCL910s25914-0.00065
SPCDs1092691,4-C.00065
SPCD92092591,4-0.0015
SPCLy20926914-0.0015
SPC0930925414-0.003
SPCD.30.Z°.1.’°.003
FDRCE.IO.ZS..O.UJ”I.0.0
FORCZ910926990.00-1.050
FDRCE.ZO.ZS..C.OO.’I.O'G
FCRCE920920990.0355-1.0,0
FORCZ2930425490.009-1.090.GC
FORCE9 30920990009 =~109Ca0yC.0
GRIDy270990aCli090e02092e0459123935
ORIL 423099 0e0290.0G309Calyp9iz3ess
GRID.29U..0.020.0.04.0.0..123656
GRIDs30VUssV0e02390055Ce099123456
GRID'EID"0.020.0.0575|0.0||123‘55
CG;P.270.63'27.270.'.'0
CGAP3Z280953923923099942
CGAP9250963929923099990
CGAP33009739309300s99s0
CGAP331C983951931099999
PGAP34330e0C49390e06391.0+46591.0¢1493.-8
PGAP 5390002390032 91a0+691s0v19l1a-%
PG&P.63.0.0063.0.0a3.1.006.1.001ul.-d
PGAP.73.D.°°73.°.°73. .3’6.1.0*1.1.-3
PGAPsb39Ued05390e03391aCv€épleltlyle-3
NLPARNM 910939 9AauTClooawyYED
NLPAKMy2Up 1599 4UTL L ppshs YIS
NLPﬂRH.BU.s:|&UTJ|"d|YE$

ENDDATA

«050.0
.0'0.0
.°|°.°
.G:0.0
«Cy0.0
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1%
1
1%
4%
*
1
1
1
L1
1%
1
113
4
1
1
4
1%
4%
1
4
4t
+
4
4t
1
3
14
4%
1H®:
4
1
4%

)
o
o
()
b ]
»
X
(1]

MSC/NASTRAN SCLJTION 66
NON = LINZAR ANALYSIS

PROGRAMMER

LINCCLN G. MILLEK

OATE WRITTZN CEC. 17, 1GE5

OBJECTIVE

TD STUDY THE CYN&MIC RETENTICN
PINCCOMPLIANT PIN) SU3SJECTED TO
PLASTIC DEFORMATICN.

46 2F 4 4 4 30 4 4+ 2 2 8 3 3 4

1
1
1
4%
1
1
4t
4
4
1*®
4
‘L
1%
4
‘t
4
1
4#
4
1
i
4
4t
1
4%
1*
1t
1*
1%
114
4
4
1%
‘l
14
1%
4
4
i
1
4%
14
1*
1%
1#
1
1
3t
1
4

IC MILLER,uG

TIME S50

SOL 66

CENC

TITLE = OYNAMICL RETENTION PIN PRJIELEM
SUBTITLE = COMPLIANT PIN

SPC = 100

SEALL = ALL

STRESS = ALL

0ISP = ALL

SPCFORCE = ALL

SUBCASE 1

LCAC = 10

NLPARN = 10

SUEBCASE 2

LCAC = 20

NLPARNM = 20

SUBCASZ 3

Lcag = 30

NLPARM =30

OLTPUT(FLLCT)

PLOTTER NASTRAXN

CSCALE 2.2

PAPER Sl2t 26. X 29

SET 1 = ALL

AXES ZoXoV

VIZWN 0e90es0e

MAX]1 DEFJ C.0CG0C21

FIND SCaLcoeS=T 1,0KRIGIN 1

PLOT S=T 1l,0RISIN 1lyuLaBEL GRIZ FDINTS
PLOT SET 1,CRIGIN 1,LABEL ELZMINTS
PLOT SZT 19CRISIN 19 3HRINK

PLLT STATIC CDeFB 0y SET 1,9RIGIN 1
CONTOUR MAXSHcA? LIST 45+~

PLOT CONTLUR SET 1 GRIGIN I CJTLINE
CONTJUR MAXSHE &K LIST 4Qo4até

PLOT COANTGUR SET : 3JRIGIN 1 CJTLINE
S8EGIN BULK

PARAM, SUBIDy2

PARAMGLOAGINC,20

PARAMyLGOPIL 25

GRUSET o999 9993e350
GRIC$199Ce09=0.C5C40.C
GRID9299GeCy-0.0sC» 0.0
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GRIC.B..O.CQ'Ooo‘OOOOO
GRID""oocﬁ-OOOBOQOOO
oRIL9S5990e0059-0.0275,0.0
GRID 3699000759 -0.02590.0
GRID97990.003859-0.0225450.0
GRID9By9Ue01Uy-0.02040.0
GRID.;..0.0lD”0.0lO’0.0
GRIC91099Ce01090.040.0
GRID$11990.01040.0105Ce0
GRID912990.020G90.02C,0.0
GRID915990.01050.030,0.0
GRID'I"'C.Ol0.0.0“O’0.0
GRID»25990.0038590.042550.0
GRIDQlﬁg’000072’00045’003
GRID'I?"0.0Qi’000675’000
GRIL18490.0040.0509C62
GRID$19990.C090.0609004
GRIU$20990.0090.05090.C
GRIU9c199C.02040.02050.0
GRID$22990.04C,50.03C90.0C
GRIC923990e04090e06040.0
GRID924950.02090.05040.0
GRIC 92599020204 C.C50,0.C
GRIDga.|°o°;°’°o°675’°.9
GRiL 927990.02C90.045,50.C
ORIL92899Ce0c09Cealodi90ed
GRID.Z;..O-O‘Q.O.OOOQOoG
GRILC$3099Ce02390.0305C.0
GRIDP3199Ce0cU90e020404¢C
GRIL$32990.02050.01090.C
GRIL 933990e02C90e0G0yY60
GR10924%990.CsCpy-0e0104042
ORIV925990062C9=0evcilpCal
GRIC 32699040i09-0.022550.0
ORID937990.02C9=0e02590.0
SRID928990e0209-0e027590.0
GRID937990.C2C9-003090.2
GRID.‘O..0.025.-0.04300.5
GRID»41990.0109-0.06099.9
GRID.‘Z.’00010"00080’000
GRIDtSO..G.O.'C.Oi0.0.D
GRIDyE1,5,90.0059-0.05090.0
GRILtSZt.0.0lQ.'Q.OS.0.0
GRID$53990e03i59=2e2509040
GRID.5#||O.01;!'°¢O‘D’o°a
GRI:;QSSQ";OOIGQ"°.°60|0.U
GRIDSS5E990e0U59=0e04093e°
‘;RIE.57”°¢°’-300339000
GRID.S&..O-GOEQ'O-D35!309
GRID953990eG109=0e0359000
GRID96C»90e0i29=DeI3390Ce2
GRID|61|.0.°20’-00035’300
GRIE.éZg’00005’-000300000
GRIDy€E3590.0109=0.C3393.0
GRID.éh..0.0lS,-D.OBD.O.C
GkIU9635990elsg=0e027590.0C
GRIC 9659900189 =-0s027390.C
GRIC9674590.01C9y=-0.025,5042
GRID9ED99Galidg=0a0c390.0
GRIC$63990.0i59-0.02255T.0
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GRID,70990.0105-0.022550.C
GRIDsT719900159=0.020,50.3
GRIDS729390.0154-0.010,0.0
GRID$73990.01590.050.0
GRIDy74990.01550.0105C.C
GRIL$75990.01550.020,C.0
oRIDs70990.01550.030,0.0
GRID»7799001550.04050.0
GRILs78990.01550.042550.0
GRID$73990.C109Ce042550.0
GRID$60990.010530.045,0.0
GRIC$E199003:590.04550.0
GRID9829900.550.047550.0
ORIC983990eC10,0.047550.0
GRIC'BQ"OQOOS'OOGJO'OQO
GRIDy85950.01050.C5C50.0
GRIDs8B0990.01540.C50,0.0
GRICs67930.0i5950.055,0.0
GRICL9EB990.0109CeC524Ca0
GRIU$S83990eCI540.055,0.0
GRIL$50550.040.05550.0
GRIL$91990.00550.0590.0
GRID992990.010,0.050,C.0
GRID$93450.01550.050,C.0
ORIL$S4990.C159CC50,0.0
ORIL$99599001090.050,50.0
GRID96990Cu59CeC3040.C
ORIC99743Ce02090.05550.C
ORIU$906990.0559=-0.05090.60
GRIL$939990.0059=-0.06050e3
CQUAD&L 3195092930993 92
CQUAD% 329509509629 +39%7
CQUACG939509299%951,5C
CCUADG 34950993 94195251
CTRIA3S53C,50941953952
COQUADG 3595095U953i95693
CQUAC436950951952935450
CQUAD"7'5°'52'53'55'55
CTRIAZ,319509253940454
CQUAD“'8'5°'3'2_6'>3'57
CQuULDG9G595C 950955953953
CQUAD‘Q,IO'5°'55'5"'6J'39
CCURD4 91195095494096€1,930
CQUADégdcy 30957950969~
CCUAL491595C93395998395¢
CQUAD&G 914950953950 96953
CQUADG 915950950951 939%954
CTRIZ393c9509496295
CCUADG31595096293390595
CUUAL917950963954963950
CGJAD491395Csce93993090°
CUUALD G513, 509596095796
CCUAD49209309069659609:7
CQUA34'21'50'65'38'37'°6
CQUAD4 2295050979707
CCUA;‘,ZJ'5°'$7'56'69'7C
CQUAD"Z",-O'O:"B"ss's;
CTRIA242595097470,8
CQUADGC 3259503709359 T719b
CQUAC4 3279505699369 35,71
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CUURD4 928950989719 7299
CQUAD4929950571935934,72
CQUAD4 334950999725 73,10
CQUAD&$35950972934,433,73
CQUAD%$3695091097397%511
CQUADG337950973933932,74
CCUAD&G 338950911, 744975,12
CCU‘D‘!39.5°.79!32.31.75
CQUAD® 940950912, 75,75513
CQUAD4,41950575,31,3C,76
CQUADG 424550913576, 77,14
CQUAD4343950576930929,77
CTR1A3,444550914975,15
CQUADG 345,50514477,78,79
CQUADG46950977529528,76
CUUAD447950515479,8051206
CQUAD 4440950973, 78,61,50
CQUAD 363,509 75928927,581
CCUAD450550916580983437
CQUAD&$5195C5009519b82,453
CQUADG$52,350981427426,82
CTaIA3053050.13017.86
CCQUAD4G 35445 504517953985456
CQUAD®3559509839825854565
CLUADG 956950982926925456
CQUAD® 3579505169849 E3,30
CCUAU‘.SO.SC.&*.&S.Séodg
CCU‘36059'5°.55.5Q057.55
CQUADG 36U 950985925997,37
CQU‘D‘.61.50.50.39.91.13
CQUAD4 36295095 7906992491
CQUACG 365950953937 993932
CCU‘O‘.6’.5°.57.97.29.93
CQUALG 9€595C4513992995,20
CQU‘D"60130051.92.95.96
CQU‘D"67'50'92.93.96.55
CQUADJG96395C993924921994¢
CQUALL 967 950924923922921
PSHELL 950940910940
MAT1,964C9leT+7950.28
MATS1,60s9PLASTICs0el9lplytasdts
SPC1510Cs191929359491C9159451
+S5152045C957930
SPC191C0scsl
SPT151005191923932931
SPCL910932919-0.00075
SPCU91C9224519-0.000753
SPLC9s1Cs31919-0.00073
SPCLD92C933919-0.03C1°
SPCLy20932919-0.0015
SPCLs2C931915-0.00123
SPCD920932514-0.303
SPCU930932919-0.003
SPCDy3C931,41,-0.003
FORCE910933990.009-2.C90
FGRCE'10.32..°.CQQ'1.°'G
FURCE|1°.31..0.°Q.'1.CQO
FCRCE.ZOQ33.’°.0°.'100'O
FCRCE920932990.009-1.0sC
FORCE920931990.C09~1.050
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FCRCE930933990.009-1.0,0.0,0.0
FORCE93C932990.009-21.050.040.0
FORCEZ930931990.009-1.050.0,0.0
GRID9300590.02090.03050.099123456
GRID9290990.0290.04050.099123456
GRID»280990.020,0.042590.099123656
GRIU9»270990.02090.04590.099123455
GRID»260990.02090.0475,0.0,9123456
GRIC»250990402090.05050.099123455
GRILC 397099 0.0250405590.099123456
CGAP2300943930930099990
CGAP92909539299290999990

CGAP 2509639289230 49950

CGAP 9270973927927 099992
CGAP.26°'B3QZO'25°""°
CGAP32509939259250499999

CGAP 39709103597 99709999e0
PGAP"3'0.°°QJ' 000‘03' 1.0’6'1.0’1'1."8
PGAP95390eC05390.05291.04¢651.0¢191.-3
PGAP9€Z290e000590006391.04691.0¢191.-8
PGAP'73'000073' 00073'100’6'100*1'10"6
PGAP'S3'°. 0083'0.033'1.0’5'1.0’1'1."8
PGAP$5390e00339003391.04691.0+1,51.-8
PGAF9103950.010390¢10391.0+69104151.-8
NLPARM 910959 9adTCUNpo—w0ohyYZS5,¢P1
+FPlysers
NLP&RM.ZO.ZO..AUTJQN..-‘O.H.YES.OPZ
+P29999<
NLPARM93D09399AUT IO Np 9=el oWy YZSy+P3
*+P3g999d
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