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Gas plume species identification in airborne LWIR imagery
using constrained stepwise regression analyses

David Pogorzala, David Messinger, Carl Salvaggio, John Schott

Digital Imaging and Remote Sensing Laboratory
Chester F. Carlson Center for Imaging Science

Rochester Institute of Technology

ABSTRACT

Identification of constituent gases in effluent plumes is performed using linear least-squares regression techniques.
Airborne thermal hyperspectral imagery is used for this study. Synthetic imagery is employed as the test-case
for algorithm development. Synthetic images are generated by the Digital Imaging and Remote Sensing Image
Generation (DIRSIG) Model. The use of synthetic data provides a direct measure of the success of the algorithm
through the comparison with truth map outputs. In image test-cases, plumes emanating from factory stacks will
have been identified using a separate detection algorithm. The gas identification algorithm being developed in
this work is performed only on pixels having been determined to contain the plume. Constrained stepwise linear
regression is used in this study. Results indicate that the ability of the algorithm to correctly identify plume
gases is directly related to the concentration of the gas. Previous concerns that the algorithm is hindered by
spectral overlap were eliminated through the use of constraints on the regression.

Keywords: gaseous plumes, hyperspectral, stepwise regression, target identification

1. INTRODUCTION

In recent years, thermal hyperspectral imagery has been employed in the detection, identification and quantifi-
cation of gasesous plumes.1–4 This trend has been driven by growing concerns in environmental monitoring and
new advances in sensing technology. Many of the investigations into this problem use image processing tech-
niques commonly applied in the visible (VIS) and near infrared (NIR) portion of the electromagnetic spectrum
on longwave infrared (LWIR) imagery. Many of these studies were successful in their ability to detect plume
pixels in a scene. A drawback of these studies are that all of the techniques employed required prior knowledge
of which gases were present in the scene.

Marinelli, et al. (2000) identified two separate gases being released from a small stack on the ground in front
of a warm building. They showed that a Spectral Matched Filter will detect the plume in the scene. The process
requires the user to define the wavelengths of interest based on the location of features of the gas in question.
Lisowski and Cook (1996) use normalized band differencing to detect SO2 in aerial imagery. A user is required
since the background is normalized to the absorption peak of SO2 before subtraction. Harig, et al. (2002)
compute a correlation coefficient between an atmosphere-subtracted pixel spectrum and the library absorption
spectrum of a gas in specified spectral windows. This notion of using a subset of spectral windows for each
material (i.e., gas species) was established by Clark, et al. (1990). This is an attractive possibility for the gas
problem since absorption features of gases are pronounced and often distinct from one gas to another. Young
(2002) performed gas detection using a spectral matched filter and gas identification using both constrained and
unconstrained linear regression. The basis vector set in his regression model is restricted to five gases, all at a
single temperature. These gases were known to be the effluents from a refining plant in the scene. Young (2002)
is successful at differentiating between plumes containing different gases using this method.

This work attempts to use stepwise linear regression techniques to identify the gases in pre-detected plumes
in a synthetic hyperspectral image. The resulting algorithm is meant to run without user interaction and with
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no prior knowledge of which gases are likely to be present in the scene. Standard matrix regression is not
implemented since it forces a solution for each basis vector in the model regardless of whether or not that gas is
present in the plume. Rather, stepwise regression, an iterative approach that eliminates needless basis vectors
from the model, is used. Stepwise regression has been shown to be successful at selecting the appropriate basis
vectors (endmembers) in unmixing hyperspectral VIS/NIR pixels.6 Constraints are placed on the regression in
this study and will be discussed in detail below.

2. METHODOLOGY

2.1. Data
Synthetically generated imagery is the source of data for this study. Data generated by the Digital Imaging
and Remote Sensing Image Generation (DIRSIG) model is attractive since the user has control over the types
and quantities of gases being released by plumes in the scene. This allows for images to be generated that are
inherently “ground-truthed”. The user populates the scene with three-dimensional objects generated in CAD
design software, and attributes these objects with field-measured properties such as spectral reflectance, thermal
conductivity and spectral emissivity. Atmospheric effects are modeled with MODTRAN. For more information
on DIRSIG see Schott, et al. (1999).7

The plume model within DIRSIG is the Jet Propulsion Laboratory (JPL) Plume Model.8 Spatially, the
plume is constructed by modifying the gas concentration. In the downwind direction the concentration follows
an exponential decay. In the across-track direction, as well as across the z-axis of the plume, the concentration
follows a Gaussian distribution. The width of the distribution increases as the plume travels further downwind.
The result represents a time average of a plume rather than an instantaneous snapshot of a dynamic plume of
gas. The JPL model gives depth to the plume by defining it as a cloud of points, each carrying with it the
temperature and concentration of the gas at that location. When DIRSIG traces a ray from the sensor down
through the plume, it encounters these points and integrates the radiative transfer along the path of the ray.
This approach can reproduce phenomenology that a single slab model can not.

The DIRSIG model was used to create a test image. The scene is of a region in northern Rochester, NY
consisting of a high school, athletic fields, and several surrounding blocks of a residential neighborhood. The high
school has been modified by the addition of two factory-type stacks releasing two separate plumes. One plume
contains NH3 gas and the other freon-114. The stacks were placed such that the two plumes do not overlap at
any point downwind. The presence of hundreds of homes, trees, and numerous roads provide a large amount
of background clutter in the scene. The spectral response of the simulation was chosen to model the SEBASS
(Spectrally Enhanced Broadband Array Spectrometer System) sensor.9 A single band at 10.73µm from the
plume image is shown in Figure 1. The two plumes are clearly seen moving from the middle of the scene to the
lower-right corner.

Three copies of this scene were produced. All three images are constructed with the same objects, atmosphere
and other properties. The only difference is the release rate of the plumes; 50 g/s for Case 1, 2.5 g/s for Case 2,
and 0.25 g/s for Case 3. The images measure X lines by Y samples by J = 128 bands, from 7.5µm to 13.6µm.
The values for X and Y vary across the three scenes. Case 1, measures 256× 256, Case 2, is 128× 128, and Case
3, is 200 × 200. The change in dimensions is a result of a desire to reduce algorithm run-times.

The gas absorption spectra used to generate the scene were taken from a standard library. Thirty-one gases
were used, most of which were measured at three temperatures, 5, 25 and 50◦ C. This resulted in 88 total library
spectra. Both plumes in the scene use the 25◦ spectra. Thirty-one gases from this library are also used as the
basis vector set in the stepwise regression discussed in Section 2.3.

2.2. Radiance Model
The standard model for a “background” pixel in the LWIR spectral region, where the pixel radiance, L(λ), is a
linear combination of C background materials, is expressed as,

Ls(λ) =

 C∑
j=1

βj εj(λ) B(λ, Ts)

 τatm(λ) + Lu(λ), (1)
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Figure 1. Single-band image of synthetic DIRSIG data at 10.73µm. Both plumes can be seen moving from the middle
of the scene to the upper-right corner. The NH3 plume is the left-most plume while the freon-114 plume is on the right.

where βj is the mixing coefficient for the jth background material, εj(λ) is the spectral emissivity of the jth

background material, B(λ, Ts) is the Planck radiance function evaluated at the surface temperature, Ts, τatm is
the atmospheric transmission and Lu is the upwelled radiance. Reflected downwelled radiance has been excluded
from Equation (1) due to the fact that many materials have a high, uniform emissivity in the LWIR.10 This
translates into a low, uniform reflectivity that does not have a significant impact on the sensor-reaching radiance.

When writing an expression for the radiance of a pixel containing a plume (i.e., a “target” pixel) we can
make several approximations. We assume that the plume self-radiation does not significantly reflect off of the
ground and back up to the sensor. We neglect any scattering by the plume and any entrainment of ambient air
within the plume. We also assume that all of the individual gases within the plume are at the same temperature.
These assumptions allow us to write the sensor-reaching radiance for a plume pixel as

Lp(λ) =

 C∑
j=1

βj εj(λ) B(λ, Ts)

 τp(λ) + εp(λ) B(λ, Tp)

 τatm(λ) + Lu(λ), (2)

where the subscript p denotes quantities related to the plume. Equation (2) shows that the self-emitted radiance
from the background is attenuated by the plume. Both this radiance and the self-emitted radiance from the
plume are then attenuated by the atmosphere.

Recalling Kirchoff’s Law, we can equate the absorption of a gas to its emission as

εp(λ) =
D∑

i=1

ci ki(λ) (3)

where ci is the column density and ki is the absorption spectrum of gas i, and the sum is over a total of D
possible gases in the plume. In addition, conservation of energy means that if the gas is optically thin, we can
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set τ = 1 − ε. Substituting these changes into Equation (2) results in the complete model for a pixel containing
multiple background materials and multiple gases as

L(λ) =

 C∑
j=1

βj εj(λ) B(λ, Ts)

 [
1 −

D∑
i=1

ci ki(λ)

]
+

[
D∑

i=1

ci ki(λ)

]
B(λ, Tp)

 τatm(λ) + Lu(λ). (4)

From this point on, we will drop the atmospheric terms from the radiance model for simplicity. This does not
indicate that atmospheric compensation has been done to the data. For these studies, the images have not been
compensated for atmospheric effects.

The background term in Equation (4) contains 2C + 2D + 2 unknown terms; C background ratios, βj ,
C background emissivities, εj(λ), D column densities, ci, D gas absorption spectra, ki(λ), the background
temperature Ts, and the plume temperature Tp. In order to solve this equation for ci by regression with a
basis vector set populated with ki(λ), we seek to eliminate the other unknown terms. The need to solve for
the 2C + 1 background terms is eliminated by clustering the background terms into an effective self-emitted,
surface-leaving radiance, B̄(λ, Ts). This was performed by modeling the background on a per-pixel basis. The
Maximum Distance method (Max-D), an endmember extraction algorithm, was run on all non-plume pixels.11

Fifteen endmembers were extracted using this algorithm. Since the endmembers were extracted on non-plume
pixels, any spectral features due to the effluent gases are not present. After these endmembers are extracted,
the algorithm addresses each plume pixel individually. These endmembers are then fit to the plume pixel using
the partially-constrained stepwise regression. The goal here is not for the endmembers to model the pixel
exactly. Significant residuals are not only expected but also desired in this case due to the presence of the plume.
Allowing the coeffecients to take on any value eliminated the residuals too effectively, thus prompting the use
of constraints on the regression. These coeffecients were then multiplied by the endmembers to arrive at the
background estimate, B̄(x,y)(λ, Ts), where (x, y) indicates the image coordinates of the pixel in question.

Substituting this for the background term, and distributing through the plume transmission term, we arrive
at,

L(λ) = B̄(x,y)(λ, Ts) − B̄(x,y)(λ, Ts)
D∑

i=1

ci ki(λ) +

[
D∑

i=1

ci ki(λ)

]
B(λ, Tp). (5)

We can now subtract the first background term from both sides and factor out the plume emissivity term to
arrive at,

L(λ) − B̄(x,y)(λ, Ts) =
D∑

i=1

ciki(λ)
[
B(λ, Tp) − B̄(x,y)(λ, Ts)

]
. (6)

The only parameters in Equation (6) that need to be addressed are the plume temperature, Tp, and the surface
temperature, Ts. Specifically, we must take into account the difference between these two values. Assuming a
relatively flat surface emissivity spectrum, the plume is seen in emission if this temperature contrast is positive. If
the surface is warmer than the plume and the contrast is negative, then the plume is in absorption. The difference
between emission and absorption is critical as it dictates the “direction” of the gas features (peaks or troughs)
in the pixel. Since we are attempting to identify the gases by fitting a set of basis vectors to the pixel spectrum,
we need to ensure that the basis vector set accounts for both emission and absorption. We do so by defining
a temperature contrast term, ∆ T , and replacing Tp by (Ts ± ∆ T ). We estimate the surface temperature by
inverting B̄(x,y)(λ, Ts) to solve for the spectral brightness temperature, Ts,(x,y)(λ). The maximum of Ts,(x,y)(λ)
is selected as the surface temperature estimate, T̂s,(x,y). Replacing this for Tp in Equation (6) brings us to the
final equation for a plume pixel,

L(λ) − B̄(x,y)(λ, Ts) =
D∑

i=1

ciki(λ)
[
B(λ, T̂s,(x,y) ± ∆ T ) − B̄(x,y)(λ, Ts)

]
. (7)
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Source dof SS MS

Total SS J x′x

SS Due to Regression (SSR) N f ′A′x

SS About Regression (SSE)
J − N x′x − f ′A′x MSE = s2

(residuals)

SSR Reduced Model N − 1 f ′N−1A
′
N−1x

SSR Extra Term 1 f ′A′x − f ′N−1A
′
N−1x MSextra

Table 1. Sum of Squares ANOVA Table

2.3. Stepwise Linear Regression

Unmixing a hyperspectral pixel into its component endmembers (basis vectors) can be treated as a linear regres-
sion. The standard model for regression in matrix form is12

x = Af + ε, (8)

where x is a (J × 1) pixel vector, A is a (J ×N) matrix of N basis vectors, f is a (N × 1) vector of basis vector
abundances, and ε is a (J × 1) error term. The abundance coefficients, f, are solved for as

f = A† x, (9)

where A† denotes the pseudo-inverse of A and is defined as A† = (A′A)−1 A′.

Stepwise regression begins by populating the matrix A with each of the M candidate basis vectors in turn.
An F -test is used to determine which candidate vector best fits the data. The M − 1 remaining vectors are
then added to A in a similar fashion. The significance of adding a second vector to the regression model is
determined using the Analysis of Variance (ANOVA) technique described below.6, 12 Once the model contains
N = 2 vectors, the M − 2 remaining vectors are tested and, if necessary, one is added. After a third vector is
added, each of the N = 3 vectors in the model are removed in turn to ensure that each are contributing to the
fit of the model. Candidate vectors are added and subtracted in this fashion until the fit of the model to the
pixel spectrum can not be improved.

The ANOVA technique mentioned above calculates how much of the total variation about the mean (Sum
of Squares (SS)), x′x, is due to the regression model (SSR), f ′A′x, and how much is from random errors (SSE),
x′x − f ′A′x.12 The ANOVA structure is depicted in Table 1. The Mean Squared (MS) column is defined by
dividing the SS by the corresponding degrees of freedom. In stepwise regression, ANOVA is useful in breaking
the SSR of the N -element model down into the SSR due to the previous (N − 1)-element model and the SSR
due to the addition of the new term. If we define the (N − 1)-element model as

x = AN−1fN−1 + ε, (10)

then we can see how this fits into the ANOVA analysis in Table 1.

The MS terms from Table 1 can be used to create a statistic to test the quality of the regression model.
This statistic is based upon the distribution of the error term, ε. It has been shown that if the model errors are
independent and distributed as ε ∼ N(0, σ2), then the sum of the squares of these errors will be Chi-squared
distributed with J degrees of freedom abbreviated as χ2

J .12 Thus, we conclude that if the model is a good fit,
then the sum-squared errors are Chi-squared distributed. If the model is a poor fit, then the errors will not
follow this distribution. We formulate this as a hypothesis test, defining a null hypothesis that the abundance
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coefficient for the ith basis vector, fi, is zero. The corresponding alternate hypothesis is that the coefficient is
non-zero,

H0 : fi = 0
H1 : fi �= 0.

As long as the null hypothesis is true, then the ratio of the mean-squared errors,

MSextra

MSE
(11)

follows an F1,J−N distribution.6 For this work the F-statistic was calculated at a probability of 0.99. When
attempting to add a basis vector to the model, the ratio in Equation (11) is computed. If the ratio is smaller than
the F-statistic then the null hypothesis is true and the vector is rejected. If the ratio is larger than the threshold,
then it is added to the model. The algorithm terminates when no vectors are either added to or subtracted from
the model.

At this point we can draw similarities between the final plume-pixel radiance equation of Equation 7 and the
the standard equation for matrix regression of Equation (8). The abundance fractions to be solved for, f, are
the relative gas concentration path-lengths, ci, and the matrix of basis vectors, A, is the absorption spectrum
multiplied by the plume-background radiance contrast, ki(λ)

[
B(λ, T̂s,(x,y) ± ∆ T ) − L(x,y)(λ)

]
. In addition, by

defining various positive and negative values for ∆T , we can easily account for both the emission and absorption
of the plume gases in our matrix of basis vectors.

By implementing the stepwise routine as described above, we are performing an unconstrained regression.
While this does result in an algorithm with a very fast runtime, the downside of this is that we need a way to
ensure that the coeffecients do not allow the regression to “overfit” the pixel’s spectrum. Some degree of error is
expected when performing such a regression, but allowing the model to take on any coefficient value necessary
to minimize this error may lead to unrealistic results. In order to achieve this safeguard, rather than using
the unconstrained pseudo-inverse solution of (9), we instead impose a partial constraint on the coefficients with
each calculation of f. By partially constraining the regression, we force the solution of all coefficients in f to be
positive. Once the stepwise routine has arrived at a final set of basis vectors, we solve for the final coefficients
using fully-constrained regression, in which all coefficients are both positive and sum to 1.0.

3. RESULTS
3.1. Algorithm Output
The algorithm was applied to only those pixels known to contain plume gases. A by-product of a DIRSIG image
is a “truth map” that indicates the spatial location of the plume. This was used to mask out non-plume pixels. In
applying the algorithm to real imagery, it is assumed that the plumes have been detected by a separate process.
The raw output from the algorithm was an image cube of size X × Y ×M , where X and Y are dependant upon
the size of the input image. Each of the M = 440 bands in the output detection maps correspond to one of the
candidate basis vectors fed into the regression. This value for M is the result of multiplying the 88 gas spectra
from the library by five values of ∆T ; -10, -5, 0, +5 and +10◦C. For pixel (x, y), the value for each band was
set equal to the abundance coefficient solved for at the end of the stepwise regression routine. For all bands not
included in the final regression model, their value was left at 0.0.

This image cube was then refined in a secondary routine that “collapses” the output down to 31 bands, one
band per gas species available in the library. The value assigned to pixel (x, y) in, for example, the freon-114
band, is the average of the values of all 15 basis vector bands in the raw output image that correspond to freon-
114. These averages were then normalized by the sum of every value in all 440 bands for that particular pixel.
This was done to scale all results between 0.0 and 1.0 for ease of analysis. Once the output has been reduced
to 31 bands, the “spectral” dimension was changed to a “Gas Index”. Each “band” now represents the returns
from one particular gas species. Table 2 clarifies this by explaining which gas corresponds to which gas index
value.
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Gas Index Symbol Gas Name Gas Index Symbol Gas Name

1 acrol Acrolein 17 f125 Freon-125

2 bamine Butylamine 18 f12 Freon-12

3 C6H5F Fluorobenzene 19 f134a Freon-134a

4 C6H6 Benzene 20 f218 Freon-218

5 CCl4 Carbon Tetrachloride 21 H2O Water

6 CH3Cl Methyl chloride 22 HCHO Formaldehyde

7 CH3SH Methyl mercaptan 23 HCl Hydrogen chloride

8 CH4 Methane 24 hyd Hydrazine

9 CO2 Carbon dioxide 25 NH3 Ammonia

10 CO Carbon monoxide 26 phg Phosgene

11 dclm Dichloromethane 27 SF6 Sulfur hexafluoride

12 dclp12 1,2-Dichloropropane 28 SO2 Sulfur dioxide

13 dclp13 1,3-Dichloropropane 29 tce1122 Tetrachloroethane

14 edb 1,–Dibromoethane 30 tce Trichloroethylene

15 edc 1,2-Dichloroethane 31 vcl Vinyl chloride

16 f114 Freon-114

Table 2. Table of gas indices, the gases they represent and their abbreviations. The abbreviations used are drawn from
the naming convention used by the gas absorption spectral library.

3.2. Analysis of Output

It is difficult to determine the overall effectiveness of a particular configuration of the algorithm by simple visual
inspection of the consolidated, 31-band output described above. Looking at a single band of the output image
gives no indication of how the other bands look as well. In addition, if one were to simultaneously display several,
or even all 31 bands of the output image, it is difficult to come to a quantitative conclusion as to which gas species
is most likely present in the plume by simply analyzing the output plume maps. Even the use of the “z-profile”
tool in ENVI on a particular pixel is not sufficient because it can not take into account the performance of the
algorithm on the entire set of plume pixels.

With this in mind, a system of analysis was developed in which regions of interest (ROI’s) were defined in
ENVI based on the DIRSIG truth maps. One of the truth images generated when DIRSIG simulates a scene is a
map of the Plume Column Density for each gas species in the scene. This map is a greyscale image representing
the column density of that particular gas in units of ppm-m. Regions of interest were made for ranges of these
column densities. Values from 0.0–0.9999 constituted one region, 1.0–9.9999 a second, 10.0–99.9999 a third,
100.0–999.9999 a fourth, and 1000.0–9999.9999 a fifth. In referring to these ROI’s , the values defining the
ranges will be rounded for simplicity. Each column density range was not present in each test case. These ROI’s
were applied to the 31-band output images. Using the ROI tool in ENVI, the mean value of all pixels within
each ROI was calculated on a per-band basis. This produced a series of scatterplots that depicted the average
abundance coefficient as a function of gas index.

On the surface, it would seem that gas indicies with high returns in any ROI would be likely to be in the plume.
This, however, is not always the case. At regions of low concentration, the background-subtracted spectrum has
very weak absorption features. Any mistake in the modeling of the background can easily overshadow actual
plume gas features. In addition, sensor noise becomes problematic as it too is on the order of gas absorption
features. Because of this, the returns for low-concentration ROI’s are more likely to identify incorrect gases and
are therefore often discounted. If, for example, gas 16 has the largest return in only the highest-concentration
ROI, while other gases are more prominent in other ROI’s, we can still conclude that gas 16 is the correct gas.

200     Proc. of SPIE Vol. 5806



In fact, we expect the strength of the returns to diminish along with the plume concentration. Gases whose
returns increase as concentration decreases can be ruled out as a possibility.

3.3. Results for the Freon-114 Plume

Figures 2 through 4 show that the algorithm is able to successfully identify freon-114 in regions where the plume
has a high concentration path-length. The Case 1 image, which has the highest release rate, has the best overall
returns for gas index 16, freon-114. Only in the 1–10 ROI are there other gases that approach the return strength
of freon-114. In the Case 2 results, freon-114 has the highest return in only the 100–1000 ROI. However, keeping
in mind the above discussion of giving more weight to the highest-concentration ROI, and since there are sizeable
returns for both the 10–100 ROI and the entire plume, we can conclude that freon-114 is the gas in the plume.

In the results for the Case 3 imagery, we can not be confident that freon-114 is present in the plume. Although
it does have the highest returns for the 10–100 ROI, the returns are near zero for all other ROI’s. Despite our
assertion that high-concentration ROI’s are more important, we can not conclude that it is freon-114, and not
some other gas, that is in the plume. It is interesting to note however, that Figure 4 indicates that gas 18 is
in the plume. According to Table 2, gas 18 is freon-12, a different type of freon. Since freon-12 is in the same
family as freon-114, it has a similar molecular structure and therefore a similar absorption spectrum. The other
gas with large returns across all ROI’s in the Case 3 results is gas 28, SO2. However we would not conclude
that sulfur dioxide is likely to be in the plume because the largest return is in the 0–1 ROI. The strength of the
returns are actually the opposite of what we would expect in a correct identification. In all, it is encouraging
that at low gas concentrations, the algorithm was able to generically identify freon in the freon-114 plume.

3.4. Results for the NH3 Plume

The results for the ammonia plumes in all cases are very similar to the freon-114 plumes. Figure 5 shows that gas
25, NH3, is clearly the only gas being found by the algorithm. As with the freon-114 plume in Case 1, a second
gas has equal returns in the 1–10 ROI, but this is again negligible. The Case 2 results show a clear indication of
NH3 in the 100–1000 ROI, along with the expected fall-off in strength across subsequent ROI’s. Gas 18, freon-12,
has significant returns across most ROI’s, but we can discount it because it has equal returns across all ROI’s
except the largest. As for the Case 3 results, we can not come to a conclusive answer as to which gas is in the
plume based on the results in Figure 7. Unlike the Case 2 results, in which the returns for NH3 were much larger
than for freon-12 in the 100–1000 ROI, the two gases have near equal returns across all ROI’s. Ammonia has the
higher return in the 10–100 ROI, but freon-12 is slightly larger in all other regions. In addition, the strength of
the returns fall off for freon-12 across the ROI’s, indicating that it is likely to be present in the plume. Because
of this, we can not come to a definitive answer for Case 3.

It is of interest to note that at small concentration path-lengths, both plumes began to be falsley identified
as the same gas, freon-12. The reason for this is not quite known. The fact that it is being falsley associated
with the freon-114 plume is not surprising since both gases are very similar chemically. However it is not known
why it is so prominent in the NH3 plume. It is understood why the algorithm begins to fail at low concentration
path-lengths. In regions where the gas signature is weak, our characterization of the background becomes more
important. Any mismatch in the background model is now of equal or larger magnitude than the actual gas
features themselves. This has less of an impact where the gas is at a high concentration path-length and therefore
has prominent spectral features. This reinforces the idea that the primary obstacle to gas identification is finding
a way to know exactly what the background spectrum is behind the plume gas.

4. CONCLUSIONS

Stepwise linear regression was used to identify the constituent gases in gas plumes. The regression was partially
constrained within each iteration of the stepwise routine, while the final coefficients were solved for using fully-
constrained regression. Three cases of synthetic imagery were generated for the study. Each case had two plumes,
one containing freon-114, the other NH3. The release rates of both plumes were the same in each case, and that
rate decreased across the three cases. Absorption spectra of 31 gases were multiplied by five temperature contrast
values to generate the library of potential basis vectors. A series of output detection maps were generated for
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Figure 2. Results for the freon-114 plume of Case 1. The detection map for Gas Index 16 is on the left while the
corresponding ROI plots are on the right. Gas Index 16 is marked in the plots to highlight the returns for freon-114.

Figure 3. Results for the freon-114 plume of Case 2. The detection map for gas index 16 is on the left while the
corresponding ROI plots are on the right. Gas Index 16 is marked in the plots to highlight the returns for freon-114.

Figure 4. Results for the freon-114 plume of Case 3. The detection map for gas index 16 is on the left while the
corresponding ROI plots are on the right. Gas Index 16 is marked in the plots to highlight the returns for freon-114.
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Figure 5. Results for the NH3 plume of Case 1. The detection map for gas index 25 is on the left while the corresponding
ROI plots are on the right. Gas Index 25 is marked in the plots to highlight the returns for NH3.

Figure 6. Results for the NH3 plume of Case 2. The detection map for gas index 25 is on the left while the corresponding
ROI plots are on the right. Gas Index 25 is marked in the plots to highlight the returns for NH3.

Figure 7. Results for the NH3 plume of Case 3. The detection map for gas index 25 is on the left while the corresponding
ROI plots are on the right. Gas Index 25 is marked in the plots to highlight the returns for NH3.
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each basis vector and subsequently collapsed to a per-species level. Regions of interest were defined based on
DIRSIG truth outputs and used to analyze the algorithm output.

In two of the three cases the algorithm was able to correctly identify both freon-114 and NH3 in their respective
plumes. The ability to correctly identify gas species in single-gas plumes is directly related to the concentration
of the gas. Highlights of the algorithm are that the background is completely image-derived, regions in which
the gas is in both emission and absorption are built into the regression, no prior knowledge of gas species or
plume temperature are needed, and the algorithm is completely automated.

When applying this algorithm to real imagery, the lack of truth maps prevents the definition of ROI’s based
on exact plume column densities. However since many of the correct identifications were made in only the ROI’s
corresponding to the largest concentrations, we would like to be able to retain our ability to monitor the relative
magnitude of the returns between ROI’s. One manner in which this could be achieved is to manually draw
ROI’s based on the plume detection maps. A user would be able to draw, at a minimum, three regions of “low”,
“medium”, and “high” concentrations. The highest-concentration ROI would be drawn nearest the stack and
emanate downwind, with successive ROI’s growing larger to encompass all plume pixels. This would then allow
the user to analyze the algorithm output in the same manner as shown in this work.
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