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ABSTRACT

The governing equations of the transverse vibration of a

spinning disk of varying thickness are derived and solved

using numerical integration techniques. A clamped-free

rotating annular disk driven at the outer edge with

sinusoidally varying force is considered for analysis.

Representative graphs showing the stress distribution and

the frequency dependence of the force transmissibility of

the disk are presented. Results obtained in this paper are

compared as applicable to results of previous

investigations.
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1. INTRODUCTION

Centrally-clamped rotating disks are the basic element of

turbines, circular saw blades, grinding wheels, and computer

floppy disks. Transverse vibration of these components will

cause failure of turbine wheels by wheel-to-housing contact,

inaccurate cuts from saw blades and grinding wheels, and

memory loss in computer systems.

Several investigators analyzed the problem of transverse

vibrations of spinning disks using Bessel's functions [1],

Rayleigh-Ritz procedure [2], and finite element techniques

[3], [4]. These previous investigations did not include

inertia or shear deformation effects in the analysis. Ghosh

[5] has formulated the vibration of a rotating circular disk

of uniform thickness neglecting the effect of bending

stiffness.

The aim of this paper is to reconfirm the results of a

recent investigation [6] by reproducing the governing

equations, the radial stress, circumferential stress, and

force transmissibility relationships as outlined in that

publication. Basic assumptions are maintained in the

solution of excitation of clamped-free rotating disks in

order that direct comparison of results here to those in

Irie's paper [6] be possible.

The solution of the disk stress distribution and the steady-

state vibration response is determined by numerical



integration techniques. Therefore, the solution with this

approach is exact to within the accuracy of the numerical

computations and is free of the usual uncertainties of

approximate methods.

Effect of disk parameters, such as outer-inner radius ratio,

inside thickness-inside radius ratio, disk thickness

profile, and disk angular speed, is analyzed.



2. THEORY

Consider an annular disk rotating at a constant velocity

with the geometry as defined in Figure 1.

Figure 1

Describing the stress distribution on an elemental segment

depicted in Figure 2 is required prior to solving the

vibration equations.

*?*?i

*>W*

**&*

The asterisk denotes dimensional quantities. These

parameters will be transformed to dimensionless quantities

later in the derivation.

Equating the radial forces in Figure 2 yields



Simplifying Equation (1) and dividing by the factor (drdQ)

gives

W^^f^ , fW^ (2)

The second, third, and fifth terms on the right-hand side of.

Equation (2) may be rewritten to provide

Rewriting Equation (3) and neglecting higher order

differential terms gives

ik*?u\ -<srt
- MtfNo

(4)

Expressions of linear strain for small displacements are

(5)*.-

*

u

r

^*r
=

^u*

^r
and 6Tr

= (6)

For an isotropic material, stress-strain relationships are

*
= &?*-Wi (7)

and ^ =

eC^b*-^^) (8)



From Equations (7) and (8) the following may be derived

C^
= -fT^f

(t*
* ^>6) (9)

and ^*= -^pziti^L?)) (10)

Substituting the expressions given in Equations (5) and (6)

into Equations (9) and (10) gives

*

- rl^if^ (id

and ^ =

7T^(^
+
2>^f> (12)

Equation (11) may be written as

5
a*

^ * K.-^-jt

(13)

Introducing the non-dimensionalized expression for radial

elongation

u =

V (14)

into Equation (13) and rearranging yields

"^ -22-

(A ,
(-2^

S5R Oft
* + ~

.*

07 d5)

The radial and circumferential stresses are

nondimensionalized using the following expressions



Sc - fe9^

<3 -^

D0
El?

,

(16)

(17)

where DQ
=

.-J^
(18)

Substituting Equations (16) and (17) into Equation (15)

gives

l^r =
-#rlA.+ i#^L^ (19)

*>
=

H
tirr

Simplifying gives

m
-

-wt-^ <2o>

Substituting the nondimensialized linear displacement

variable, ??, defined as

^ -

1o 21)

into Equation (20) yields

^
=

~TU+ V* <22)

Solving Equation (8) for ^ and substituting it in Equation

(4) yields



Expanding Equation (23) gives

J|frk * tfk v <sfr& -E^*U -7>z?V- fV^lt-O (24)

Non-dimensionalizing Equation (24) by using Equations (14),

(16), (17), and (18) gives

Using Equation (21), and after algebraic manipulation,

Equation (25) can be written as

fe^#^Mit?^\

Introducing

d =

h

h,

(26)

(27)

and

f\ "J t>
"

>
-\%?SL

^ =

"liUJ

Equation (26) becomes

i

(28)

(29)

(30)

Equations (22) and (30) combined define the displacement and

radial stress distribution of the rotating annular disk.

These equations written in matrix form are

O

^1
(31)



These equations are solved using numerical integration

techniques until the criteria defined by the disk boundary

conditions are obtained.

For a disk clamped at the inner radius (r=a, \ -f ) and free

at the outer radius (r=b, "?) =1), the boundary conditions are

f* = = 0 at r = a ( \ -fi )

u* = u = 0 at r a ( \ *p )

$*
=

Tr
= 0 at r=b ( ^[

- D

where

(32)

The equations describing the flexural vibrations of the

rotating annular disk are found as follows.

Consider the disk element shown previously in Figure 2

affected by radial and transverse forces as defined in

Figure 3.



'

1

<**

~<

Figure 3

The equation of motion in the z-axis is

Co? * ftypJto -

cjf v*e +6f?
a

V^V^^*^

WrA*5

f(r4vakl%
(33)

After simplification and division by the factor (rdrdO), and

incorporating the viscous damping term C,, Equation (33)

becomes

a\ri*\ \UP
(34)

This paper does not consider the effect of viscous damping

to the rotating disk steady-state response. Consideration

of viscous terms would provide the relationship of vibration

frequency effects to disk rotational speed.
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Consider the freebody the same general disk element under

the influence of circumferential and radial moments and

transverse forces as defined in Figure 4.

4
??$*

Figure 4

U+ %*r
"r- A

r.cr

Note that the disk element has a polar moment of inertia

defined as

Summing moments in the direction gives

(35)

(36)

Simplifying Equation (36) and dividing by the term (rdrd<9) ,

and incorporating the rotational viscous damping term, gives

&$-p-ot-ktf}gt*c3( (37)

The radial component of the moment, the tangential component
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of moment, and the shearing force are determined,

respectively, [7]

tf **$**) <38>

M^L*&f\ (39)

where

K-*
1*2.

The flexural rigidity, Young's modulus, and the shear

modulus of an internally damped disk is assumed to be a

complex expression and respectively equal to

i 7

and

T?- JLL-- (41)

5*Gt\*A^ (43)

The steady-state equations for bending moment, shearing

force, slope, and vertical deflection when the disk is acted

upon by an external sinusoidal force

F = 1* F^ (44)

are, respectively,

Mr*

"
T^^ (45)

*
= &LIA o^

nit

MQ
=
J.fA.e

(46)

(47)
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= ^^

(48)

(49)

where

and

x = oi

1

*-<!$? t

(50)

(51)

Equations (34), (37), (38), (39), and (40) are used to

develop the matrix differential equation, with MQ

eliminated, expressed as

{Z(*j)> = [U(^)]{Z(^)} (52)

where

'

fZ (->[)} = {^ Q. t\i^ (53>

and the elements of the coefficient matrix [U(7])] are

U
11

_ h23
(54)

U
12
-

1 (55)

"13 ^^V^cU (56)

U14 -O (57)

U
21 = (58)



13

U
22

U
23

'24

u
t-jSe:

31
"

<J.30*Skz}

(59)

(60)

(61)

(62)

D32
" 0 (63)

0 = --

U33
"

^

D34
= 0

(64)

(65)

udi = o

o
42

(66)

(67)

43
"

"i (68)

where

'44
- 0

1
^4J^5

(69)

(70)

(71)
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and

ko
SuJ_

M
(72)

The solution of Equation (52) is accomplished by the

transfer matrix approach. (Refer to Appendix V for a

discussion of the transfer matrix method.)

The vector {ZC?))} is written as

{zqn = [tc^hz^h

where [TOJ)] is the transfer matrix.

Substituting Equation (73) into Equation (52) yields

(73)

(74)

To better facilitate the numerical analysis of the complex

Equation (74), Equation (74) is rewritten to separate the

real and imaginary components resulting in the equation

1

-0i& U*ft\
(75)

The values of TR and Tj are obtained using Runge-Kutta

numerical integration technique over the range [P ,7\ J.

The initial condition of a free-clamped annular disk is

ITR(/S)] = [1] (76)

and [Tj(|S)] = [0] (77)

The boundary conditions are determined to be

^r
= 0 at 7l=f (78)

W = 0 at 7\=p (79)
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M. 0

F

at

at

7(.i

V1

(80)

(81)

Substituting the above values into Equation (73) gives

(1)

Tll T12
T21 T22
31 32

*41 142
u

'J(l)

The complete solution of Equation (82) is obtained by first

determining M and Q at 7] =P from

Mr

Qr
<?,

and then ^r and W at h= 1 f

'<

(1)

rom

,31

11 12

21 *22

:32
M.

(83)

(84)

41 ^42(1) <f)

The steady-state response of the disk in terms of radial

bending moment, radial shear, radial slope, and deflection

are given by Equations (73), (83), and (84).

The force transmissibility of the disk at h- H is

determined by summing moments resulting from the input force

applied at the disk outer radius and the shear force at the

disk center and is given by the following

/*QrV>

(85)
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3. ANALYSIS

An algorithm to numerically solve both the stress

distribution given in Equation (31) and the resulting force

transmissibility-frequency relationship of Equation (85) was

programmed to run on a 16-bit, 8088 processor personal

computer. The program, listed in Appendix III, is written

in Pascal to take advantage of the high-level language, of

the ability of utilizing a 8087 coprocessor, and of the

greater precision in real algebraic operations.

A sensitivity analysis was performed on the following

selected parameters: the disk outside thickness-inside

thickness ratio (hj/hp) , the disk profile (linear,

exponential, and hyperbolic), and the disk inside thickness-

inside radius ratio (hQ/a) .

Correlation to T. Irie's results are provided when

allowable. As knowledge of actual numeric values of many of

the parameters used in the calculations are not known,

comparison of the magnitudes of radial stress, axial stress,

and force transmissibility or of the critical frequencies of

is not possible.

Comparison with theoretically-determined force

transmissibility profiles or stress distributions is not

attempted due to the nonlinearity of the governing equations

to be solved.
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Analysis is performed on a free-clamped annular, rotating

disk. Values of h and SG have been assumed to be equal

to each other, constant at all frequencies, and have been

assigned the values of 0.01 as experimentally proposed [8]

and of 0.1. The rotating disk also has been assumed to be

undamped (i.e., the parameters C, and C, equal to zero).

The function utilized for a linearly-varying annular disk is

h =

h0 {1 - (1 i-)( )}. (86)

hQ b -

a

To determine the thicknesses for an exponentially-varying

annular disk the equation is

(r -

a)/(b
-

a)

h =

h^/h^ . (87)

The radius-thickness relationship of a hyperbo lically-

varying annular disk is

-log^th-i/hQ)

h = hn(r/a)
r

A u
. (88)
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4. RESULTS/CONCLUSIONS

Stress distribution and force transmissibility results for

disks possessing different angular velocities, inside

thickness-inside radius ratios, thickness ratios, inside

thickness-inside radius ratios, and profiles are displayed

in Figures 6-13.

Figures 5a and 5b compared to Figures 6a and 6b indicate

that both the radial stresses and the circumferential

stresses increase with increased disk angular velocity ( ) .

This is accountable to the resulting increased disk angular

momentum. The first three critical frequencies in Figures

5c and 6c remain essentially constant with increased disk

angular velocity- However, the magnitude of force

transmissibility greatly varies with identically increased

disk angular velocity.

No change is apparent in either the radial or the

circumferential stress as the inside thickness-to-inside

radius ratio is altered as evidenced in Figures 6a and 6b

versus Figures 7a and 7b. The magnitude of force

transmissibility is changed considerably and the critical

frequency locations of the force transmissibility peaks

shift higher as this thickness-radius ratio decreases

(Figures 6c and 7c).

Radial and axial stress profiles decrease with a decrease in

outer radius-to-inside radius ratio (Figures 9 -

11) . This
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corresponds with the results obtained in Irie's paper. In

addition, the maximum circumferential stress value shifts

toward the outer disk edge with a decrease of the h./h0

ratio. Figures 9c, 10c, and lie also indicate an inverse

relationship between force transmissibility and this radius

ratio, and between the critical frequency values of peak

force transmissibility and the radius ratio.

Varying the disk profile alters the radial stress,

circumferential stress, and force transimissibility profiles

as seen in Figures 11, 12, and 13. A disk of linearly

varying thickness will possess the maximum radial stress

value, while disks with hyperbolically varying thickness

have the minimum stress values. Negligble effect on force

transmissibility values is observed for clamped-free disks

of linearly, exponentially, and hyperbolically varying

thicknesses. These relationships of stress and force

transmissibility profiles verifies the results in Irie's

document .
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a. Radial stress distribution of a rotating disk,

23*0.3

b. Circumferential stress distribution of a rotating disk.

Steady-state response of a rotating disk.
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5. SUMMARY

The governing equations of steady-state stress and force

transmissibility of a clamped-free rotating angular disk are

derived. Deviations with Irie's paper are noted in Appendix

III.

Effects resulting from varying selected disk parameters are

analyzed with relatively good comparison with previously

published results obtained.

Further investigation with other disk profiles, laminar

disks, damped disks, and alternately loaded disks is

recommended to optimize the disk configuration allowing for

a disk design having minimum stress and force

transmissibility profiles over a range of externally-applied

loadings.

Extensive investigation of varying radius-radius ratio,

radius-thickness ratios, and thickness-thickness ratio on

radial stress, circumferential stress and the force

transmissibility profile is also recommended.
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Appendix I. Notation

a Disk inner edge radius

b Disk outer edge radius

C. Translational viscous damping coefficient

Cj Rotational viscous damping coefficient

D Flexural rigidity

e Naperian constant, 2.781828...

E Young's modulus

F Externally applied force

G Shear modulus

h Thickness

h. Outside thickness

ti Inside thickness
o

I Imaginery component

j Complex constant, \1-1
'

K Shear coefficient, /ft'2/12

M Radial bending moment

Mfl Circumferential bending moment

Q Shearing force

r Radius

R Real component

t Time

Tp Force transmissibilty

u Radial displacement

W Transverse deflection

P Mass per unit volume

Angular co-ordinate
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J) Poisson's ratio

q- Radial stress

^g Circumferential stress

-0_ Disk angular velocity

^ Disk slope

Qg Young's constant imaginary-real ratio

oq Shear modulus imaginary-real ratio

Frequency
X

6. Strain
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Appendix II. Deviations from T. Irie's Paper

In separately deriving the governing equations, instances

where the author's equation deviated from T. Irie's paper.

This section will detail these occurrences writing first the

version of the equation published in T. Irie's paper and

then follwed by the equation as derived by the author.

Qq, Dimensionless quantity

T. Irie's paper: <\%
~-

-fa (}fy (89)

Author's paper: ^0--
T^.0^ ) (29)

A, Angular velocity

T. Irie's paper:
/\ \*~-$T ^~ (9)

Author's paper: a =

\"

fV - Si-

\. Freauencv

T. Irie's paper: X-ffiT*

Author's paper:

, Time constant

Y,*\W

T. Irie's paper:

Author's paper:
**

* \
De
'

t

(28)

(91)

(50)

(92)

(51)
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P21' Coeff icient matrix element

T. Irie's paper: i) , -,
^f'^fi) r-

(93)

Author's paper:
^O'ffl

(58)

U22' Coefficient matrix element

T. in.-, paper:
^

-
-i^^v^ (94)

Author's paper:

^
.
_^_jj^^f+^ (59,

U23* Coefficient matrix element

,. irl... Paper: ^, gg& {%^&)*}

ftUthor.s paper: ^.g^^^^Vfe} C,
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Appendix III. Computer Program

The following is the listing of the Pascal computer program

used to :

i) solve the radial stress and axial stress

distribution of a rotating annular disk,

ii) solve the force transmissibilty-frequency

relationship of the rotating disk, and

iii) plot the graph of force transmissibility

versus frequency.
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Program DiskVibration;

{$1 typedef.sys}
{$1 graphix.sys}
{$1 kernel. sys}
{$1 windows. sys}

{$1 findwrld.hgh}
{$1 axis.hgh}

{$1 polygon. hgh}

Const

Pi : Real = 3.1415926536E+00;
Freqnum = 50;

Numstep = 50;
(* Must be positive, even number *)

Toll : Real = 1.0E-10;
(* Tol for differ, between two *)
(*

successive Sigmar[0] values *)
Tol2 : Real = 1.0E-11;

(* Tol for endpoint Sigmar [Numstep] *)
Tol3 : Real = 1.0E-10;

(* Tol for zero-checking parameters *)
Kk : Real = 8.22467033E-01;

(* Stiffness coefficient *)
Maxiter : Integer = 170;

(* Max iter, for solving
stress-

*)
(*

raddisp equations *)

Type

Complex = Record re,im : Real

End;
Mat_U = Array [1.. 4,1. .4] of Complex;
Mat_T = Array [1. .2,1.. 2] of Complex;
Mat_Tri = Array [1. .4,1. .4] of Complex;
Mat_Uri Array [1..8,1.. 8] of Real;

Mat_Arr = Array [1. .8,1. .4] of Real;

Mat_Var = Array [1. .2,1. .1] of Complex;
Mat_D = Array [0..Numstep] of Real;

Mat_Q = Array [0.. Numstep] of Real;

Mat_Freq = Array [0. .Freqnum] of Real;

Var

Diskprofile : Integer;

Radius,D : Mat_D;
Lambda,W,Zetal,Zeta2 : Real;

C1,C2 : Real;

K0 : Real;

Rho : Real;

A, B,HO,HI : Real;
E,Delte,G,Deltg,Nu,Mu : Real;

Omega,Force : Real;
Beta,Q0,D0,Pyr : Real;
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I,J,I2,J2,I3,J3,I4,J4,I5,J5,I6,J6,I7,J7 : Integer;

Sigmar : Mat_D;

Rstep : Real;
K1A,K2A,K3A,K4A,K1B,K2B,K3B,K4B : Real;

U,T : Mat_D;
Tri : Mat_Tri;
Coeff21,Coeff22,Coeff23 : Real;

DSigDEta,Temp : Real;

Raddisp : Mat_D;

Dri : Mat_Uri;

Tr : Array[1..4,1..4] of Real;

Ti : Array[1..4,1..4] of Real;

TriTemp : Mat_Uri;

Karray,Qarray,Rarray,Yarray : Mat_Arr;

Radi,Sig : Real;

Mr,Qr : Complex;

Chir,Wl : Complex;

Iter : Integer;

Dhj,Dh : Real;

DiskRad,HH : Real;
SStore,SNumstepl,SNumstep2 : Real;

STemp : Real;

DUDR,Sigmatheta : Mat_D;

T1,T2,T3 : Mat_T;

T4,T6,T5 : Mat_Var;

Det : Complex;

Imped,Transmis : Real;

Integ : Real;

Stoppgrm : Boolean;

SigrPyr : Mat_Q;

Eta,SigThetPyr : Mat_Q;

Tempi,Temp2 : Real;
Rdisp,HJ,HJ_l,Radj,Radj_l : Real;

Etal,Rad_l : Real;

STempL,StempH : Real;

U1,D2,U3,U4 : Real;

DataType : Integer;

Lamsqr : Mat_Freq;

Trnsms : Mat_Freq;

Procedure MatMult (Var T3 : Mat_T; Var T4,T6 : Mat.Var);

(* This procedure will multiply a complex

2x2 matrix (T3) *)

(* and a complex 2x1 matrix (T4) and

store the result in *)

(* a complex 2x1 matrix (T6) . *)

Begin

T6[l,l].re := T3 [1,1] .re*T4[l,l] .re
-

T3[l,l].im*T4[l,l].im +

T3[l,2].re*T4[2,l].re
-

T3[l,2].im*T4[2,l].im;
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T6[l,l].im :=

T6[2,l].re := T3 [2,1] .re*T4 [1,1] .re -

T3[2,l].im*T4[l,l].im +

T3[2,2].re*T4[2,l].re -

T3 [2,2] .im*T4[2,l] .im;

T6[2,l].im := T3 [2,1] .re*T4 [1,1] .im +

T3[2,l].im*T4[l,l].re +

T3[2,2].re*T4[2,l].im +

T3[2,2].im*T4[2,l].re;

End;

Procedure TMatlnv (Var T1,T3 : Mat_T;Stoppgrm : Boolean);

Var

Determ : Real;

(* This procedure will determine the inverse *)
(*

of a complex 2x2 matrix. The original matrix *)
(* is Tl and the inverse matrix is returned as *)
(* T3. *)
(* *)
(* Det.re = Real part of determinant *)
(* Det.im = Imaginary part of determinant *)
(* Determ = Determinant of Tl matrix *)

Det . im

Determ := (sqr (Det.re) + sqr (Det.im) ) ;

If Abs (Determ) < Tol3 then

Begin
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Writeln( 'Matrix determinant = +/- '
,sqrt (Determ) ) ;

Writeln(
'
which is less than ',Tol3);

Writeln('The matrix is considered to be singular');

Stoppgrm := True;
End;

T3[l,l].re := (Tl [2,2] ,re*Det .re-Tl [2,2]
Det.im) ) /Determ;

T3[l,l].im := (Tl [2,2] .im*Det.re+Tl [2,2] .re*(-

Det.im) ) /Determ;

T3[l,2].re := ( (-Tl[l,2] .re)*Det.re+Tl[l,2] .im*(-

Det . im ) ) /Dete rm ;

T3[l,2].im := ( (-T1 [1,2] .im)*Det. re-Tl [1,2] .re*(-

Det.im) ) /Determ;

T3[2,l].re := ( (-Tl[2,l] .re)*Det.re+

Tl [2,1] . im* (-Det.im) ) /Determ;

T3[2,l].im := ( (-T1 [2,1] . im)*Det. re-

Tl [2,1] (Det.im) ) /Determ;

T3[2,2].re := (Tl [1,1] ,re*Det. re-

Tl [1,1] (-Det.im) ) /Determ;

T3[2,2].im := (Tl[l,l] .im*Det.re+

Tl[l,l] (-Det.im)) /Determ;

End;

Procedure Integrate (Var D : Mat_D; Var Eta : Mat_Q; Numstep
: Integer;Var Rstep,Integ : Real);

Var

Alt,Jin : Integer;

S : Real;

Begin

S := D[0]*Eta[0] + D [Numstep] *Eta [Numstep];

Alt := 4;

For Jin := 1 to Numstep-1 do

Begin

S := S + Alt*D[Jin]*Eta[Jin];

Alt := 6 -

Alt;
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End;

Integ := Rstep*S/3.0;

End;

Function H(DiskRad : Real;Diskprof ile : Integer) : Real;

Begin (* H *)

If Diskprofile = 1 then

Begin

H := H0*(l.-((l.-(Hl/H0))*((DiskRad-A)/(B-A))));

End;

If Diskprofile = 2 then

Begin

H := H0*EXP(((DiskRad-A)/(B-A))*ln(Hl/H0));

End;

If Diskprofile = 3 then

Begin

H :=
H0*Exp(- ((ln(Hl/H0))/ln(Beta))*

(ln(DiskRad/A)));

End;

If Diskprofile < 1 then

Begin

Writeln( 'Error : Diskprofile
= ',Diskprofile) ;

End;

If Diskprofile > 3 then

Begin

Writeln ('Error : Diskprofile
= ',Diskprofile) ;

End;

End;



41

Function RKEql (Rdisp,Radi,Sig : Real) : Real;

Begin

RKEql := - (Nu*Rdisp/(Radi/B) ) + (Q0*Sig);

End; (* Function RKEql *)

Function RKEq2 (Radi,Rad_l,Rdisp,Sig,HJ,HJ_l : Real) :

Real;
Label 33;
Begin

If Radi = Rad_l then

Begin

RKEq2 := ( ((1.0-

sqr(Nu))*Rdisp)/(QO*sqr(Radi/B)) ) -

( ((1.0-Nu)*Sig)/(Radi/B) ) -

( (sqr(Pyr))*(Radi/B) );

Goto 33;

End;
RKEq2 := ( ( (1.0-sqr (Nu) ) *Rdisp)/

(Q0*sqr(Radi/B)) ) -

( ((1.0-Nu)*Sig)/(Radi/B) ) -

( (B/HJ)*Sig*((HJ-HJ_l)/(Radi-Rad_l)) ) -

( (sqr(Pyr))*(Radi/B) );

33 : Begin End;

End;
(* Function RKEq2 *)

Procedure Datal;

Begin

(* Input Geomdata; *)

A := 4.000;
(* Inner Radius *)

B := 20.0000;
(* Outer Radius *)

HO := 0.04;
(* Thickness at radius A *)

HI := 0.02;
(* Thickness at radius B *)

Diskprofile := 3;
(* Diskprofile =

1, linear

(* Input Matldata; *)

2, exponential

3, hyperbolic *)

E := 30.0000E+10;
(* Young's Modulus Real

Part *)
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Delte := 0.010000;

G :=

10.0000E+10;

Deltg := 0.010000;

Rho := 0.3333333;

Nu := 0.300;

(* Input Systemdata; *)

Omega := 1000.00;

Force := 200.0;

(* Ratio Imag:Real part

of

Young's Modulus at

any frequency *)
(* Shear modulus real

part *)
(* Ratio Imag:Real part

of

Shear Modulus at

any frequency *)
(* Material mass

density*)
(* Poisson's ratio *)

CI := 0.0;
C2 := 0.0;

(* Disk

rotational speed *)
(* Transverse force

applied > 0.0 *)

End;

Function Eq(Var Dri : Mat_Uri; Var Yarray : Mat_Arr;
Var 15, J5 : Integer) : Real;

Var

Iin : Integer;

TEq : Real;

Begin

TEq := 0.0;

For Iin := 1 to 8 do

Begin

TEq := TEq + Dri [I5,Iin]*Yarray [Iin, J5] ;

End;

Eq := TEq;

End;
(*

Eq *)
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Procedure Plotfreq;

Var

Dx,Dy,iq,m, lines, scale : integer;
X1,Y1,X2,Y2 : integer;
aa,ab,ac : Plotarray;

Temp : real;

Begin

DefineWindow(l,0,0,XMaxGlb,YMaxGlb);

DefineWindow(2,trunc(XMaxGlb/40),trunc(YMaxGlb/10),

trunc (XMaxGlb*6/10) ,
trunc (YMaxGlb*19/20) ) ;

DefineWorldd, 0,4000, 4000,0) ;

Def ineHeader (1, 'Frequency
Curve'

) ;

SetHeaderOn;

DrawBorder;

(* Fill data arrays *)

For Iq := 0 to Freqnum-1 do

Begin

aa[iq+l,l]
:= Lamsqr [iq] ;

aa[iq+l,2]
:= Trnsms [iq] ;

End;

FindWorld (2,aa,Freqnum, 1,1) ;

with World [2] do

Begin

Temp
:= Yl;

Yl := Y2;

Y2 := Temp;

End;

SelectWorld(2);

SelectWindow(2);

DrawBorder;

dx := 9;

dy := 9;

XI := 2;
Yl := 0;
X2 := 0;
Y2 := 10;
lines := 0;

scale := 0;

SetLineStyle(O) ;

DrawAxis(dx,dy,xl,Yl,x2,Y2, lines, scale, false) ;
DrawPolygon(aa,l,-(Freqnum-2) ,0,1,0) ;
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ResetAxis;

SelectWorld(l);
SelectWindow(l);

End;

(*
Procedure Stressolve; *)
Label 5;
Label 10;
Label 20;
Label 30;
Label 25;
Label 35;
Label 39;
Label 45;
Label 55;
Label 330;

Begin

Stoppgrm := False;

Datal;

DataType := 1;

55: Begin End;

Writeln(Lst,
*
Pi =

',Pi,'

Numstep = ',Numstep);
Writeln(Lst,'

Toll =
',Toll,'

Kk = ',Kk);
Writeln(Lst,'

A
'

,A,

'
B = ',B);

Writeln(Lst,'
HO =

',H0,'
HI ',H1);

Writeln(Lst,
'
Diskprofile = ',Diskprofile) ;

Writeln(Lst,'
E =

',E,'
Delte = ',Delte);

Writeln(Lst,'
G = ',G,

'

Deltg = ',Deltg);
Writeln(Lst,'

Rho
',Rho,'

Nu ',Nu);

Writeln(Lst,
'
Omega = ',

Omega,'
Force = ',Force);

'* Procedure Dimensionless; *)

Beta := A/B;
Q0 := (H0/B)/12.0;

DO := (E*H0*H0*H0)/(12.0*(1.0-sqr(Nu)));
Pyr := Sqrt ( (Rho*H0*H0*B*B*B)/D0)*Omega;

Writeln(Lst,'

Beta =
*,Beta,'

Q0 = ',Q0);
Writeln(Lst,'

DO =
',D0,'

Pyr =
'

,Pyr);

Rstep := (B-A) /Numstep; (* Stepsize *)

Writeln(Lst,'

Rstep = ',Rstep);
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For I := 0 to Numstep do

Begin

Raddisp[I] := 0.0;

Radius [I] := A + I*Rstep;

Eta [I] := Radius [I]/B;

If Abs(Eta[I]) < Tol3 then

Begin

WritelnC Eta[ ',1,'] is less than ',Tol3);

WritelnC The algorithm will not divide by
WritelnC this small a number.');

Goto 20;

End;

D[I] := H (Radius [I],Diskprofile)/H0;

If Abs(D[I]) < Tol3 then

Begin

WritelnC D[ ',1,'] is less than ',Tol3);

WritelnC The algorithm will not divide by ');
WritelnC this small a number.');

Goto 20;

End;

WritelnC Radius= '
,Radius [I],

D=
',Raddisp[I],' H= ',

H (Radius [I] ,Diskprofile) ) ;

End;

Iter := 0;

Sigmar[0] := 1.0;

STempL := 0.0;

STempH := Sigmar[0];

(* Start Runge-Kutta Procedure *)

5: Begin End;
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For J := 1 to Numstep do

Begin

(*
Get four estimates of deltas *)

K1A := Rstep* (RKEql (Raddisp [J-l] ,
Radius [J-l] ,Sigmar [J-l] ) ) ;

Ul := Raddisp [J-l] + K1A;

K2A := Rstep* (RKEql (Raddisp [J-l] +K1A/2.0,
Radius [J-l] +Rstep/2 . 0 ,

Sigmar [J-l])) ;
U2 :=

Raddisp [J-l] + K2A;

K3A := Rstep* (RKEql (Raddisp [J-l] +K2A/2.0,
Radius [J-l ] +Rstep/2 . 0 ,

Sigmar [J-l] ) ) ;
U3 := Raddisp [J-l] + K3A;

K4A := Rstep* (RKEql (Raddisp [J-l] +K3A,
Radius [J-l] +Rstep,
Sigmar [J-l] ) ) ;

D4 := Raddisp [J-l] + K4A;

Tempi := (KlA + 2.0*K2A + 2.0*K3A + K4A)/6.0;

Raddisp [J] := Raddisp [J-l] + Tempi;

Dh := H (Radius [J-l],Diskprofile)/HO;

K1B := Rstep* (RKEq2 (Radius [J-l],Radius [J-l] ,D1,
Sigmar [J-l] ,H0*Dh,H0*D [J-l] ) ) ;

Dh := H(Radius[J-l]+Rstep/2.0,Diskprofile)/H0;

K2B := Rstep* (RKEq2 (Radius [J-l] +

Rstep/2.0,Radius [J-l] ,D2,
SigmartJ-l] +K1B/2.0,

H0*Dh,H0*D[J-l]));

Dh := H (Radius [J-l]+Rstep/2.0,Diskprofile)/H0;

K3B := Rstep* (RKEq2 (Radius [J-l] +

Rstep/2. 0,Radius [J-l] ,U3,
Sigmar [J-l] +K2B/2 . 0 ,

H0*Dh,H0*D[J-l]));

Dh := H (Radius [J-l] +Rstep,Diskprofile)/HO;
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K4B := Rstep* (RKEq2 (Radius [J-l] +

Rstep,Radius [J-l] ,U4,
Sigmar [J-l] +K3B,H0*Dh,H0*D [J-l]));

(* Compute the x at the end of

the interval from

a weighted average

of the four estimates. *)

Temp2 := (K1B + 2.0*K2B + 2.0*K3B + K4B)/6.0;

Sigmar [J] := Sigmar [J-l] + Temp2;

End;
(* End Runge-Kutta Sequence *)

SNumstepl := Sigmar [Numstep] ;

If (SNumstepl < Tol2) and (SNumstepl > 0.0) then

Begin

Goto 25;

End;

If SNumstepl < 0.0 then

Begin

STempL := Sigmar [0];

Sigmar[0] := 2. 0*Abs (Sigmar [0] ) ;
STempH := Sigmar [0];
Goto 5;

End;

10: Begin End;

Sigmar [0] := STempH - (STempH - STempL )/2.0;

(* Start Runge-Kutta Procedure *)

35: Begin End;
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For J := 1 to Numstep do

Begin

(* Get four estimates of deltas *)

K1A := Rstep* (RKEql (Raddisp [J-l],
Radius [J-l] , Sigmar [J-l] ) ) ;

Ul := Raddisp [J-l] + KlA;

K2A := Rstep* (RKEql (Raddisp [J-l]
+K1A/2 . 0 ,Radius [J-l] +Rstep/2 . 0 ,

Sigmar [J-l] )) ;
U2 :=

Raddisp [J-l] + K2A;

K3A := Rstep* (RKEql (Raddisp [J-l]
+K2A/2 . 0 ,Radius [J-l] +

Rstep/2.0, Sigmar [J-l] ) ) ;
U3 := Raddisp [J-l] + K3A;

K4A := Rstep* (RKEql (Raddisp [J-l] +K3A,
Radius [J-l] +Rstep,
Sigmar [J-l] ) ) ;

U4 := Raddisp[J-l] + K4A;

Tempi := (KlA + 2.0*K2A + 2.0*K3A + K4A)/6.0;

Raddisp [J] := Raddisp [J-l] + Tempi;

Dh := H (Radius [J-l],Diskprofile)/HO;

KlB := Rstep* (RKEq2 (Radius [J-l] ,Radius [J-l] ,U1,
Sigmar [J-l] ,H0*Dh,H0*D [J-l] ) ) ;

Dh := H (Radius [J-l]+Rstep/2.0,Diskprofile)/H0;

K2B := Rstep* (RKEq2 (Radius [J-l] +

Rstep/2.0,Radius [J-l] ,U2,
Sigmar [J-l]+KlB/2.0,H0*Dh,H0*D [J-l]));

Dh := H(Radius [J-l] +Rstep/2.0,Diskprofile) /HO;
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K3B := Rstep* (RKEq2 (Radius [J-l] +

Rstep/2.0,Radius [J-l],U3,
Sigmar [J-l]+K2B/2.0,H0*Dh,H0*D[J-l] ) ) ;

Dh := H (Radius [J-l] +Rstep,Diskprofile)/HO;

K4B := Rstep* (RKEq2 (Radius [J-l] +

Rstep,Radius [J-l] ,U4,
Sigmar [J-l] +K3B,H0*Dh,H0*D [J-l]));

(* Compute the x at the end of the interval from

a weighted average of the four estimates. *)

Temp2 := (K1B + 2.0*K2B + 2.0*K3B + K4B)/6.0;

Sigmar [J] := Sigmar [J-l] + Temp2;

End;
(* End Runge-Kutta Sequence *)

SNumstep2 := Sigmar [Numstep] ;

If (SNumstep2 < Tol2) and (SNumstep2 > 0.0) then

Begin

Goto 25;

End;

If (Sigmar [0] - STempL)/2.0 < Toll then

Begin

Goto 25;

End;

Iter := Iter + 1;

If Iter > Maxiter then

Begin

Writeln( 'Zero stress not found within ',
Iter,'

iterations');

Goto 20;

End;
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If SNumstepl*SNumstep2 > 0.0 then

Begin

STempH :=Sigmar[0];

SNumstepl := SNumstep2;
Goto 10;

End;

STempL := Sigmar [0];
Sigmar [0] := Sigmar [0] + (STempH -

STempL)/2.0;
Goto 35;

25: For I := 0 to Numstep do

Begin

DUDR[I] :=
-(Nu*Raddisp[I]/Radius[I]) +

(Q0*Sigmar[I]/B);

End;

For I := 0 to Numstep do

Begin

Sigmatheta[I] := ( (12.0*B*B/H0)*( (Nu*DUDR[I] ) +

(Raddisp[I]/Radius[I]))) ;

End;

For I := 0 to Numstep do

Begin

SigrPyr[I] := Sigmar [I ]/Pyr;
SigThetPyr [I] := Sigmatheta[I]/Pyr;

End;

(* Procedure Vibsolve; *)

(* Procedure Umatrix; *)

Integrate (D,Eta,Numstep,Rstep, Integ) ;

T4[l,l].re := 0.0

T4[l,l].im := 0.0

T4[2,l].re := 0.0

T4[2,l].im := 0.0;
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Dri |

Urij

1,5]

5,1]

2 0.0;
0.0;

Uri|

Uri|

1,2]

5,6]

* 2 1.0;

1.0;

Uri|

Uri|

1,6]

5,2]

0.0;

0.0;

Uri|

Uri|

1,4]

5,8]

2 0.0;

0.0;

Uri

Uril

1,8]

5,4]

2

* 2

0.0;

0.0;

Uri

Uri

.3,2]

.7,6]

0.0;

0.0;

Uri

Uri

[3,6]

[7,2]
* 2

0.0;

0.0;

Uri

Uri

[3,7]

[7,3]

2

* 2

0.0;

0.0;

Uri

Uri

[3,4.

[7,8,

0.0;

0.0;

Uri

Uri

[3,8.
[7,4

2

i * 2

0.0;

0.0;

Uri

Uri

[4,1

[8,5

1 i~ 0.0;

0.0;

Uri

Uri

[4,5

[8,1

0.0;

0.0;

Uri

Uri

[4,3

[8,7

1
""

1 * 2

|

-1.0;

-1.0;

Uri

Uri

[4,7

[8,3

1 2
|

1 2
1

0.0;

0.0;

Uri

Uri

[4,4

[8,8

1 2
1

1
*~

0.0;

0.0;

Uri

Uri

[4,8

[8,4

I 2
|

I 2

|

0.0;

0.0;

(* Umatrix *)
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For I := 1 to Freqnum do

Begin

W := 1500.0*1;

Lambda := sqrt (Rho*H0*sqr (B*B)/D0)*W;

Zetal := sqr (B)*Cl/(2.0*sqrt (Rho*H0*D0) ) ;

Zeta2 := C2/(2.0*sqrt (Rho*H0*D0) ) ;

K0 := 2.0*Q0/(Kk*(1.0-Nu));

For 14 := 1 to 8 do

For J4 := 1 to 4 do

Begin

Yarray[l4,J4] := 0.0;

Qarray[I4,J4] := 0.0;

End;

Yarray[l,l]
:= 1.0

Yarray[2,2] := 1.0

Yarray[3,3]
:= 1.0

Yarray [4,4]
:= 1.0

For J := 0 to Numstep do

Begin

If J = 0 then

Begin

DSigDEta := ( ( (1.0-sqr (Nu)
)*

Raddisp [J]
)/(Q0*

sqr (Radius [J]/B)) ) -

( ((1.0-Nu)*Sigmar[J])/

(Radius [J]/B) ) -

( (sqr
(Pyr))* (Radius [J]/B) );

Goto 330;

End;
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DSigDEta := ( ( (1.0-sqr (Nu) )*

Raddisp [J]
)/(Q0*

sqr (Radius [J]/B)) )
-

( (d.O-Nu)*Sigmar[J])
/(Radius [J]/B) ) -

( (1.0/D[J])*Sigmar[J]*

((D[J]-D[J-1])/
(Eta [J] -Eta [J-l])) ) -

( (sqr (Pyr))* (Radius [J]/B) );

330: Begin End;

Uri[l,l] :=
-(1.0

-

Nu)/Eta[J];
Uri[5,5] := Uri[l,l];

Uri[l,3] := ( (D[J]*sqr (D[J] )*

(1.0-sqr (Nu))/sqr (Eta [J])) ) -

( (Q0*sqr(Lambda)*D[J]*sqr(D[J])) );

Uri[5,7] := Uri [1,3] i

Uri[l,7] := ( D[J]*sqr (D[J] )*

(1.0-sqr (Nu))*Delte/sqr (Eta [J]) ) -

( 2.0*Zeta2*Lambda );

Uri[5,3] :=
-Uri[l,7];

Coeff21 := (Sigmar [J] )/( (1.0+sqr (Delte) )*

(sqr(1.0+K0*Sigmar[J]) +

sqr(Deltg))*sqr(D[J]));

Uri [2,1] := Coeff21*(1.0 + K0*Sigmar [J] +

sqr(Deltg) +

Deltg*Delte*K0*Sigmar [J] ) ;

Uri[6,5] := Uri[2,l];

Uri [2,5] := Coeff21*( -Delte
-

Delte*KO*Sigmar[J] +

Deltg*KO*Sigmar [J] -

sqr (Deltg)*Delte) ;

Uri[6,l] :=
-Uri[2,5];

Coeff22 := -1.0/(sqr (1.0+K0*Sigmar [J] )+sqr (Deltg) ) ;

Uri[2,2] := Coeff22*( ((1.0 +

K0*Sigmar[J])*( (K0*DSigDEta) +

(KO*Sigmar[J]/Eta[J]) +

(1.0/Eta[J]) )) +

(sqr(Deltg)/(Eta[J])) );
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Uri[6,6] := Uri[2,2];

Uri [2,6] := Coeff22*( (Deltg*KO*

( DSigDeta - (Sigmar [J]/Eta [J] )) ) +

(Deltg* (1.0+K0*Sigmar [J] ) /Eta [J] )
-

(Deltg/Eta[J]) );

Uri[6,2] :=
-Uri[2,6];

Coeff23 := D[J]* (-Coeff22)* ( DSigDEta +

((1.0-Nu)*Sigmar[J]/Eta[J]) +

((D[J]-D[J-l])/(Eta[J]-

Eta [J-l] ) ) *Sigmar [J]/D [J] ) ;

Uri[2,3]

Uri[6,7]

Uri[2,7]

Uri[6,3]

Uri[2,4]

Uri[6,8]

Uri[2,8]

Uri[6,4]

Uri[3,l]

Uri[7,5]

Uri[3,5]

Uri[7,l]

= Coeff23*(1.0+K0*Sigmar[J]+sqr (Deltg));

= Uri[2,3];

Coeff23*K0*Sigmar[J]*Deltg;

=
-Uri[2,7];

= (-Coeff22)*(
(2.0*Lambda*

Zetal*Deltg) +

(2.0*Deltg*Lambda*

Zetal*KO*Sigmar[J])
-

(D [J] *sqr (Lambda))
-

(D[J]*KO*Sigmar [J]*

sqr (Lambda)) -

(2.0*Lambda*Zetal*Deltg)
-

(D[J]*sqr(Lambda*Deltg)) );

:= Uri[2,4];

:= (-Coeff22)*( (D [J] *Deltg*sqr (Lambda) ) -

(2.0*Lambda*Zetal) -

(2.0*Zetal*Lambda*K0*Sigmar [J] )
(Deltg*D [J] *sqr (Lambda)) -

(Deltg*D[J]*KO*Sigmar[J]*

sqr (Lambda))
-

(2.0*Lambda*Zetal*sqr(Deltg)) );

= -Uri [2,8];

= 1.0/(D[J]*sqr(D[J])*(1.0+sqr(Delte)));

= Uri[3,l];

-Uri[3,l]*Delte;

=
-Uri[3,5];
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Uri[3,3]

Uri[7,7]

Uri[4,2]

Uri[8,6]

Uri[4,6]

Uri[8,2]

=

-Nu/Eta[J];

- Uri[3,3];

=

K0/(D[J]*(1.0+sqr(Deltg)));

= Uri[4,2];

=

-Deltg*Uri[4,2];

=
-Uri [4,6];

For 15 := 1 to 8 do

For J5 := 1 to 4 do

Begin

Karray[I5,J5]

Rarray[I5,J5]

Yarray[I5,J5]

Qarray [15, J5]

(* Umatrix *)

:= Rstep*Eq(Uri,Yarray,I5,J5) ;

:= 0.5*Karray[I5,J5] -

Qarray [15, J5] ;

:= Yarray[I5,J5] + Rarray [15, J5] ;

:= Qarray[I5,J5] + 3.0*Rarray [15, J5]
-

0.5*Karray[I5,J5];

Karray [15, J5] := Rstep*Eq(Uri,Yarray,I5,J5) ;

Rarray[I5,J5] := (1.0 - sqrt(0.5))*

(Karray [15, J5]
-

Qarray [15, J5] ) ;

Yarray [15, J5]
:= Yarray [15, J5] + Rarray [15, J5] ;

Qarray[l5,J5] := Qarray [15, J5] + 3.0*Rarray [15, J5]-

(1.0 -

sqrt(0.5))*Karray[I5,J5];

Karray [15, J5]
:= Rstep*Eq(Uri,Yarray, 15, J5) ;

Rarray[I5,J5] := (1.0 + sqrt(0.5))*

(Karray [15, J5]
-

Qarray [15, J5] ) ;

Yarray [15, J5]
:= Yarray [15, J5] + Rarray [15, J5] ;

Qarray[I5,J5] := Qarray [15, J5] + 3.0*Rarray [15, J5] -

(1.0 + sqrt(0.5))*Karray[I5,J5];

Karray [15, J5]
:= Rstep*Eq(Uri,Yarray, 15, J5) ;
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Rarray[I5,J5] := (1.0/6.0)*

(Karray [15, J5] -

2.0*Qarray [15, J5] ) ;

Yarray [15, J5] :=

Yarray [15, J5] + Rarray [15, J5] ;

Qarray[I5,J5] := Qarray [15, J5] + 3.0*Rarray [15, J5]
-

0.5*Karray[I5,J5];

End;

End;

(* Procedure Mrsolve *)

For 16 := 1 to 4 do

For J6 := 1 to 4 do

Begin

Tri[I6,J6].re := Yarray [16,J6] ;

Tri[l6,J6] .im := Yarray [16+4, J6] ;

End;

For 17 := 1 to 2 do

For J7 := 1 to 2 do

Begin

Tl[I7,J7].re := Tri [17, J7] .re;

Tl[I7,J7].im := Tri [17, J7] .im;

T2[I7,J7].re := Tri [17+2, J7] . re;

T2[I7,J7].im := Tri [17+2, J7] .im;

End;

(* Procedure Tinvert *)

TMatInv(Tl,T3,Stoppgrm) ;

If Stoppgrm = True then

Begin

Goto 20;
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End;

T4[2,l].re := Force;

MatMult(T3,T4,T6);

Matmult(T2,T6,T5);

Mr. re := T6[l,l] .re;

WritelnC
Mr.re='

,Mr.re) ;

Mr.im := T6[l,l] .im;

WritelnC Mr.
im='

,Mr.im) ;

Qr.re := T6[2,l] .re;

WritelnC
Qr.re='

,Qr.re) ;

Qr.im := T6[2,l] .im;

WritelnC
Qr.im='

,Qr.im) ;

Chir.re := T5 [1,1] .re;

WritelnC
Chir.re-'

,Chir.re) ;

Chir.im := T5[l,l].im;

WritelnC
Chir.im-'

,Chir.im) ;

Wl.re := T5[2,l] .re;

WritelnC
Wl.re-'

,Wl.re) ;

Wl.im : = T5[2,l] .im;

WritelnC Wl.im- '
,Wl.im) ;

Imped := Force/( (sqr
(Lambda))*

(sqrt(sqr(T5[2,l].re) +

sqr (T5 [2 , 1] . im) ) ) * (Integ) ) ;

WritelnC Impedance = ', Imped);

Lamsqr[I] := sqr (Lambda);

Trnsms[I] := Abs (
(Beta)* (sqrt (sqr (Qr.re) +

sqr (Qr.im) ) )/Force) ;

WritelnC Force Transmissibility =
'
,Trnsms [I] ) ;

End;
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Initgraphic;

ClearScreen;
Plotfreq;

Hardcopy(False,6) ;
repeat until Keypressed;

Leavegraphic;

20: End,
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Appendix IV. Summary of Runge-Kutta-Gill Method

The Runge-Kutta-Gill method is a numerical integration

technique where use of previously-determined function values

is not required in intermediate calculations. Thus, to

arrive at a value
yn knowledge of yn_1# Yn_2' is not

necessary-

References to mathematical processes which are of this type

are provided in [9] . A common for starting an integration

is the Runge-Kutta (fourth-order) process. The error in

each step of this process is of the order h
, where h is the

length of each interval.

Runge-Kutta 's fourth-order process is based on the following

general theory:

Consider a first-order differential equation

dy
= f(x,y) (96)

dx

with the initial condition

y
= Y at x = X (97)

To obtain the value of y corresponding to the value

x = X + h, the latter x-value is substituted in Equation

(96) to obtain the value of dy/dx at the beginning of the

interval. This slope value is used to determine the first

approximation to the y-value at x = X + h. This new co

ordinate value is expressed as (X+h,Y+kQj where
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kQ
= hf (x,y) (98)

Advancing a fraction m of the interval h from X and

substituting this new x-co-ordinate in Equation (96) results

in the second approximation to the desired co-ordinate,

namely

(X + mh, Y + kj) (99)

where

k2
= hf (X + mh,Y + mkQ) (100)

Combining the estimates kQ and kj provides a third estimate

of co-ordinate,

(X + nh, Y + k2) (101)

where

k2
=

[n-r]kQ +
rkx (102)

This process is repeated with kQ, k,, and k2 to yield a

fourth co-ordinate

(X + ph, Y + k3) (103)

where

k
3

=

[p-s-t]kQ
+

skj^
+
tk2 (104)

The incremental y-value corresponding to the interval h

added to the x co-ordinate is calculated using the following

expression:

y
= y(X+h)

-

y(X)
=

akQ
+
bk1 +

ck2
+
dk3 (105)

where

a+b+c+d-1. (106)

By appropriately selecting the coefficients for a, b, c, and

d, the resulting accuracy in terms of h5
may fce adjljsted>
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By extending this technique to systems of equations, and

after optimizing the coefficients used to calculate the

final y-value thereby increasing accuracy, the following

mathematical iterative process is used to determine

successive y-values for the i-th equation:

kio
- "1<y00,y10,...> (107)

rii -5kio
-

^iO (108>

*il
=

yi0
+
ril <109>

*il
=

*10
+ 3rii

-

'5ki0 <110>

kil
= hfi(y01fy11,...) (Ill)

ri2
= [1

-Jr5l(kn
-

qn) (112)

yi2
"

*!!
+
ri2 <113>

qi2
=

qu
+ 3r.2

-

[l-Aj75]ki;L (114)

ki2
= hfi(y02'y12'-*-) (115)

ri3
= [1 + 4T?](ki2

-

qi2) (116)

yi3
"

yi2
+
ri3 <117>

qi3
=

qi2
+ 3ri3

- [1 +
NlT?Iki2 (118)

ki3
= hfi(yo3,y13,,**) (119)

ri4
= I(ki3 " 2<*i3} <120>

yi4
=

yi3
+
ri4 <121>

^14
=

^i3
+ 3ri4

'

-5ki3 <122>

The last quantity qi4 is introduced to retain accuracy and

becomes
qiQ in the following iteration.
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Appendix V. Summary of Transfer Matrix Method

The transfer matrix method [10] is an approach that

"transfers"
the behavior parameters across a joint (a point

transfer matrix) or from one end of a system to the other

(global transfer matrix) . The global transfer matrix

analysis is an extension of point transfer matrix analysis.

Use of the transfer matrix method requires that

relationships that give the parametric state at one end of

the element in terms of the parametric state at the opposite

end.

Consider the element shown in Figure 14, whose endpoints are

designated as i and i+1. The state of force and

displacement at an endpoint is expressed by the
"state"

vector

Ia\l
''

i^i. <123>

The expression relating the state vector at i+1 to the state

vector at i is given by

i:^
-M fe'i+1 \

!
~~"~

J ' ""* x (124)

In this instance, the transfer matrix [.TL] is a mixed form

of the force-displacement relationships for the element.
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For this example, the state of the force and displacement at

location i+1 can be determined assuming that the initial

state (that is, the force and displacement conditions at

location i) is known by soving the following transfer matrix

equation

My i+1

z i+1

\l i+1

z i+1

-1 0 0 0

3
L

L,/6EI

LV2EI

I1 0 0

-L2/ 1 0

-L/EI 0 1

(125)

Successive use of the point transfer matrix method by

starting at one system endpoint and continuing to the other

system endpoint results in the global transfer matrix.

WL

J,

i/

/
/

L-

F^mV

9

L*l
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