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1 Abstract:

This thesis describes a new trust model for OpenPGP encryption. This

trust model uses conditional rule-based trust to establish key validity and

trust. This thesis describes “Trust Rules” that may be used to sort and

categorize keys automatically without user interaction. “Trust Rules” are

also capable of integrating key revocation status into its calculations so it too

is automated. This thesis presents that conditional trust established through

“Trust Rules” can enforce stricter security while reducing the burden of use

and automating the process of key validity, trust, and revocation.

2 Introduction:

This thesis wishes to develop a new trust model for OpenPGP encryption.

The current 4880 RFC [4] that describes OpenPGP allows for two types

of trust models: a three-tiered hierarchy certificate authority, PKI type of

structure, and a “Web of Trust” [48]. Each of these models either depends

on a group to establish trust or a trusted introducer, but neither establish

conditional rules for trust establishment. Such conditional rules would al-

low key validity to be based on particular user-established conditions being

satisfied. This thesis develops a system that uses user-developed rules to con-

ditionally assign trust to OpenPGP keys. These “Trust Rules” allow users

to develop stricter validation rules based specifically on their own criteria,

thereby increasing their security and confidence in the use of OpenPGP. For
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example, a person could establish that a key is only valid if it is signed by

two or more keys from a group of 5 keys, which are explicitly chosen by the

end user. Many different trust models could be developed if a rule-based con-

ditional trust model were established. This model would allow each group

or individual to create their own “Trust Rules” to establish trust and key

validity.

Additionally, with recent high profile compromises of certification author-

ities [40], such as DigiNotar, certification authorities issuing certificates for

the purpose of man-in-the-middle attacks [40], and the code signing of the

Stuxnet virus [7] [32] we can see how any trusted certification authority or

their associated registration authority can be a single point of failure in the

traditional PKI infrastructure. The use of certification authorities or any

single entity to establish key validity or trust would appear to be very prob-

lematic potentially leaning towards outright distrust. Add to that recent

news reports of National Security Agency (NSA) data collection [18] [19] [17]

[43] and one can quickly see the potential need for encryption and potentially

even a distrust towards established cloud services, email provides, and social

networks.

3 History & Terminology:

In this next section we will outline the history associated with our thesis

topic and some terminology will be explained. Before we proceed we need to

2



establish a base line of terminology. We will try to use already established

definitions and terms when and where possible.

3.1 Public Key Infrastructure:

The modern Public Key Infrastructure (PKI) that we know now started

out in 1988 with the first edition of standards being published. These were

published by the International Organization for Standardization and Inter-

national Electrotechnical Commission (ISO/IEC) as ISO/IEC 9594:1990 and

also by the International Telegraph and Telephone Consultative Committee

(CCITT), now known as the International Telecommunication Union (ITU),

published as ITU-T X.500 (1988) Series of Recommendations. These stan-

dards set forth an electronic directory service to be used as a general-purpose

directory store of information. Employee information such as phone num-

bers, office numbers, email, certificates, and other information could be stored

within the directory. There have been 5 editions of the standards with the

5th being published as ISO/IEC 9594:2005 and ITU-T X.500 (2005)[27].

Within the standard are the documents ISO/IEC 9594-8 and ITU-T

X.509 [29] which respectively outline the use of “Public-Key and Attribute

Certificate Frameworks” (called “Authentication Framework” before 4th edi-

tion). These documents along with The Internet Engineering Task Force

(IETF) Request for Comment (RFC) RFCs 3280 [23], 4325 [41], 4630 [24],

are what define the format and structure of the Public Key Infrastructure.

The IETF goal is to “...develop a profile to facilitate the use of X.509 cer-
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tificates within Internet applications for those communities wishing to make

use of X.509 technology. Such applications may include WWW, electronic

mail, user authentication, and IPsec” [23].

Many people use the Public Key Infrastructure everyday without ever

giving it any thought. This lack of thought was a goal of the IETF when

they described the respective RFCs. The procedures, protocols, and policies

are designed so that the user has minimal interaction with PKI. The general

public’s exposure to most PKI is through the utilization of Secure Socket

Layer (SSL) communication to buy products online through retail websites

or check email. A lesser few use PKI to authenticate and login to VPNs,

workstations, and other enterprise systems. These SSL connections and PKI

authentications are secured with X.509 Certificates, signed by digital signa-

tures and issued by Certificate Authorities (CAs) such as Verisign or other

trusted CAs.

This thesis will examine the following X.509 aspects: X.509 Certificates,

Certification Authority, and Certificate Revocation Lists.

3.2 X.509 Certificates:

A X.509 Certificate, as defined in RFC 3280 [23], has the following fields:

signatureAlgorithm, signatureValue, version, serialNumber, signature, issuer,

validity, subject, subjectPublicKeyInfo, uniqueIdentifier, extensions. Each of

these values may be a sequence of values which describes attributes associated

with that field.
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• signatureAlgorithm specifies the algorithm to use in calculating the

signature.

• signatureValue is the actual value of the certificate signature.

• version specifies what version number of X.509 this certificate belongs.

• serialNumber is the unique number assigned to the certificate by the

certificate authority (CA).

• signature specifies the algorithm to use in calculating the signature.

MUST be the same as signatureAlorithm.

• issuer is who issued the certificate as a X.501 Name Type.

• validity is the date in which the certificate is valid.

• subject identifies to whom the certificate has been issued.

• subjectPublicKeyInfo holds the public key of the subject.

• uniqueIdentifier is a unique number used to provide uniqueness if a

subjects name is reused.

• extensions provide a mechanism to associate additional attributes

with certificates.

The X.509 Certificate binds the public key of a user or system to the iden-

tifying information within the certificate by being digitally signed by a Cer-

tification Authority. This digital signature ensures that no tampering of the
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certificate is possible, because only the issuing CA will have the correspond-

ing private key that was used to sign the X.509 Certificate.

3.3 Certification Authority:

A Certification Authority (CA), also referred to as a Certificate Authority, is

a trusted source that issues public-key certificates. It does this by digitally

signing public keys and relevant identifying information, such as the subject,

subjectPublicKeyInfo, and other X.509 Certificate fields. The information

held within the certificate is thereby bound to the respective private key of

the subject. The digital signature reliably prevents tampering of the public-

key certificate because only the CA may alter the data as it alone has the

corresponding private key. Once public-key certificates are issued they may

be publicly distributed freely or published in an electronic directory service

ie: X.500.

There are two important criteria for Certification Authorities to evaluate

before issuing a public-key certificate. These have been defined in the X509

Recommendations [29] as follows:

• A certification authority shall be satisfied of the identity of a user before

creating a certificate for it.

• A certification authority shall not issue certificates for two users with

the same name.
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To facility these requirements the CA must take precautions to prevent fal-

sifications of identity, public key information, and resolve duplicate names.

The first requirement can easily be satisfied given enough information can

be confirmed by the certification authority. Common forms of identity such

as a government issued photo identification card and/or Passport may be

used to confirm ones identity. For web based entities, such as a Web Server,

ownership of the web servers domain name may be established before issuing

a certificate. For both end user and web server certificates the public key

information needs to be securely transmitted to the certificate authority. If

this is not done the certification authority may end up signing the wrong

public key. If this occurs the web server or user might not be able to read

any secure communications and it could allow an attacker to read all of the

communications that were thought to be secure.

The second requirement ensures that no user can pose as another user by

duplicating the name. The name or subject field of a public-key certificate

(X.509) holds a distinguished name that identifies the entity. A distinguished

name is defined in X.501 [28] as “... that name which consists of the sequence

of the relative distinguished name of the entry which represents the object

and those of all of its superior entries (in descending order).”

As an example, the subject (Distinguished name) of the certificate is-

sued to ipay.rit.edu is: “C = US, ST = New York, L = Rochester, O =

Rochester Institute of Technology, OU = Information Technology Services,

CN = ipay.rit.edu” This can easily make sense when it is known that C=
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Country, ST= State, L= Location, O= Organization, OU= Organizational

Unit, CN= Common Name. The distinguished name (DN) tells us the loca-

tion and entity that requested the certificate. The final Common Name must

match the domain name or (URl) of the web server that is being visited, in

this case ipay.rit.edu.

3.4 Certificate Revocation List:

Certificate Revocation Lists (CRL) provide a way for a Certification Au-

thority to revoke a public-key certificates. These CRLs are established as

endpoints via http, ldap, or other network communication specifications to

update end users of the status of a public-key certificate. Certificates nor-

mally have an expiration date after which they are no longer valid, but if a

certificate needs to be revoked for another reason the Certification Authority

may use the CRL to do so.

There are a few reasons why a Certification Authority may need to re-

voke a certificate. A Certification Authority may revoke for the following

reasons: The user’s private key may be compromised, the user is no longer

certified by the authority, or the certification authority’s certificate has been

compromised. Each of the following cases would lead to a Certificate Revo-

cation List being updated with the relevant public-key certificate identified

as revoked or invalid.
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3.5 PGP:

“Pretty Good Privacy” (PGP) was written by Philip Zimmermann in 1991

[47] [48]. The history of PGP is well known and can be explored more thor-

oughly by the reader in Michael W. Lucas’s book “PGP & GPG: Email for

the Practical Paranoid” [33] or from Phil Zimmermann’s direct accounts in

“Why I wrote PGP” [47]. The short version of the history is that Mr. Zim-

mermann wanted to allow individuals to send communications and exchanges

securely via encryption without the possibility of government mandated back

doors or key escrows. PGP allows any person the ability to send email or

other communications knowing that the only person able to read the com-

munique would be the addressed recipient.

For our purposes it is noteworthy to know the differences between PGP,

GPG, and OpenPGP. PGP or “Pretty Good Privacy” is the original specifica-

tion as developed by Phil Zimmermann, which later established the PGP Cor-

poration. Referring to PGP should be taken as talking about PGP the cor-

poration, however many use it interchangeably with the RFC or OpenPGP.

GPG or “Gnu Privacy Guard” is a software package that reimplements the

PGP standard and later, when developed, the OpenPGP standard. Finally,

OpenPGP is the RFC standard that GPG and PGP software implement

enabling them to be OpenPGP compliant.

The OpenPGP standard is defined in RFC 4880 [4] and previously in

RFC 2440 [5] & RFC 1991 [2]. This standard defines how all OpenPGP

clients should format, process and communicate OpenPGP messages.
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The OpenPGP specification differs from the X509 specification in many

ways. The key specification, trust model, allowed algorithms all have differ-

ent options and specifications. For this thesis the major differences should

be noted through the use of different trust models and key verification of

trust. OpenPGP uses a “Web of Trust” versus X.509’s hierarchical tree

model. OpenPGP more recently has extended its specification to include a

hierarchical trust model, but the “Web of Trust” is probably the most used

trust model with OpenPGP. The “Web of Trust” consists of every individ-

ual who uses the OpenPGP standard regardless of software package. These

users make up the web and form connections or edges of the web by digitally

signing other users OpenPGP keys. Each user then may elect to trust some

other user’s digital signature for verification of the public-key certificate or

key of a third user. This OpenPGP trust takes place instead of implementing

X.509 Certification Authorities. Each user may act as their own Certifica-

tion Authority. A user’s verification and certification of other’s keys may be

extended to others that trust them. With all users certifying OpenPGP keys

it creates a graph or web of trust connections between all users.

3.6 OpenPGP Format:

An OpenPGP message or certificate is constructed from a number of records

or entries that are called packets. These packets should not be confused

with network packets or other types of packets. These OpenPGP packets are

chunks of data that are tagged with specific meaning. The following are the
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types of OpenPGP packets according to RFC 4880 [4]:

• Public-Key Encrypted Session Key Packets

• Signature Packet

• Symmetric-Key Encrypted Session Key Packets

• One-Pass Signature Packets

• Key Material Packet

• Compressed Data Packet

• Symmetrically Encrypted Data Packet

• Marker Packet

• Literal Data Packet

• Trust Packet

• User ID Packet

• User Attribute Packet

• Symmetric Encrypted Integrity Protected Data Packet

• Modification Detection Code Packet

An OpenPGP message, keyring, certificate, or other types of OpenPGP

objects are made up of these packets. Packets may hold other OpenPGP
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packets, also known as subpackets, within. Some packets are never to be

exchanged with other users, but are only for internal software data stores

e.g. Trust Packets. Each packet is made up of a packet header followed

by the packet body. Not all combinations of OpenPGP packets form valid

objects. Some packets may be included multiple times where as others can

only be included once and must be the last packet in the series, e.g. the

Modification Detection packet. Finally, some packets may be digitally signed

by the private key of the user to bind the packet data held within said packet

to the users key, there by establishing a trusted connection to the signed

packet.

Next, this thesis will describe a selection of OpenPGP packets that are

of particular interest in regards to this thesis and will explore their workings

and format.

3.6.1 Key Material Packet:

The Key Material Packet contains the actual key material, private or a public

key, depending on the type of Key Material Packet. There are four variants

of Key Material Packets which are:

Public-Key Packet: Format Described below.

Public-Subkey Packet: Public-Subkey Packet has the exact same format

as a Public-Key packet, but describes a subkey.

Secret-Key Packet: A Secret-Key packet contains all the information as
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described in a Public-Key packet, including the public-key material,

but also includes the secret-key material appended at the end of all the

public-key fields.

Secret-Subkey Packet: Secret-Subkey Packet has the exact same format

as a Secret-Key packet, but describes a subkey.

The preceding Key Material Packets depend on the structure of the

Public-Key Packet so, this thesis will explore its format and use. The format

of a version 4 Public-Key OpenPGP packet [4], contains :

• A one-octet version number (4).

• A four-octet number denoting the time that the key was created.

• A one-octet number denoting the public-key algorithm of this key.

• A series of multiprecision integers comprising the key material.

By utilizing the four types of packets previously mentioned OpenPGP

creates keys and subkeys. These subkeys are signed by the primary key

or primary user identity to establish a trust relationship between them. A

user of OpenPGP can utilize subkeys to increase their security. By using

subkeys it allows a person to keep their primary key in a secure location

and use subkeys in insecure locations. These subkeys may be revoked, if

compromised, by the primary key. It is then possible to have multiple subkeys

in multiple locations all used independently of each other, but tied together
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in common by the primary key. The user is guaranteed that no adversary

can sign keys or establish new subkeys as the primary key would be required.

It should be noted that the use of more than one encryption subkey would be

problematic as the sender of an encrypted communique would have to pick

the correct subkey needed for encryption. For this reason it is advised to only

use one encryption subkey at a time, but you may produce new encryption

keys at any interval that you wish. If a subkey is ever compromised the user

can revoke the subkey and still retain any collected digital signatures on the

primary key. Again, despite using different keys the recipient of a message

can establish a trust path to the subkey by verifying that the digital signature

on the subkey matches with the primary key.

3.6.2 Signature Packet:

A Signature packet associates a public key with some data via a digital

signature thereby binding the data to the public key. The most common

signature type is a signature on a file, a block of text, or a signature that is

used to certify a User ID. The signatures on User IDs are what make up the

“Web of Trust” within OpenPGP. Signatures on text are used to verify the

sending origin of a message and provide modification protection. The body

of a version 4 Signature packet contains:

• One-octet version number (4).

• One-octet signature type.

14



• One-octet public-key algorithm.

• One-octet hash algorithm.

• Two-octet scalar octet count for following hashed subpacket data.

• Hashed subpacket data set (zero or more subpackets).

• Two-octet scalar octet count for the following unhashed subpacket data.

• Unhashed subpacket data set (zero or more subpackets).

• Two-octet field holding the left 16 bits of the signed hash value.

• One or more multiprecision integers comprising the signature.

There are 26 Signature Packet subpackets that assert different informa-

tion about an OpenPGP key attribute or the signature packet itself. Sub-

packets are made up of objects like Signature Creation Time, Key Expiration

Time, Trust Signature, Signer’s User ID, Key Server Preferences, Preferred

Key Server, and Reason for Revocation just to name a few. This thesis will

next examine a handful of signature subpackets.

3.6.3 Trust Signature:

Just as in a more traditional PKI structure OpenPGP allows for a Certifi-

cation Authority type structure through the use of “Trusted Introducers.”

These trusted entities operate in much the same manner as a regular Certi-

fication Authority by verifying the identity of the person or entity. Unlike
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X.509 Certification Authorities, however, the trusted introducer does not

create an X509 Certificate for the entity, but produces an OpenPGP Signa-

ture packet with a Trust Signature subpacket. When others encounter an

OpenPGP key signed by the trusted entity they assume the OpenPGP key

is valid even if they have not verified this to be true themselves.

A Trust Signature packet is very simple, it has one octet which describes

the “level” (depth) and one octet which describes the amount of trust. The

signer uses the Trust Signature to assert the trustworthiness of another at

a specified level. Level 0 has the same meaning as an ordinary validity

signature. Level 1 means that the signed key is certified to be a trusted

introducer, with the 2nd octet specifying the degree of trust. Level 2 means

that the signed key can be trusted to issue level 1 trust signatures. This

continues on as higher levels are introduced, with a level N trust signature

asserting that a key is trusted to issue level N-1 trust signatures. The trust

amount is an integer from 0-255 and is interpreted so that values less than 120

indicate partial trust and values greater than 120 indicate complete trust. In

actuality, when implementing the OpenPGP specification most applications

produce values of 60 for partial trust and 120 for complete trust.

So, with the introduction of Trust Signatures it is possible to create a PKI

structure by first creating a OpenPGP key (A) that is a “Trusted Introducer”

of level 2 signatures and completely trusted. Then, use key (A) to create 3

new OpenPGP keys (B, C, D) with Trust Signatures of level 1 and completely

trusted. Now, B,C, and D may sign end users keys and if a user trusts the

16



original OpenPGP key A, they will also accept signatures from B, C, and D

as valid and thereby trust any key that B, C, and D have certified.

3.6.4 Preferred Key Server:

Like X.509 Certificates OpenPGP keys may be stored in online directory

stores or Key Server as they are called with OpenPGP. There are many

key servers throughout the world, so if a user has a particular favorite or

preference in which key server they would like to use they may signify this

by using a Preferred Key Server sub packet signature. Like other sub packets

the Preferred Key Server packet attaches an attribute to the OpenPGP key.

The Preferred Key Server contains only one field which is a string in the form

of a Uniform Resource Identifier (URI). This URI denotes the key server that

the user prefers be used by others for updates. Keys with multiple User IDs

may have a preferred key server for each User ID. Other users update a key

by introducing Trust Signatures or other types of signature packets upon a

key. These new signatures need to be distributed to others via the key server.

Without an update mechanism the new signatures could not be distributed

and used to recalculate the “Web of Trust” by adding new signatures or

edges.

3.6.5 Key revocation:

As mentioned previously OpenPGP keys may be revoked by their owners.

This revocation is established by a revocation signature on the key being
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revoked. This revocation can happen for a number of reasons and is denoted

by the “Reason for Revocation” signature subkey. The Reason for Revocation

subkey begins with one octet containing the reason for revocation followed

by a string specifying the reason. The first field has the following format.

• 0 - No reason specified

• 1 - Key is superseded

• 2 - Key material has been compromised

• 3 - Key is retired and no longer used

• 32 - User ID information is no longer valid

• 100-110 - Private Use

It should also be noted that signatures as well as keys may be revoked.

Signatures made on another person’s key may be revoked by the signatory at

anytime. Like key revocation revoked signatures carry a reason for revocation

as well.

4 Literature Review:

In this section this thesis will look at previous research on the topic of encryp-

tion, OpenPGP, User Interface design in encryption software, Trust model,

and new encryption protocols. In evaluating OpenPGP and other encryption

schemes there seems to be two major approaches.
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1. Improving End-user software ease of use.

2. Improving protocol mechanisms and architecture.

With our approach this thesis presents a mix of both ease of use and mech-

anisms. This thesis has defined a new trust model which would need ap-

plication component development and integration. And at the same time

this thesis has carefully tried to keep from defining an entire new protocol

and have worked within the OpenPGP specifications [4]. Our trust model

has incorporated current research and ideas on establishing trust. As well as

how trust is involved with software trust calculations, which this thesis will

examine in more detail. As stated previously this thesis does not wish to

change the OpenPGP message format [4], but only change how the trust is

calculated internally in software packages.

4.1 Ease of Use:

OpenPGP is an open standard, as documented in RFC [4], however there are

many implementations of that standard in software. PGP software is the old-

est of such software. PGP’s software shortcomings have been well established

in the review of PGP 5.0 titled “Why Johnny Can’t Encrypt: A Usability

Evaluation of PGP 5.0” by Whitten and Tygar [45]. The researchers start

with a premise that 90% of all security failures are based on configuration

errors. Also, that software security user interface standards must be held to

a higher standard than traditional non-security related software. This higher
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standard should be used to prevent end users from entering security config-

uration errors. They suggest that security user interface requirements are

such that there is a need to develop domain specific standards. The usability

standards for normal software are not sufficient for security products. They

defined usable security software as usable ”...if the people who are expected

to use it:

1. are reliably made aware of the security tasks they need to perform;

2. are able to figure out how to successfully perform those tasks;

3. don’t make dangerous errors;

4. are sufficiently comfortable with the interface to continue using it.”

To evaluate their hypothesis they used two separate evaluation methods.

The first was a direct analysis method called cognitive walkthrough, and the

second a laboratory user test.

In a cognitive walkthrough the researchers try to evaluate the software

from the standpoint of a “novice” user. With this in mind they evaluate the

learnability of the software. Through a cognitive walkthrough Whitten and

Tygar identified numerous design issues and improvements for PGP 5.0. The

design issues are identified as Visual Metaphors, Key Servers, Key Manage-

ment Policy, Irreversible Actions, Consistency, and Too much Information.

Visual Metaphors has to do with the use of images or icons to denote end user

operations. In using Visual Metaphors a software developer should be careful
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to avoid introducing confusion by not fully realizing how an image or icon

may be perceived by the end user. Care should be taken to adjust images to

accurately depict the operations. When using Key Servers they felt the user

needed to be more informed about how the operation was taking place. The

lack of a Visual Metaphor for this operation left users unaware of operations

taking place on remote servers versus their local computers. Accordingly

they felt the user interface of PGP 5.0 did not make this clear. Further,

the Key Management Policy was not identified within the user interface, but

only was available through the users manual. They note that “validity” and

“trust” are shown to the user, but their meanings are not made obvious to

the user. Next, Irreversible Actions need to be properly identified to the

user. Irreversible actions are those that if taken by a user will not be able

to reconstructed after their affects have taken place. These actions include

things such as: Deleting the private key, accidentally publicizing a key, and

accidentally revoking a key. Consistency within the software should be kept

to create a clear mental picture. The use of ”encryption” and ”encoding”

should not be interchanged, as PGP 5.0 does. The substitution of such words

may confuse the end user as to what really is happening. Finally, according

to Whitten and Tygar, PGP 5.0 displays too much information. They would

reduce the amount of information that is displayed by default to the user.

They suggest hiding fields such as the Key Length and Key Creation Time

from users, but display this information via a properties page. Their reason-

ing is that more advance users will seek out this information if they need it,
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but it confuses novice users.

For the laboratory user test Whitten and Tygar setup a scenarios in which

the test subject is a member of a political campaign. For reasons of security,

communications are secured with PGP encryption and digitally signed. Test

subjects were then given a task of emailing a proposed itinerary for their can-

didate to the campaign manager and fourth other team members. This task

would require the test subject to perform the following operations: Gener-

ate a Key Pair, acquire the team member’s public keys, publish their public

key, sign the itinerary, encrypt the itinerary to the recipients of the email,

and finally send the email. During this test limited interaction was allowed

between the test subject and the monitor, however the monitor did provide

informative replies via email posing as the campaign manager and other po-

litical volunteers. There were widespread problems with the test subjects as

they tried to complete their given task. Many could not create keys, send,

or verify encrypted email within a 90 minute deadline. Three participants

actually emailed the secret itinerary in plaintext without encryption. Many

participants in the research were confused and unable to send, sign, and/or

encrypted email to the research conductors. In fact one person was so con-

fused as the nature of OpenPGP that they create public/private keys for each

individual they wished to communication with. Based on the user test, the

researchers felt that it supports their theory that the user interface design

for PGP 5.0 is not usable for people who do not already have knowledge of

PGP.
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Whitten and Tygar make the following suggestion for an improvement

over current security user interface design. Establish a clear and accurate

conceptual model of the security to the user as quickly as possible. They

express the need for the model to be as small as possible to allow for quick

and accurate integration by the user while maintaining security. They suggest

that through the use of appropriate visual metaphors, warning messages,

wizards and other interactive tools that one would be able to increase user

understanding and use of security software. The exact use and design of such

an interface has been left open for future research.

The short comings of encryption software continued to be evaluated by

Garfinkel and Miller, but this time with newer software and protocols, such

as Outlook and S/MIME [15]. In “Johnny 2: A User Test of Key Continuity

Management with S/MIME and Outlook Express” they present the user

testing of Key Continuity Management (KCM). KCM ignores the standard

X.509 certificate chain, instead it uses only the public key to identify email

from each sender. The use of only a public key with no certificate chain

is similar to the operation of SSH. The server information is cached on the

first connection and is then verified on each subsequent connection. KCM

follows this paradigm by caching S/MIME certificates and associating the

originating email with that certificate when first received and then uses it

on each subsequent email sent and received there after. The authors note

that this system is not as secure as having a third party certificate authority,

nor does it establish a responsible party for policy violations. Given these
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short comings however, they express hope in KCM’s increased likelihood of

adoption and its ability to scale to multiple organizations.

Garfinkel & Miller’s study is a continuation on the work done by Whitten

and Tygar [45] with what they call a “radical reinterpretation” of the results.

Garfinkel & Miller put forth that the key certification model used by PGP

was the underlying problem in Whitten and Tygar’s research, not PGP 5.0 or

user training. To remedy the problem Garfinkel and Miller used KCM and

tried to mimic Whitten and Tygar’s research method for their laboratory

user tests. In Garfinkel & Miller’s user tests they introduce attacks on KCM

into the scenario to test how the users respond.

With the introduction of KCM the authors also described a new user

interface that would allow key continuity to be displayed to the user via

different background colors. They described a system that would display

a green border around messages that have a good signature from a person

known to use signatures. The border would be displayed as gray if an email

is received from a person that normally signs their emails. A yellow border

is shown when a new signature and a new email are recognized. Lastly, a

red border is shown when an email is received from a known sender with a

signature that does not match the one recorded.

The subjects of the user test were divided into three categories: No KCM,

Color, and Color+Briefing. The No KCM group had the KCM system dis-

abled and a gray border around all messages. The Color group had the KCM

enabled as normal. And the Color+Briefing group had the KCM enabled as
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normal and received an additional briefing. Using the No KCM as a baseline

the researchers then show the improvement of KCM against three different

kinds of attacks. They were called the “New Key Attack”, the “New Identity

Attack” and the “Unsigned Message Attack”. The “New Key Attack” tried

to introduce a new key for an already established email identity (Certificate

and Email pair). The “New Identity Attack” tried to establish a new iden-

tity for a known person using a new email address and subsequently a new

certificate. The “Unsigned Message Attack” attempted to entice the user to

respond to an unsigned email for a known identity.

The results of the tests showed that KCM users were much better at

identifying the “New Key Attack” versus the No KCM group with a dramatic

improvement shown in the Color+Briefing group. In the “New Key Attack”

the researchers sent an attack email for a known good email, but with a new

key. This message was then colored red by the KCM. For the “New Identity

Attack” KCM did not show significant improvement over the No KCM test

group. For the “New Identity Attack” the researchers used an attacker email

that was established via Hotmail and was misspelled. KCM identified this

message with a yellow border. Despite these clues to possible attack many

test subjects rationalized that the key and the email address were different

because a home computer was being used. Only two subjects were identified

as noticing the misspelling of the name, and only one of them used this

information to confirm their decision to not send secret information to the

attacker. Finally, the “Unsigned Message Attack” KCM was a “success” for
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both the Color group and the Color+Briefing group. However, in follow-up

interviews it was found that most test subjects did not use KCM as much

to identify the possible attack, as they did the requested recipient’s email

address. The email address for the attack was a Hotmail address. Many of

the test subjects did not trust the security of Hotmail, thus the NO KCM

group was not as susceptible to this attack as the researchers initially thought.

Garfinkel & Miller conclude that KCM could improve security but is not

the silver bullet for the email security problem. There remains the open

question regarding establishment of identity trust relationships, to which

KCM does not provide a solution. However, the authors feel that KCM adds

to the development of technologies that could be implemented to secure email

and provide for more widespread adoption of S/MIME.

The use of visual cues in security software has continued to be researched

by Kapadia [31]. Kapadia identified how the use of visual cues to denote se-

curity can be beneficial or a threat to security. In the research on these visual

cues it was outlined how an attacker might be able to exploit the relationship

or lack of with regards to key trust. Kapadia outlined how an attacker could

get a trusted third party to verify their key, then proceed to communicate

with the victim, the victim may assume that the communication is secured

via strongly trusted certification authorities, but when in fact they have third

party CAs. Since, clients do not display the certification authority by default

the victim has no way of knowing that the attacker is not using a strongly

trusted authority. Kapadia, in this case was arguing for more verification
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of third party CAs as well as pointing out a possible security flaw. In our

system the Tagged keys are separated from the Trusted keys, and Tagged

Keys show the Trust Rules that triggered them. These rules should allow

our system to not succumb to the attack depicted by Kapadia. The end user

should notice that the Trust Rule did not trigger the same rule as the rest

of the group/community if even at all. The hope would be that an end user

would notice the different tags that were assigned and then inquire as to why

key X does not trigger the group’s previously establish Trust Rules.

In another paper by Garfinkel [14] visual references were noted as helping

end users and a comparison of different email clients and their interfaces was

conducted. Garfinkel showed how users of AOL email can visually identify

email sent within the network versus email that originated outside of the

AOL network. This difference provides the user with clues that the origin of

the email has been authenticated. Garfinkel also identified Outlook’s small

certificate and Apple’s Mail Security header as reasons that allow easier use

of S/MIME or X.509 Certificates. This thesis will explore further research

into the use of Trust Rules in an email client in Section 7 on Future Research.

4.2 Trust Models:

In developing our Trust Model and our associated Trust Rules research on

Trust Models was evaluated. The research on Trust Models mainly described

new mechanism or protocols to exchange and establish trust.

Our primary Trust Rule described establishes that an individual trusts
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at least K authentication servers or Certificates Authorities will be truthful

out of N servers was described by Chen [6]. In the paper Chen described

a situation where you may only minimally trust a group of authentication

servers, but you trust that at least N servers will be truthful. Chen then

established a protocol to exchange this trust between users and servers. In-

stead of establishing new protocols this thesis would use PGP signatures as

an exchange mechanism.

Many trust models focus on distributed protocols in establishing their

community. These distributed models rely on the end points to establish

trust without the need for a central server. This kind of distributed trust

was also described by Adbul-Rahman [1], but in developing their trust mech-

anism they used a recommendation protocol. Abdul-Rahman suggested a

new recommendation protocol separate from trust calculations. This thesis

does not wish to develop a new protocol to establish trust, as this thesis feels

signatures are sufficient to denote a recommendation of trust and/or validity.

In considering distributed trust mechanisms some have looked to the com-

munities rather than the end users to establish this trust. This segmentation

of peers into communities was described by Ravichandran [38]. Ravichandran

specifically studied peer-to-peer interactions, reputation systems, delegation,

and proposed a new “Eigen Group Trust” model as an improvement over

Eigen Trust. In Eigen trust [30], a peer would calculate the global trust value

by obtaining reputation values from all peers in the network, but Ravichan-

dran segments the network into groups before calculating trust. By using
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“Eigen Group Trust” it reduces the calculations and removes the require-

ment that the user have a global view of the network before calculating trust

relationships. Our trust model can introduce similar ideas by exchanging

Trust Rules between communities and groups. While one can not export the

trust or signatures that Trust Rules have established there is nothing that

prevents one from distributing the Trust Rules themselves. The Trust Rules

can be formed and discussed among a community as to what the best or

most secure rule set should be. Once in agreement the Trust Rules could be

distributed to the members. These Trust Rules while developed by the group

community still rely on the end user to implement. One could conceive of

rules being established between different groups and communities that would

allow for interchange of keys and trust.

While many of the former research has looked into trust and its distribu-

tion, distrust is as equally important. The distribution of trust and distrust

was studied in Guha’s paper on ”Propagation of Trust and Distrust” [20].

The paper’s goal ”is to propose and analyze algorithms for implementing”

a web of trust at the micro (single website) or macro level (entire inter-

net). Guha puts forth that their work is the first to incorporate distrust

into computational trust propagations. Firstly, they formalize the math-

ematical algorithms for trust propagation, such as direct propagation, co-

citation, transpose trust, and trust coupling. Secondly, then turn to distrust

propagation methodologies, identifying; Trust only, One-step distrust, and

propagated distrust. Thirdly, they look at two different iterative propaga-
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tion algorithms; Eigen Trust [30] and Weighted linear combinations (WLC).

Fourthly, they turn to different types of rounding, since we will establish a

boolean outcome from trust graph established utilizing real number value

pairs for trust/distrust. From the trust algorithms, the iteration method,

distrust propagation, and rounding cases (three each) there results in 34 =

81 experimental schemes to evaluate. Finally, utilizing the Epinion’s website

dataset Guha sets about to analyze each of the experimental schemes to see

which one best predicts the trust or distrust between nodes in the epionion’s

dataset. The best performing results were seen from the one step distrust

with Eigen Trust [30] iterations.

In establishing trust we need to ensure that we have identified the correct

individual or entity. Cheng’s research [8] is focused on the sybil attack.

The Sybil attack was formerly known as ”pseudospoofing” is the process of

creating multiple identities or pseudonyms by on entity. The term ”sybil”

was introduced by John Douceur [12] and based on the book [42] after the

same name which is about the treatment of Sybil Dorsett who suffered from

multiple personality disorder, now known as dissociative identity disorder.

Cheng presents the notion of what constitutes sybilproofness and considers

how to prevent falsely raising ones reputation utilizing fake links between

sybils. Cheng does not address ”badmouthing” or the case in which sybils

are used to degrade the reputation of other non-sybil nodes, however they

suggest that there is no reputation function which can guard against all

badmouthing strategies.

30



4.3 Reputation Systems:

The distribution of trust and delegation of duties can allow for credibility and

reputation in a small group to then be extended further as the interconnects

to other communities are established. Group dynamics and reputation in

an online community have been studied by Resnick [39] in evaluating eBay’s

reputation system. Resnick identified three criteria for reputation systems:

1. Provide information that allows participants to distinguish between

trustworthy and non-trustworthy agents.

2. Encourage participants to be trustworthy.

3. Discourage participation from those who are not trustworthy.

The first criteria is satisfied with OpenPGP participants recognizing trust-

worthy agents through the signatures on the agents key in question. A non

trustworthy individual should not be able to obtain key signatures from other

people or trusted third parties. The second criteria is enforced by each end

user refusing to communicate with a key of unknown trustworthiness or va-

lidity. Without manual verification or other signatures on said key the user

has no way of knowing the key holders identity is truthful and correct. The

third criteria is satisfied when a user revokes their signature from a users

key. The possibility of key signature revocation should persuade individuals

to continue to act in a trustworthy manner.

Group dynamics and reputation have also been studied by Huynh [25]

in which “Certified Reputation” was described as a new form of third-party
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certification of reputation. This thesis present the use signatures by group

members as a form of reputation or certification, since key validity could

have been already established through the use of Trust Rules. If a member

of the group has turned out to become untrustworthy members could revoke

their signatures, and then if a user re-enters the group members may re-sign

that members key.

It would also be permissible to establish a separate revocation mechanism

as defined by the group into the Trust Rule. This trust revocation could

be by the initial certifying parties, the key holder, or another third-party

that is strictly for key revocations. When developing the Trust Rule for the

community it can be decided that any user that is found untrustworthy will

have their key signed by the communities revocation keys. To prevent undue

revocation by the group it is possible to establish a group of keys that must

be a part of the signature before complete revocation takes place. The use of

K of N total signatures for revocation can be used just the same as when the

certifying Trust Rule was developed and may in fact be incorporated into the

Trust Rule itself by placing a NOT around the revocation signatures. The

negation will allow the Trust Rule to succeed only if the revocation keys are

not present. This is the opposite of normal trust evaluations, but can be

accomplished using the NOT operator. This type of revocation status being

incorporated into the trust metric was outlined by Bicakci [3].
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4.4 OpenPGP Web of Trust Analysis:

The original analysis of the Web of Trust was done in 1996 by Neal McBurnett

[35] shortly after the creation of OpenPGP. He subsequently updated his

findings in 1997 as the Web of Trust grew [34]. In 1996 he found that there

were 2047 keys in the ’Strongly Connected’ set of keys or strong set. That is

to say, keys which have a path connecting them to every other key in the set.

These paths are established by key signatures and do not take into account

any type of trust modeling. In 1997 the strong set included 3100 keys. After

identifying the largest strong set of OpenPGP keys he analyzed the distance

or number of hops which separate each key. This would be the degree in

network graph theory terminology. The mean shortest distance (MSD) was

calculated to be 5.98188 in 1996 and 6.061 in 1997. The maximum shortest

path in 1996 and 1997 was 21. McBurnett also created a listing of keys within

the strong set sorted by MSD. An interesting note, is that this analysis only

took 30 minutes on a Sun Sparc 1000.

Analysis continued in 2001 by Drew Streib [44] however the website is

no longer available, but was able to be accessed by the Internet Archive

Wayback Machine [11]. Streib analyzed 1,461,786 keys and found the strong

set to be 10,828 keys strong. The average MSD was calculated at 6.6741.

Streib continue the analysis until April 2002 when there was 1,945,876,437

keys total and 12,285 keys in the strong set. The source code used to do the

analysis, keyanalyze, was released under GPL open source terms.

Drew Streib’s research points to more resent research by Jason Harris [22]
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utilizing the keyanalyze source code, however again the website is offline and

this time the Internet Archive does not have any useful records.

In 2004, Jrgen Cederlf conducted more research and analysis of the web

of trust, but this time it was more graphical [?]. Cederlf graphed the web of

trust as a group matrix such that, ”A dot in column x, counting from left,

and row y, counting from the top, means that key number x has signed key

number y. A red dot means a signature of level 0 or 1, a blue dot level 2

and a green level 3. Signatures which are not on the primary User ID are

represented by a darker dot.” The image generated appear as a leaf when

keys are sorted by MSD and can be seen in figure 1.

Henk P. Penning continued the analysis, which continues today, and is

probably the most complete with many interesting graphs [36]. The most

recent graphs have been included in appendix A.10. While unclear when the

research began, the graphs present data from 2003 to current. All recent

data shows that the strong set is growing and that the MSD to all keys is

decreasing. The strong set contains approximately 50,000 keys. The number

one ranked key, Peter Palfrader, has a MSD of 3.5832. One interesting piece

of data from Penning’s research is the average degree or signatures per key

within the strong set is approximately 10. That means that the average user

has, on average, 10 signatures. There are of course many users which have

hundreds of signatures which then act as trust anchors

Penning’s graphs were updated with an idea from Matthew Wilcox to

use the data from Streib and Harris and graph the data over time. These
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Figure 1: OpenPGP Keys graphed as matrix, sorted by MSD.

graphs were similar to a stock index or NASDAQ or if your from the UK,

the FTSE 100, commonly called the Footsie. The footsie graphs by Wilcox

showed the change in strong set over time and the change in top 50 keys,

top 1000 keys to name a few data points. The graphs have been included

in appendix A.11. Subsequently penning’s graphs were updated to show the

footsie idea and are also included in appendix A.10.

Our own analysis of the web of trust top 50 keys is included in appendix

A.5. We show the change in the top 50 keys from 2008 to 2013. The top 50
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keys are fairly stable, with the following key statistics: 6% No Change, 22%

New, 28% Upward Moving, 44% Downward Moving. The downward moving

keys are mainly a result of new keys introduced into the top 50. Most of the

old top 50 keys remained in the top 50 even though their place may have

changed. In analyzing the new keys in the top 50 we find that the keys are

vary strongly connected with most keys with over 200 cross signatures.

• AAE6022E, Karlheinz Geyer has 1030 cross signatures.

• BAB58229, Marcus Frings has 526 cross signatures.

• 4743206C, Joachim Breitner has 259 cross signatures.

• 88C7C1F7, Steve McIntyre has 269 cross signatures.

4.5 Miscellaneous Research:

Gutmann [21] conducted a survey in which respondents chose email address,

DNS, or IP address as a better identifier than a X.500 Distinguished Name.

Respondents to the survey selected a repository presence check versus a more

traditional CRL. Respondents also chose HTTP access over LDAP as an

access method. For these reasons and possibly easier application development

this thesis chose OpenPGP. OpenPGP also does not have the rigid structure

associated with its PKI/X.509 counterpart.

In a more recent article [13], Stephen Farrell, suggests that we continue

with our current PKI and not reinvent things until something better comes
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along. He outlines the reinvention and alternatives over the years; incorporat-

ing XML and JSON into PKI, Simple PKI (SPKI), XML Key Management

Specification (XKMS), and DANE (DNS-based Authentication of Named

Entities). All of which have yet to replace our X.509 based PKI system. Far-

rel then proceeds to outline two new pieces of technology that he speculates

will allow clients to use their own PKI. First, he calls for a key-registration

service which would register client public keys for authentication to web ser-

vices. Second, a strategy to bind different keys from different devices to the

same user account to allow for device mobility.

In contrast to Perrin’s paper [37] on the use of “cryptoIDs” this thesis

presents that the use of current OpenPGP key fingerprints as a mechanism

to key distribution can be used. Perrin also wished to establish a more long-

lived identifier or “cryptoID” under which public/private key pairs would

be created. This description comes very close to how OpenPGP can create

a long lived parent key with shorter lived subkeys used for encryption and

signing. The user can establish a long lived key through the parent key

and its collected signatures. Perrin used “cryptoIDs” certificates instead of

X.509 or OpenPGP and established their own format. Also, in regards to

fingerprints and hashing mechanisms the particular implementation can be

updated much the same as how the encryption algorithms are updated to

prevent attacks.

Finally, there is a social stigma associated with encryption. Gaw [16] has

studied how many people see encryption and has identified that many see
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it as a burden and for the paranoid. By infusing encryption into a com-

munity and group dynamics this thesis would hope to make it easier and

remove the paranoid stigma attached to using encryption. Through the use

of easier-to-use applications this thesis would remove the burden and extra

steps associated with encryption. This thesis presents a trust model to re-

move some burden in verification of keys through automatic key tagging with

the use of Trust Rules.

5 Description of Trust Model:

In developing a new trust model there are a few requirements that this thesis

wishes to take into consideration. First, the trust model should work with

the current “Web of Trust” OpenPGP model as well as develop its own

mechanism for establishing trust. The Web of Trust has been well established

in user’s minds and is a good model for securely establishing communications.

The end user should maintain their responsibility in establishing how and

who they choose to trust. Second, our new trust model should maintain and,

in most cases, increase security from the Web of Trust model, while being

resilient and resistant to attacks. Third, our new trust model should be easy

for end users to use. Crypto-systems have historically been hard to use, so

this new trust model should be developed with usability in mind.

In addition to the requirements this thesis also has developed this trust

model with the following assumptions.
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1. Trusted Introducer and/or Certification Authorities should not be trusted

solely on their own word, but should be confirmed through others as-

sertions as well.

2. Any single Trusted Introducers and/or Certification Authorities may

make mistakes, can be compromised, or act without regard to a specific

user.

3. The only truly trusted party is that of the end user to which the keyring

belongs– Only that user’s certifications can be fully trusted.

4. Key material will most likely be exposed, compromised, attacked and

will need to be renewed or revoked at some point in the future.

5.1 OpenPGP Integration:

Integration in OpenPGP is a requirement, because it is a well established

crypto-system that many people use for securing their communications. The

likelihood of creating and gathering new users to a new crypto-system would

be problematic and only serve to fracture the crypto-system landscape. By

building on what others have already done this thesis seeks to leverage their

contributions and implement our new trust model within the already estab-

lished protocols. This thesis has already discussed the OpenPGP specifi-

cations with some detail, so it will now focus on what would be needed to

implement the trust model within OpenPGP. This thesis does not wish to

39



change the OpenPGP specification nor does it think it is needed. Our cur-

rent trust model can be implemented without changes to the OpenPGP RFC

4880 Standard [4].

5.2 Trust Packets:

OpenPGP RFC 4880 [4] allows for a “Trust Packet” that is used internally

by software implementations. These trust packets should be ignored on input

to programs and also should not be exported as output outside of the local

keyring by programs. By using these packets this thesis presents a new trust

model. This trust model can be developed without fear of users tainting

the current Web of Trust. Additional trust models may be developed by

end users to fit their security requirements. Because the Trust Packets can

not be exported it allows only the current end user to establish trust with

them and allows the program to use these packets for management of our

trust model. The RFC leaves the format of the Trust Packets to the software

package implementation so, this leaves us room to insert our trust model.

This thesis will use the Trust Packet to store a tag or folder marker to

denote which “Trust Rule” was satisfied when the trust calculations were

run. This tag will serve to quickly establish the corresponding Trust Rule

with the key without recalculating its trust. This will serve as a caching

mechanism so that the trust model can safely operate on numerous keys

without overloading the application with new trust calculations. This is not

to say that the tags are cached indefinitely, but only when the program does
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not upload or download new or updated keys. Whenever a key update is

performed by the program key trust calculations must be preformed again

on the updated keys to verify the trust rule corresponding to applied tags

are still valid. For example, if the key has been updated its trust calculations

must be run again to confirm the validity of the tag or tags associated with

it. When keys are updated a key may have been revoked, may contain

more signatures, or signatures may have been revoked on that key by their

signators, so this recalculation of trust rules must take place.

A tag will consist of a Name Field, formatted as string of 255 bytes in

length, plus an ID Field consisting of two octets that will specify the unique

identifier. This ID Field will be used to distinguish the tag on keys and in

Trust Rules. Keys may be tagged by more than one tag at a time with each

tag having its own corresponding Name and ID Fields.

Our Trust Model will use the following format for the The Trust Packet:

• One octet consisting of the version number. (1)

• One octet stating the number, in bytes, of the tag or tags that follow.

• One or more octets consisting of tag IDs.

5.3 Trust Rules:

This thesis will use “Trust Rules” to determine when and if a key should be

trusted. These Trust Rules establish clear rule-based conditions that must

be satisfied for a key to be valid and its identity trusted. This type of trust
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is different from the trust established in a trusted introducer or a friends

signature on other’s key. Our trust model is only used in confirming trust

in an identity not for calculating or introducing trust to or through others.

All trust calculations using our trust model are kept internal and should not

be the basis for signing another’s key. Key signatures should be evaluated

the same as if using the Web of Trust, in that you manually confirm a key.

The signing of keys should be maintained through the normal methods via

manual verification of key IDs, key fingerprints, government IDs, key signing

parties, etc.

Trust Rules can be thought of as filters or tags that sort email. The Trust

Rules operate on OpenPGP keys and tag them when a rule is satisfied. The

criteria for satisfying a rule can be as simple as a key having a particular

signature to more complex conditional operations. Conditional Trust Rules

may calculate the trust from a group of keys, relative age of key, number of

keys, etc.

Trust Rules are created by key value pairs, operators: =,<,>, AND,

NOT, OR and built-in functions: GROUP, CONTAINS, BEGINSWITH,

ENDSWITH. The key can be any OpenPGP field and the value is any

valid input for that respective field. A Trust Rule may be made of one

or more expressions. Each of these expressions have the form of: Expression

= ‘OpenPGP field’ Operator OR Keyword ‘value’. A Trust Rule may com-

bine multiple expressions via logical operators to create larger more complex

expressions.

42



5.3.1 Operators:

• Equals “=” : Is the comparison operator in which a string or nu-

merical comparison is done on the key and its value pair. A successful

comparison will result in a true condition.

• Less than “<” : Is the less than operator in which a numerical com-

parison is done either integer or date wise comparison. A successful

comparison (of lesser value) will result in a true condition.

• More than “>” : Is the more than operator in which a numerical

comparison is done either integer or date wise comparison. A successful

comparison (of more value) will result in a true condition.

• AND : Is the AND operator which performs a logical conjunction on

two expressions which outputs the result. Both expressions are required

to be true for a true output.

• NOT : Is the NOT or Negative operator which performs the negation

of an operation. Such that the result of an operation is the direct

opposite from what it should have been. True becomes false and false

becomes true.

• OR : Is the OR operator which performs a logical disjunction on two

expression which outputs the results. Both expressions are required to

be false for a false output. Where as, any true input results in a true

output.
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5.3.2 Functions:

Functions may be used anywhere an expression would be allowed.

• GROUP: is used to allow the evaluation of a group of values with

a threshold for valid (successful) evaluation. It has the format of

GROUP(key,threshold) {item1, item2, item3, ... itemN} where thresh-

old is an integer value that must be met for the evaluation to be true

and item1 through itemN are a list of values to compare against.

• CONTAINS: is used to do a sub string comparison search on a field.

CONTAINS returns true if a sub string match has been found within

the parent search string. Its format is CONTAINS(key,subString) where

key is the OpenPGP field name and subString is the search string that

if found within key will return true.

• BEGINSWITH: is used to search a key value for a sub string at

the beginning of a string. The search is anchored at the beginning

of the parent string and only returns true if the parent string starts

with and matches the sub string specified. Its format is BEGIN-

SWITH(key,subString) where key is the OpenPGP field name and sub-

String is the search string that is anchored at the beginning.

• ENDSWITH: is used to search a key value for a sub string at the

end of a string. The search is anchored at the end of the parent string

and only returns true if the parent string ends with and matches the
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sub string specified. Its format is ENDSWITH(key,subString) where

key is the OpenPGP field name and subString is the search string and

anchored at the end.

5.3.3 Example Trust Rules:

To tag all Version 4 OpenPGP keys it can be written as:

Version 4 Keys: Version Number = 4

To tag all RIT keys within our key ring it can be written as:

RIT Keys: ENDSWITH(User ID, ‘‘rit.edu’’)

To tag all RIT keys signed by 3 signatures out of a group of 5 keys it can be

written as:

RIT Group:

GROUP(Issuer,3){4E3F1504,C74E9DC5,B6D2CB01,10E8C93F,E9DC5B6D,194BC24A}

AND

ENDSWITH(User ID, ‘‘rit.edu’’)

Notice the use of the User ID. This would then require that the key being

evaluated also belong to an rit.edu entity and not allow any keys which only

satisfy the GROUP clause to succeed. Also, for display purposes this thesis

has used Key IDs, when in implementation the use of key fingerprints or the

keys themselves should be used to prevent collisions within rules.
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5.4 Resistance:

In developing new Trust Rules for use in our new model this thesis makes sure

that the rules are resistant against attacks from outsiders and eavesdroppers.

It may be possible for an attacker to setup an entire network of Certification

Authority Servers, End User Keys, Signatures, etc. so that they could insert

their mistaken OpenPGP keys into a good system. To prevent this, the thesis

has proposed a system and trust model that is resistant to false claims while

still allowing collaboration. Such a system should be setup to verify claims

through more than one party and utilize a system that rewards good parties

and punishes bad parties.

5.4.1 Web of Trust:

The Web of Trust is resistant to brute attacks such as the previous example

as long as each single user verifies keys manually. If a user starts to sign

keys indiscriminately and does not verify the identity or the key holder they

degrade the value of their own signature. This degradation of signatures can

eventually affect the entire web, however, the person would hopefully obtain

a reputation of not carefully verifying keys. This reputation mechanism is

mostly social and would not strictly insure that our good web of trust is

maintained. It is feasible that an entire network of false keys may be setup

and interconnected that is entirely false. This false network could appear

to be a valid and good behaving part of the web with interconnected key

signatures, but is in fact all run by an attacker.
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While manual verification can be burdensome, it is vital to maintaining

a proper Web of Trust. This verification however, sometimes is impossible

given the miles that may exist between communicating entities. So, to forgo

this manual verification one can use third-party verifiers or “Trusted Intro-

ducers” to perform this verification. This however, has the affect of allowing

the Trusted Introducer free reign over what they claim to be valid. Once

trusted a Certification Authority or Trusted Introducer is free to sign any

key they wish, which in fact could be an attackers key. Our trust model

can combat this side affect by requiring, if desired, that more third parties

verify the identity and certification claims of these Trusted Introducer or

Certification Authorities.

5.4.2 Our Trust Model:

Through the use of multiple trusted third parties this thesis wishes to miti-

gate one or more rogue certification authorities from polluting the signature

web with false claims. These third party authorities are chosen by the end

user and inserted into a Trust Rule with the GROUP function so that a sub-

set of them must agree before tagging the key as valid. By using an internal

non-exportable trust packet the thesis prevents the user from automatically

signing keys without the manual verification that should be required. Sig-

natures by end users should denote verification of identity by said user, not

the successful evaluation of a user’s established Trust Rule(s). Users are

free to create their own set of Trust Rules based on their group interactions

47



and own personal security requirements. By not allowing the exportation of

Trust Signatures and the automatic signing of keys this thesis presents that

our trust model can maintain the resistance to attack that the Web of Trust

has while increasing the ease of use.

5.5 Resilience:

Any crypto-system or trust model needs to be resilient in the face of attackers.

The need to identify and recover from attacks is paramount, since attacks

and the possibility of compromise should be expected. The ability to deal

with and recover from an attack is as vital as the system’s ability to resist an

attack. Our trust model allows for the recovery from an attack the same way

as the Web of Trust deals with attacks, through the revocation of signatures

and keys.

5.5.1 Web of Trust:

If a user has signed a key with their signature and they no longer believe the

key represents or belongs to the certified person claimed by the key the said

signature may be revoked by the user. (One should wonder how carefully

they verified the identity of the person to begin with before signing the key.)

In this case the user has stopped certifying the other users identity and key

pairing.

There are other reasons that a signature may be revoked, such as an

employee leaving a business which included an email address and associated
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OpenPGP key. The revocation of the key in this case does not state that

the key identity is in question only that the person in question no longer

maintains a persona with that company. If not revoked it may appear that

the person still maintains an email address and works for said company.

If a user feels their own keys may have been compromised they can revoke

the entire OpenPGP key. This could be very bad for the user as they will

lose all the accumulated signatures on that OpenPGP key and will have to

collect them again, that is have others sign the new key. In the case of a key

compromise the revocation should state as such with a “Key material has

been compromised” signature.

5.5.2 Our Trust Model:

While our model uses the same revocation technique as the Web of Trust

it does have some intricacies when a trusted third party has been found to

be non-trust worthy. Lets look at what would normally happen if a Trusted

Introducer was found not to be so trustworthy. First, the user would revoke

their signature and remove the Trusted Introducer from their trusted list.

Next, all the trust calculations would need to be recalculated. After these

calculations any key that was only verified by the now distrusted party would

need to be removed from the trusted section of the keyring.

With our trust model the revocation of a trusted certifier would also

include a recalculation of trust, but the revocation of a signature would only

be required if the user signed the key. A signature of trust is not needed
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in our trust model, but can be used to further enhance security, only the

inclusion in a Trust Rule is required. Obviously the Trust Rules must be

updated to exclude the untrustworthy certifier.

5.6 Usability:

This thesis needs to make sure its new trust model is easy to use. In software

testing of PGP version 5.0 Whitten and Tygar [45] found that many users

could not create keys and other associated OpenPGP tasks in a respectable

time frame. End users can become easily confused and need easy to un-

derstand visual clues. In developing our Trust Rules interface this thesis has

used a common window type that users should already be familiar with. The

window is based on Mozilla Thurderbird’s [9] email filter window. A mock-up

of a proposed window for adding tags is shown in Figure 2.

In Figure 2 this thesis presents an example of a Trust Rule that would

match all keys that end with “rit.edu” thus matching all RIT email. These

keys will then be tagged with RIT. While this example is somewhat simple

the idea of being able to sort and classify keys in an automatic fashion allows

us to quickly and easily setup our Trust Rules and then go about our business

of using the keys in communication. Once Trust Rules have been defined this

should reduce the amount of time spent by the end user analyzing keys and

the signatures that certify them. This manual process can now be carried

out by the Trust Rules with keys tagged as the user has decided. The user

only has to import the new key into their keyring and the Trust Rules will
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Figure 2: Mock-up of adding a Trust Rule.

be evaluated and the key tagged automatically.

In establishing the relationship between tagged keys and non tagged keys

this thesis presents the need to keep it clear in the end users mind, otherwise

their assumptions might be misplaced. The interface should make it clear

that tagged keys are not the same as Trusted Keys which have been verified

and signed by the user. Tags allow for automatic sorting and classification of

keys into groups. The tags or groups might have increased security associated

with them, but that may not always be the case. Since the user is capable of

establishing any Trust Rule that they wish, it may be that they have added

Trust Rules that do not have any additional security benefit. The decision

of establishing more trust in tagged keys should be left to the end user and

how they implement their Trust Rules. Each end user should know if a Trust

51



Rule is for security or nearly for sorting and classification. With that in mind

this thesis is treating all tagged keys as a separate case from Trusted Keys,

but not grouping them in with “Other Collected Keys” as some software

packages call non trusted keys. This distinction should be clear after looking

at Figure 3 which shows a mock-up of how this thesis see Tagged Keys being

integrated with current software packages.

Figure 3: Mock-up of Key Management using Tags.

To denote the distinction that this thesis would wish to keep between

Trusted Keys, Other Collected Keys, and Tagged Keys another tab has been

created for the Tagged Keys as shown in Figure 3. This mock-up was derived

from the encryption manager Seahorse version 2.20.1 [10]. Notice that a

“Tagged Keys” tab to the already available tabs. It also tagged the keys as

“opensc” because they belong to opensc mailing list participants. With the

presented mock-up this thesis hopes it provides an easy to use interface for

the end user to interact with.
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6 Evaluation:

In this section the thesis will evaluate our new trust model through user case

studies and later with some quantitative analysis. This thesis presents where

Trust Rules makes sense for the end user and how it can simplify the key

verification process.

6.1 User Case Study:

6.1.1 Rochester Institute of Technology:

Using RIT as an example, RIT could automatically sign one PGP key for

all authenticated users through an online system that integrates into the

campus email system or other online services, such as myRIT. Next, each

department could sign a user’s key if certain requirements are met such as:

physical presentation of RIT ID, membership in said department, RIT ID

Number, RIT username, and OpenPGP key fingerprint. The RIT ID should

be used to confirm the persons identity, and also match with the person’s ID

picture with the picture on their OpenPGP key. After this all users in the

department and the rest of RIT would know that:

1. The user is a current RIT student/faculty/staff.

2. The user is a member of a particular department.

3. The user’s picture is correct.

4. The user’s public key has been manually confirmed.
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The key would only be considered valid if two signatures are on the key: one

by RIT and one by the department to which the person belongs. The model

that this thesis has described above requires two signatures to be valid. This

simple model would prevent an attacker at any one department from falsely

verifying keys, because they must first be signed by RIT.

6.1.2 Evaluation of Model:

In evaluating the model and how it works for this case or class of organiza-

tion this thesis has evaluated how the model compares to other trust models.

First, with X.509 Certificates it is not possible to prevent or limit key signa-

tures once a Certification Authority has been trusted. All signatures issued

by a CA will be trusted. So, our model is more flexible than X.509. Second,

in comparison to OpenPGP Web of Trust this thesis finds that there would

be a reliance on one person to establish the trust of keys. This reliance

reduces security because of the possibility of compromise and it also goes

against our established criteria for a new trust model. X.509 does have the

ability to distribute Certifications Authority roles to multiple entities, but

each can sign and establish new keys completely independent of each other.

Our model as described with the established Trust Rules would allow for

independent operation while maintaining central RIT control over the key

distribution and signing.
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6.1.3 Social Networking:

Using MySpace, Xanga, bebo, flickr, FaceBook, or any other social network-

ing site as an example this thesis presents a secure mechanism for key ex-

change and verification of identity. The website itself could sign keys of in-

dividual users thereby verifying the digital pseudonym. After which friends

and associates can verify the information in person. These contacts may be

new friends found through the website. Community friends can meet to ver-

ify identity and once a threshold of key signatures has been established the

group or community Trust Rule would be evaluated and make the person a

member in good standing with the community. These networks are already

established and can provide a number of contacts with which a user may

communicate. By having the community develop the rules and sign keys it

provides incentive for new users to join in with secure communications and

lowers the bar for new secure pathways to develop. If an individual had to

approach each user and verify their key it would be a daunting task, but with

the community undertaking this task it distributes the load and allows for

quicker keyring creation. This social networking model would mostly verify

digital pseudonyms, but can be mixed with other trust models, since the

model itself does not prevent multiple rules being run simultaneously.

6.1.4 Evaluation of Model:

In this form the Trust Rules are developed by the group or community that

is going to use them. The specifications of the group need to be satisfied. In
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this case there is a high barrier to enter, because of cost. The cost of setting

up a Certification Authority or other type of structure for each community

would be prohibitive. Our trust model, however allows for each group to

have their own rules and to operate completely independently of each other.

6.2 Quantitative Analysis:

6.2.1 Number of Signatures:

In analyzing our trust model this thesis has picked a particular Trust Rule to

analyze. While other Trust Rules may be developed the best general purpose

Trust Rule this thesis presents is the N of K Servers Trust Rule. The thesis

will evaluate this Trust Rule with a purposed threshold where N = 10 and

K = 15|20 servers. Thus the Trust Rule will have the following format:

Trusted Keys: GROUP(Issuer,10){keyID1, keyID2, keyID3,

keyID4, keyID5,..., keyID15|20}

This should provide the right amount of servers for there to be competition

among the authentication severs while maintaining a small enough number

to be feasible. The threshold is chosen so that a large percentage of servers

must agree before a key is verified as valid. For increased security one only

has to increase the value of N to a larger percentage of K.

To analyze our chosen Trust Rule this thesis evaluates the number of sig-

natures versus the number of total users in a given population. For our Trust

Rule with the threshold for the GROUP function set at 10 the maximum sig-
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natures any user should be required to get would be 10. This maximum is

shown in Figure 4 where it has been graphed and used for our analysis. Next,

this thesis compared our model with those of other types of trust system, such

as X.509 Certificates and the more traditional Web of Trust. The Web of

Trust worst case scenarios is that each user has to obtain every other users

signature. That is, the total number of signatures is equal to the total num-

ber of users. The Web of Trust is graphed in Figure 4 as well. The Web of

Trust best case scenarios is one where every person in the web knows enough

people to connect themselves with everyone else in the network through just

one hope. Or put differently, if I know 10 people and those 10 people know

another 10 people we have just connected 100 people while allowing myself

to only know the first 10 people directly. This relationship through friends is

established with a limit of knowing the next person only through one other

person. The relationship can not be a distance greater than one person away.

This best case Web of Trust relationship happens to be S =
√
U where S is

the number of signatures required and U is the number of total users. This

best case is of course a best case and not very probable in the real world,

because each person would need to know distinctly different people and never

overlap, otherwise the number of signatures required by each person would

have to be increased because of duplication. Finally, this thesis has graphed

X.509 Certificates by showing that only one signature or certification is re-

quired. By having Certification Authorities integrated into Operating Sys-

tems, Web Browsers, and Email clients it reduces the certifications down to
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only one as long as an already trusted CA is chosen.

Figure 4: Number of Users Versus the Number of Signatures.

Now that this thesis has presented the different trust models graphed

in Figure 4 it is possible to analyze the trust models and evaluate each by

comparing their intersections, and respective slopes. First this thesis presents

that all of the trust models start with one signature where as the Trust Rules

starts with ten required signatures. As users are added to the network/web

each model requires more and more signatures, except the X.509 trust model

and Trust Rules. The X.509 trust model incorporates Certification Author-

ities certificates into the host computer via the Operating System or User

Application Programs. Because of this X.509 only requires one signature

from an already trusted CA to be almost one hundred percent accepted.
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Trust Rules does not require more signatures because this thesis has decided

to use fifteen to twenty certification authorities to establish our trust in an

end user’s identity. These same CAs will be used regardless of the number

of users in the network.

Next, this thesis presents that the slopes and associated number of sig-

natures differ between the worst case and best case scenarios of the Web of

Trust model. As stated previously, the worst case is S = U and the best

case is S =
√
U where S is the number of signatures and U is the number

of users. Any slope that is less than that of the best case scenarios can be

considered an improvement by reducing the total number of required signa-

tures. That being said, the security of such a system might be questioned

if the number of required signatures is substantially lower. There may be

a compromise between ease of introduction into the encryption system and

sustained security over time as new users are added.

In evaluating where our Trust Rules model with its current rules may be

used, it appears that it would be a good model when the number of users if

over ten. Even though it does not surpass the Web of Trust best case until

over one hundred users our Trust Rules would probably be a good choice.

This is because the best case scenarios is less likely to appear in the real

world. It is more reasonable to assert that the required number of signatures

is between ten and one hundred.
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7 Future Research:

7.1 X.509:

More research needs to be done into using X.509 with Trust Rules. This

thesis chose OpenPGP because of its lack of rigid structure and reliance in

a hierarchical tree and because there was a clear path to implementing our

Trust Rules within software packages with minimal specification and applica-

tion changes. This does not forgo the X.509 Trust Model from implementing

Trust Rules or another type of conditional rule-based system, but it appears

at this time that there would be substantial work involved in application,

specification, and social change. There is already a widely used system de-

veloped around X.509 certificates, so that would further complicate the de-

velopment of a new trust model for that system. The trust model would

more likely need to make better business sense economically than it would

security wise to be adopted. It still would be possible and interesting to see

some type of conditional rule-based trust model implemented in X.509.

7.2 Additional Trust Rules:

This thesis has explored a very limited scope with regards to the many possi-

ble Trust Rules that could be developed. Many different Trust Rules need to

be developed and evaluated to test their security additions or subtractions.

Because of the flexibility Trust Rules can very easily be written poorly in a

manner that would harm the end users security. Such a Trust Rule would be
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counting the number of signatures on a given key. If such a Trust Rule were

put into place it could easily be bypassed by an attacker.

Our current Trust Rule has a slope of zero and does not scale as the

number of users scales. While this can be a feature it can also be a security

weakness, as each Certification Authority is trusted with more and more

verifications. To combat this reliance on any one Certification Authority this

thesis would need to develop a Trust Rule that scales some, but one that

does not have a slope greater than OpenPGP Web of Trust. There could

also be a Trust Rule that steps up the threshold when a given number of

keys is trusted through that rule. As more keys are trusted through a given

rule that rule’s threshold could automatically be increased so that the total

amount of trust in any set of Certification Authorities is reduced.

7.3 Email Integration:

A natural extension to Trust Rules would be to integrate the tags feature

into an email client so that it can be used for sorting and other email related

tasks. The tags could be used to automatically bypass spam filtering allowing

an email to go directly to a specific folder based on the tag that was applied

to the email.
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8 Conclusion:

This thesis presents that “Trust Rules” can provide a service that until now

has been missing in most cyrptosystems. The use of user established rules

provides the user with greater flexibility and the ability to decide their own

security requirements. This thesis sees conditional trust through the use of

rule-based matching and key identification as a natural evolution from man-

ual key verification. Through the use of tags the end user may easily organize

and catalog their keys to enhance their security landscape. These rules can

be very simple and provide organization only, or they may be very complex

and incorporate multiple Certification Authorities and automatic key revo-

cation. In either case this thesis find the reduction in manual steps taken

through automatic signature key review and verification appealing. This the-

sis presents that general purpose “Trust Rules” as outlined will work for most

users in establishing key validity and trust. For those more advanced or more

security conscious users a mixing of “Trust Rules” and Web of Trust manual

verification is possible. Our trust model does not prevent continued use of

the Web of Trust, but merely makes additions to user interactions to make

some processes more automated. This thesis presents that the automated

tag feature would enhance any user’s experience so that they may organize

their keyring more effectively. Overall, this thesis presents “Trust Rules”

with tagging as a valid option regardless of the user’s security preferences.
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A Appendix

A.1 Terminology

The International Telecommunication Union (ITU) Rec. X.800 & Interna-

tional Organization for Standardization ISO 7498-2 [26] defines terms which

are important to this thesis and are outlined below.

Asymmetric (encipherment): (e.g. public key) encipherment, in which

knowledge of the encipherment key does not imply knowledge of the

decipherment key, or vice versa. The two keys of such a system are

sometimes referred to as the “public key” and the “private key”.

Authentication exchange: A mechanism intended to ensure the identity

of an entity by means of information exchange.

Authentication information: Information used to establish the validity

of a claimed identity.

Confidentiality: The property that information is not made available or

disclosed to unauthorized individuals, entities, or processes.

Credentials: Data that is transferred to establish the claimed identity of

an entity.

Cryptography: The discipline which embodies principles, means, and meth-

ods for the transformation of data in order to hide its information
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content, prevent its undetected modification and/or prevent its unau-

thorized use.

Data origin authentication: The corroboration that the source of data

received is as claimed.

Decipherment: The reversal of a corresponding reversible encipherment.

Decryption: See decipherment.

Digital signature: Data appended to, or a cryptographic transformation

(see cryptography) of a data unit that allows a recipient of the data

unit to prove the source and integrity of the data unit and protect

against forgery e.g. by the recipient.

Encipherment: The cryptographic transformation of data (see cryptogra-

phy) to produce ciphertext.

Encryption: See encipherment.

Key: A sequence of symbols that controls the operations of encipherment

and decipherment.

Key management: The generation, storage, distribution, deletion, archiv-

ing and application of keys in accordance with a security policy.

Repudiation: Denial by one of the entities involved in a communication of

having participated in all or part of the communication.
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Password: Confidential authentication information, usually composed of a

string of characters.

Peer-entity authentication: The corroboration that a peer entity in an

association is the one claimed.

Privacy: The right of individuals to control or influence what information

related to them may be collected and stored and by whom and to whom

that information may be disclosed.

Signature: See digital signature.

Symmetric (encipherment): (i.e. secret key) encipherment, in which knowl-

edge of the encipherment key implies knowledge of the decipherment

key and vice versa.

The following terminology is defined in ITU-T X.509 [29]:

Certificate revocation list (CRL): A signed list indicating a set of cer-

tificates that are no longer considered valid by the certificate issuer. In

addition to the generic term CRL, some specific CRL types are defined

for CRLs that cover particular scopes.

Certificate validation: The process of ensuring that a certificate was valid

at a given time, including possibly the construction and processing of

a certification path, and ensuring that all certificates in that path were

valid (i.e., were not expired or revoked) at that given time.
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Certification authority (CA): An authority trusted by one or more users

to create and assign public-key certificates. Optionally the certification

authority may create the users’ keys.

CRL distribution point: A directory entry or other distribution source

for CRLs; a CRL distributed through a CRL distribution point may

contain revocation entries for only a subset of the full set of certificates

issued by one CA or may contain revocation entries for multiple CAs.

Hash function: A (mathematical) function which maps values from a large

(possibly very large) domain into a smaller range. A “good” hash

function is such that the results of applying the function to a (large)

set of values in the domain will be evenly distributed (and apparently

at random) over the range.

Key agreement: A method for negotiating a key value on-line without

transferring the key, even in an encrypted form, e.g., the Diffie-Hellman

technique.

Private key: (In a public key cryptosystem) that key of a user’s key pair

which is known only by that user.

Public-key: (In a public key cryptosystem) that key of a user’s key pair

which is publicly known.

Public-key certificate (PKC): The public key of a user, together with

some other information, rendered unforgeable by digital signature with
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the private key of the certification authority which issued it.

Public key infrastructure (PKI): The infrastructure able to support the

management of public keys able to support authentication, encryption,

integrity or non-repudiation services.

Simple authentication: Authentication by means of simple password ar-

rangements.

Strong authentication: Authentication by means of cryptographically de-

rived credentials.

Trust: Generally, an entity can be said to “trust” a second entity when

it (the first entity) makes the assumption that the second entity will

behave exactly as the first entity expects. This trust may apply only

for some specific function. The key role of trust in this framework is

to describe the relationship between an authenticating entity and an

authority; an entity shall be certain that it can trust the authority to

create only valid and reliable certificates.

RFC 4880 defines the following terminology:

Keyring: A keyring is a collection of one or more keys in a file or database.

Traditionally, a keyring is simply a sequential list of keys, but may be

any suitable database.
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A.2 Top 50 OpenPGP Keys, 2008

Data Collected from: 2008-04-13 Dataset available at http://keyserver.kjsl.com/ka/

Rank Key ID Name MSD
1 94C09C7F Peter Palfrader 3.5555
2 68FD549F Martin Michlmayr 3.6357
3 C82E0039 Peter Palfrader 3.6473
4 F081195D Matthias Bauer 3.6479
5 E263FCD4 Kurt Gramlich 3.6562
6 75BE8097 Florian Lohoff 3.6574
7 248AEB73 Rene Engelhard 3.6629
8 3F3E6426 Guido Guenther 3.6668
9 74E0B766 Andreas Mueller 3.6762
10 607559E6 Benjamin Hill (Mako) 3.6793
11 307D56ED Nol Kthe 3.6855
12 00D8CD16 Alexander Schmehl 3.6890
13 797EBFAB Enrico Zini 3.6978
14 F2CF01A8 Bdale Garbee 3.7071
15 C99870B1 Benjamin Hill (Mako) 3.7282
16 BC7D020A Alexander Wirt 3.7318
17 C158CCED Florian Lohoff 3.7325
18 CD15A883 Alexander Schmehl (private) 3.7337
19 258D8781 Michael Bramer 3.7388
20 7E7B8AC9 Joerg Jaspert 3.7436
21 19C9B6BA Maximilian Wilhelm (uni) 3.7437
22 2BE16D01 Moray Allan 3.7484
23 5706A4B4 Simon Richter 3.7521
24 0F7A8D01 Norbert Tretkowski 3.7522
25 BD8B050D Roland Rosenfeld 3.7528
26 9B7C328D Luk Claes 3.7532
27 9ED101BF Michael Banck 3.7646
28 3E8DCCC0 Martin Wuertele 3.7706
29 3FCC2A90 Amaya Rodrigo Sastre 3.7743
30 E10F502E Marcus Frings 3.7764
31 EE0977E8 Jens Kubieziel 3.7790
32 1BF8DE0F Roland Stigge (ernie) 3.7826
33 29499F61 Sam Hocevar 3.7849
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34 A0ED982D Christian Brueffer 3.7931
35 5A35FD42 Christoph Ulrich Scholler (FNB) 3.7968
36 5D64F870 Martin Zobel-Helas 3.7975
37 29F19BD1 Dr. Michael Meskes 3.7994
38 46F3212D LaMont Jones 3.7994
39 44779E18 Fabio Massimo Di Nitto 3.8021
40 253E58E3 Noah Heusser 3.8042
41 9C67CD96 Torsten Veller 3.8086
42 58510B5A Christoph Berg 3.8090
43 D98502C5 Elmar Hoffmann 3.8099
44 8A724E45 Stefan Roehrich 3.8112
45 DD934139 Patrick Feisthammel 3.8123
46 5B0358A2 Werner Koch 3.8124
47 95FECA34 Volker Gueth 3.8126
48 969457F0 Joost van Baal 3.8150
49 CF3401A9 Elmar Hoffmann 3.8185
50 6D8ABE71 Christoph Berg 3.8250
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A.3 Top 50 OpenPGP Keys Graph

Figure 5: Graph of Top 50 OpenPGP Keys ranked by MSD. 2008
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A.4 Top 50 OpenPGP Keys, 2013

Data Collected from: 2013-08-25 Dataset available at http://pgp.cs.uu.nl/doc/top 50.html

Rank Key ID Name MSD
1 94C09C7F Peter Palfrader 3.57031
2 607559E6 Benjamin Hill (Mako) 3.64598
3 C82E0039 Peter Palfrader 3.64762
4 65D0FD58 CA Cert Signing Authority (Root CA)3.65037
5 68FD549F Martin Michlmayr 3.67061
6 AAE6022E Karlheinz Geyer (TUD) 3.67124
7 307D56ED Nol Kthe 3.69334
8 E263FCD4 Kurt Gramlich 3.69883
9 248AEB73 Rene Engelhard 3.70122
10 C99870B1 Benjamin Hill (Mako) 3.70254
11 F2CF01A8 Bdale Garbee 3.70501
12 797EBFAB Enrico Zini 3.71041
13 BAB58229 Marcus Frings (Work) 3.72188
14 E10F502E Marcus Frings 3.72582
15 BD8B050D Roland Rosenfeld 3.73317
16 74E0B766 Andreas Mueller 3.74222
17 3F3E6426 Guido Gnther 3.74547
18 F081195D Matthias Bauer 3.74649
19 75BE8097 Florian Lohoff 3.75182
20 BC7D020A Alexander Wirt 3.75615
21 9B7C328D Luk Claes 3.76101
22 7E7B8AC9 Joerg Jaspert 3.77075
23 19C9B6BA Maximilian Wilhelm 3.78249
24 2BE16D01 Moray Allan 3.78292
25 58510B5A Christoph Berg 3.79384
26 D98502C5 Elmar Hoffmann 3.79597
27 4743206C Joachim Breitner 3.80009
28 88C7C1F7 Steve McIntyre 3.80134
29 5706A4B4 Simon Richter 3.80223
30 9ED101BF Michael Banck 3.80293
31 29F19BD1 Michael Meskes 3.80393
32 9C67CD96 Torsten Veller 3.80644
33 EE0977E8 Jens Kubieziel 3.81234
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34 CF3401A9 Elmar Hoffmann 3.81279
35 C0143D2D Christian Perrier 3.81391
36 5D64F870 Martin Zobel-Helas 3.81935
37 1880283C Anibal Monsalve Salazar 3.82135
38 C158CCED Florian Lohoff 3.8221
39 969457F0 Joost van Baal 3.82294
40 EC152942 Gerfried Fuchs 3.82378
41 0F7A8D01 Norbert Tretkowski 3.82437
42 8501C7FC Sebastian Harl 3.825
43 5A35FD42 Christoph Ulrich Scholler (FNB) 3.82564
44 98016DC7 Josef Spillner 3.83135
45 A0ED982D Christian Brueffer 3.83323
46 258D8781 Michael Bramer 3.83393
47 253E58E3 Noah Heusser 3.83535
48 29499F61 Sam Hocevar 3.83644
49 7244970B Kurt Roeckx 3.83852
50 44779E18 Fabio M. Di Nitto 3.84032
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A.5 Top 50 OpenPGP Keys Compared

Comparison of 2013 data to 2008 to note changes in the top 50 keys sorted
by MSD. Key statistics: 6% No Change, 22% New, 28% Upward Moving,
44% Downward Moving.

Rank Name MSD Change
1 Peter Palfrader 3.57031 No Change
2 Benjamin Hill (Mako) 3.64598 ↑ 10th
3 Peter Palfrader 3.64762 No Change
4 CA Cert Signing Authority (Root CA)3.65037 NEW
5 Martin Michlmayr 3.67061 ↓ 2nd
6 Karlheinz Geyer (TUD) 3.67124 NEW
7 Nol Kthe 3.69334 ↑ 11th
8 Kurt Gramlich 3.69883 ↓ 5th
9 Rene Engelhard 3.70122 ↓ 7th
10 Benjamin Hill (Mako) 3.70254 ↑ 15th
11 Bdale Garbee 3.70501 ↑ 14th
12 Enrico Zini 3.71041 ↑ 13th
13 Marcus Frings (Work) 3.72188 NEW
14 Marcus Frings 3.72582 ↑ 30th
15 Roland Rosenfeld 3.73317 ↑ 25th
16 Andreas Mueller 3.74222 ↓ 9th
17 Guido Gnther 3.74547 ↓ 8th
18 Matthias Bauer 3.74649 ↓ 4th
19 Florian Lohoff 3.75182 ↓ 6th
20 Alexander Wirt 3.75615 ↓ 16th
21 Luk Claes 3.76101 ↑ 26th
22 Joerg Jaspert 3.77075 ↓ 10th
23 Maximilian Wilhelm 3.78249 ↓ 21st
24 Moray Allan 3.78292 ↓ 22nd
25 Christoph Berg 3.79384 ↑ 42nd
26 Elmar Hoffmann 3.79597 ↑ 43rd
27 Joachim Breitner 3.80009 NEW
28 Steve McIntyre 3.80134 NEW
29 Simon Richter 3.80223 ↓ 23rd
30 Michael Banck 3.80293 ↓ 27th
31 Michael Meskes 3.80393 ↑ 37th
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32 Torsten Veller 3.80644 ↑ 41st
33 Jens Kubieziel 3.81234 ↓ 31st
34 Elmar Hoffmann 3.81279 ↑ 43rd
35 Christian Perrier 3.81391 NEW
36 Martin Zobel-Helas 3.81935 No Change
37 Anibal Monsalve Salazar 3.82135 NEW
38 Florian Lohoff 3.8221 ↓ 17th
39 Joost van Baal 3.82294 ↑ 48th
40 Gerfried Fuchs 3.82378 NEW
41 Norbert Tretkowski 3.82437 ↓ 24th
42 Sebastian Harl 3.825 NEW
43 Christoph Ulrich Scholler (FNB) 3.82564 ↓ 35th
44 Josef Spillner 3.83135 NEW
45 Christian Brueffer 3.83323 ↓ 34th
46 Michael Bramer 3.83393 ↓ 19th
47 Noah Heusser 3.83535 ↓ 40th
48 Sam Hocevar 3.83644 ↓ 33rd
49 Kurt Roeckx 3.83852 NEW
50 Fabio M. Di Nitto 3.84032 ↓ 39th

Footnotes: Analysis of ”NEW” Keys – AAE6022E, Karlheinz Geyer has
1030 cross signatures. BAB58229, Marcus Frings has 526 cross signatures.
4743206C, Joachim Breitner has 259 cross signatures. 88C7C1F7, Steve
McIntyre has 269 cross signatures.
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A.6 OpenPGP Keys 950-1000 Ranked by MSD

Data Collected from: 2008-04-13 Dataset available at http://keyserver.kjsl.com/ka/

Rank Key ID Name MSD
950 4F0BEABB Klaus J. Mueller 4.2779
951 BF85AB31 Matthias Kalle Dalheimer 4.2779
952 4FC59E44 Alexander Schremmer 4.2785
953 632C74BF Julian Baeume 4.2785
954 C81115B1 Sebastian Jaenicke 4.2787
955 DC426429 Frank Thomas 4.2788
956 D7FA4512 Joerg Schmitz-Linneweber 4.2790
957 89754606 Rick van Rein (business) 4.2792
958 D1813CED Achim Dreyer (signing key) 4.2794
959 B83A8797 Sven Lankes 4.2795
960 58536791 Andrew Tridgell 4.2798
961 7CDC44F3 Karl Deutsch 4.2802
962 DF118AF1 Havard Eidnes 4.2802
963 5E642B40 Frank Matthie 4.2803
964 9DED2AA5 Moritz Muehlenhoff 4.2805
965 7DFF8533 peter honeyman 4.2820
966 F681E4CE Jan Schmidle 4.2820
967 56BA5951 Jan Willem Knopper 4.2824
968 6248BA12 Israel Herraiz 4.2826
969 293697C2 Florian Reitmeir 4.2827
970 7032F238 Jon Dowland 4.2831
971 44DD7643 Georg Nikodym 4.2832
972 6F268727 Nathan Lutchansky 4.2849
973 E3046DF3 Jos De Graeve 4.2849
974 1242A6F2 Simon Hausmann 4.2850
975 B98F8E89 Darryl Ross 4.2850
976 A1EE761C Pierre Habouzit 4.2854
977 1AAAC2A4 Andreas Mller (Student) 4.2854
978 F2D58DB1 DFN-PCA, CERTIFICATION 4.2857
979 890B15B2 Alberto Garcia Gonzalez 4.2858
980 7A588C62 Mark Knox 4.2862
981 627CCF95 Bas Wijnen 4.2866
982 5D54A300 Jeff Snyder 4.2869
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983 E12469C1 Ruediger Weis 4.2875
984 7FFA98B4 Jean-Francois PARIS (certificat) 4.2876
985 DA4A1116 Bernhard E. Reiter 4.2879
986 EC63E6B7 Jos De Graeve 4.2879
987 00292B81 Nathalie Weiler 4.2880
988 F61F73F8 Bastian Venthur 4.2882
989 49E2CF4C Paul Mackerras 4.2883
990 EB9CDAD5 Eduardo Marcel Macan 4.2884
991 73FAAFF8 Christophe Mutricy 4.2885
992 09D9E662 Jonathan Kleinehellefort 4.2885
993 DDAF6454 Bernhard Walle 4.2890
994 5E35DB91 Stephan Rutten 4.2890
995 13A9EA7C Ellis Whitehead 4.2892
996 6D742669 Luca Capello 4.2894
997 9DFFAAD4 Ludovic Brenta 4.2895
998 B65C0BE9 Ralf Meyer 4.2897
999 97B3E98E Matthias Reich 4.2902
1000 57EF3E4F Michael Clark 4.2904
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A.7 OpenPGP Keys 950-1000 Graph

Figure 6: Graph of OpenPGP Keys 950-1000 ranked by MSD.
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A.8 OpenPGP Keys 99950-100000 Ranked by MSD

Data Collected from: 2008-04-13 Dataset available at http://keyserver.kjsl.com/ka/

Rank Key Fingerprint MSD
99950 412955B6 E1718941 8.2315
99951 C86D3413 991C6A37 8.2316
99952 CF7C9D61 F6B815D5 8.2316
99953 7AC02409 3393825D 8.2318
99954 AAA50CDB AC72D729 8.2318
99955 3F4B27A3 131CE23D 8.2332
99956 FB43C837 44EBF755 8.2332
99957 15B6C4E3 5B980B91 8.2333
99958 5C3D8D98 363A8D16 8.2333
99959 67FDD15A 6990EC20 8.2336
99960 C12A3E91 1060E131 8.2336
99961 F977B8B1 AE242AF4 8.2336
99962 F5F858F3 40ACFE10 8.2341
99963 4462C983 4A43FD91 8.2344
99964 1D347C60 3022C2C4 8.2349
99965 6AC7682D 0CA023CD 8.2349
99966 E44D7F40 260E7CD9 8.2349
99967 77393AA4 F33F7925 8.2350
99968 9177F43A 8902B779 8.2351
99969 5DBDDFBD 88F93E1B 8.2354
99970 71210ED5 98EC95E9 8.2362
99971 A0118797 212AC8DE 8.2362
99972 C7595F95 4A056405 8.2362
99973 FC88DE4D 2B26ED5A 8.2362
99974 0AF213DC 2D6B0399 8.2367
99975 3C805297 97793FAD 8.2367
99976 8E7B0A86 8B6EF60C 8.2367
99977 A8F23271 7BB2AEC0 8.2367
99978 AF9E3FAB B0D1AC83 8.2367
99979 B0AA9F2F BC975EBD 8.2367
99980 D67F988B 4BE0704F 8.2367
99981 DCB89031 A969CE49 8.2367
99982 FA658070 63327EE2 8.2367
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99983 FFB18E1E 88C674B6 8.2367
99984 722A7604 45DECC8F 8.2370
99985 4939AD4B 58BDA1AA 8.2373
99986 81ACDE39 3E39B075 8.2373
99987 DCC4A93D 67E7FA7F 8.2373
99988 1D82AF3B B97B40E8 8.2376
99989 3845EA0A 9EF4EF9A 8.2376
99990 59F1952F 10A5F68E 8.2376
99991 8C2D81FD 190206B1 8.2376
99992 4852C81A EFE9177A 8.2380
99993 C07B1894 0A64A546 8.2380
99994 E0D429B9 68883D62 8.2380
99995 F33EC76B 2C5D876B 8.2380
99996 12F0D1A0 86077445 8.2386
99997 587D4B19 85745BB9 8.2386
99998 C97333BC 0E23E41E 8.2388
99999 CE8C4228 1B89134B 8.2388
100000 69164034 45E6F247 8.2390
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A.9 OpenPGP Keys 999950-100000 Graph

Figure 7: Graph of OpenPGP Keys 999950-100000 ranked by MSD.
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A.10 PGP Web of Trust Key Analysis

Key analysis data by Henk P. Penning [36] Data collected - August 2013

Figure 8: Size of Strong Set.

Figure 9: Average Mean Shortest Distance.

89



Figure 10: Average Degree (Signatures per Key).

Figure 11: Population change of strong set.

A.11 The Footsie Web of Trust analysis

Key analysis data by Matthew Wilcox [46] Data collected - August 2013
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Figure 12: Degree distribution over time.

Figure 13: Degree distribution for July 2013.
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Figure 14: Distance distribution.

Figure 15: MSD vs rank.

Figure 16: Strong Set ”Footsie” Index.
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Figure 17: Original Strong Set ”Footsie” Index.

Figure 18: Strong Set vs Reachable Set key size.
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