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cmgiee@rit.edu 
 

Abstract 
 

In this paper we discuss the formulation of, and show the results for, a new compression/decompression 
algorithm called DYNAMAC, that has its basis in nonlinear systems theory.  We show that we are able to 
achieve significant compression of RGB image data while maintaining good image quality.  We discuss the 
implementation of this algorithm in hardware, show that the same process is applicable to other digital forms of 
data, demonstrate that the decompression process is ideal for streaming applications, and show that the 
algorithm has an exploitable aspect of encryption useful for digital rights management and secure transmission. 
We discuss our methodology for the improvement of the performance of this codec. 
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1. BACKGROUND  
 
DYNAMAC (dy-NAM-ac) stands for dynamics-based algorithmic compression. The basic foundation of the 
process lies in the realizations that (a) chaotic oscillators are dynamical systems that can be governed by 
mathematical expressions, and (b) chaotic oscillators are capable of producing diverse waveform shapes. The 
premise is this: a segment of a digital sequence, such as that derived from image data, can be replaced by the 
initial conditions of a chaotic oscillation that matches it within an acceptable error tolerance.  If the size of the 
data needed to specify the initial conditions needed to reproduce the chaotic oscillation are smaller than the size 
of the digital sequence, compression is achieved. Further, if we improve the chaotic oscillator’s ability to 
produce diverse waveform shapes, we increase the probability of matching arbitrary digital sequence segments. 
There are a number of compression algorithms for digital images [1]. We introduce this new nonlinear 
dynamics-based algorithm and attempt to show the potential it has for comparative improvements given a deeper 
study of its mechanisms.  
 
1.1 Chaotic Dynamics 
 
Chaotic systems have been studied for years in physics and engineering. Chaotic processes have been shown to 
provide efficient operation [2] and have applications in various engineering disciplines [3],[4].   A typical 
chaotic system is the Colpitts oscillator. These sets of equations are actually derived from a standard electrical 
circuit architecture that is used widely in engineering [5]. The equations are a three-dimensional set of nonlinear 
ordinary differential equations that have the form:  
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where  ic is the forward transistor collector current defined by ( )1−= − ev
c ei αγ , γ and α are empirically derived 

factors for the transistor and RL is the series resistance of the inductor.  If we integrate these equations forward in 
time from a set of initial conditions ],,[

000 ceL vvi we get a set of time dependent waveforms 

)(),(),( tvtvti ceL that can be plotted versus time or as a state-space plot as seen in figure 1(a), and sections of 
the corresponding time-dependent waveforms in figure 1(b).  
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Figure 1. (a)  Three-dimensional state-space plot of the solutions of the Colpitts equations and (b) the time-

dependent waveforms 
 
 
1.2 Algorithm Description 
 
The DYNAMAC process takes advantage of the time diversity inherent in chaotic processes [6]. Figure 2 shows 
64-point segments of the red, green, and blue components the image given.   It is visually apparent that there is 
similarity in the shapes of the time-dependent waveforms from the chaotic oscillators and the RGB component 
sequences.  The premise is this: a segments of a digital sequence, such as that derived from audio, video, and 
image data, can be replaced by the initial conditions of a chaotic oscillation that matches it within an acceptable 
error tolerance.  Symbolically, we can describe a DYNAMAC operator as ( )kxd ,,CD= , where x is the 

original digital sequence, C   is the combined chaotic oscillation matrix, and k is the matrix ordering sequence.  
If we call (.)l a length function, then if ( ) ( )xldl <  then compression occurs.  We reproduce the digital sequence 

by ( )kdx ,,1 C−=′ D . The error is defined as xx ′−=ε , and total error over the sequence is ∑=Ε
Ns
ε , where 

Ns is the length of the digital sequence. If E = 0, then the compression is lossless. 
 
The key to high compression ratios and high image quality is to the chaotic oscillator’s ability to produce diverse 
waveform shapes. By doing so, we increase the probability of matching arbitrary digital sequence segments [7].  
The images that we examine are in bitmap format, where each R,G, and B component is specified by 8-bit 
integers. So then, each segment of the image is 8x3xNs bits long. For this particular image each 64-point 
segment represents 1,536 bits. 

 
Figure 2. 64-point digital sequences representing red, green, and blue components of the image shown. 

 

(a) 

(b) 



 
The key to the algorithm is in finding a proper match to the input digital sequence xp[n] using a combined 
chaotic oscillation represented by c[n].  Figure 3 is a block diagram of the algorithm.  The combined chaotic 
oscillation matrix, or CCO matrix, stores 32 oscillation types that can be accessed by submitting a type number, 
Nt, an oscillation starting point, Ni, and an oscillation length, Nc.  The resulting chaotic oscillation will then be 
decimated down to the length of xp[n]. This new oscillation will be called cn[n]. The rms error between xp[n] 
and cn[n] is calculated.  Oscillations having the smallest error value will be chosen as replacements for xp[n]. 
The information needed to reproduce the chosen chaotic oscillation can be distilled down to two 16-bit integers 
and one 4-bit integer we call digital bites, or D-bites. Specifically, D = [D1,D2,D3]. Since there are three digital 
sequences connected with an RGB image, and each component requires its own D-bite, DR, DG, DB, then each 
image segment requires 108 bits. In this example, the compression ratio is 1536:108 or 14.2:1. The new file, 
which we’ve called .dyn files, are stored as [HEADER],DR1,DG1,DB1,DR2,DG2,DB2,DR3,DG3,DB3,…,DRN,DGN,DBN, 
where N = LxW/Ns.   
 

 
Figure 3. DYNAMAC™ compression engine block diagram. 

 
 
2. RESULTS 
 
In the following section we will show examples of two different test images being operated on by the algorithm 
and show some of the salient measures. 
 
2.1 Full Image Example 
 
Our first example, in figure 4, shows the comparisons of two different images with their subsequent 
decompressed versions for different compression ratios.  We chose two images that were sufficiently different 
than each other in order to demonstrate that the algorithm is viable given image variation.  For each case we ran 
the algorithm for Ns = 16, Ns = 32, and Ns = 64.  We use the definition of the mean square error, that is,  
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Compression Ratio 3.6:1 7.1:1 14.2:1 

MSE 17.74 41.62 112.62 

PSNR 35.70 dB 32.02 dB 27.75 dB 

 

    
Compression Ratio 3.6:1 7.1:1 14.2:1 

MSE 115.35 277.59 658.54 

PSNR 27.52 dB 23.70 dB 19.96 dB 

 
Figure 4. Two images compressed using the DYNAMAC algorithm at three different compression ratios 

showing the mean-square error and the peak signal-to-noise ratio. 
 
2.2 Other Data Types 
 
It is clear that given digital sequences with smooth relationships, the DYNAMAC algorithm will work.  We have 
shown in previous work that the algorithm works well for digital audio and we have developed a formal 
approach to the implementation of the algorithm on digital video.  The compression metrics are different for 
each format. For example, for 16-bit, stereo audio files there four components to the D-bite D = [D1,D2,D3,D4], 
with there being three 16-bit integers and one 4-bit integer, for a total of 52 bits. A 64-point sequence for one 
channel would be 1024 bits, so the compression ratio would be 19.7:1.  
 
 
3. Further Implications 
 
In this section we discuss three additional aspects of the DYNAMAC algorithm that add to its features. 
 
3.1 Streaming 
 
The DYNAMAC algorithm generates self-contained digital packets that are decompressed and are completely 
independent of the packets preceding or following it. In this case, it is ideal for streaming applications.  The 
decompression algorithm, D-1, is significantly less calculation intensive than the compression algorithm, D.  A 
potential application lies in the providing of streamed, secure content for users on a network.  In this case the 
image can be reconstructed sequentially or according to a diffusive reconstructive process [9]. 
 
3.2 Hardware 
 
The architecture of the DYNAMAC Hardware Compression Engine (DHCE) is designed to perform rapid 
compression of a variety of file types using the proprietary DYNAMAC algorithm.  The primary purpose of the 
hardware implementation is to improve the processing time. Currently, a single image may take hours to 
compress, however, by taking advantage of the inherent parallel nature of the algorithm it is possible to improve 
the processing speed over a hundred-fold.  This type of drastic improvement in performance is expected to 
greatly enhance our ability to analyze and improve both image quality and compression ratios achieved. 
 



Files to be compressed are delivered to the DHCE over a Universal Serial Bus (USB) connection and are 
buffered within an input FIFO for processing. By buffering the data within the FIFO, the input waveform can be 
processed rapidly without placing any unreasonable delivery time constraints on the host system.  This also 
means that the size of the incoming file is effectively unbounded. 
 
At the heart of the DHCE is the Sequence Processing Module (SPM).  By instantiating several SPMs inside a 
Xilinx Virtex II Field Programmable Gate Array (FPGA) a homogeneous architecture has been created that 
exploits the parallel nature of the algorithm.  We are currently designing the hardware system and will report on 
the results in a later publication. 
 
3.3 Security and Digital Rights Management 
 
The root of the codec is the formulation and organization of the CCO matrix.  Presently it is made up of 32 pre-
calculated, pre-arranged chaotic oscillation combinations described by 16-bit integers.  If we let kn be a vector of 
indices for the order of the combined chaotic oscillations then a typical ordering would be ]32,...,3,2,1[1 =k . All 
of the previous images that have been compressed and decompressed have conformed to this ordering. It is 
clearly shown that there are 32! orderings possible available. We can achieve an image scrambling if the  
ordering used for compression does not match the ordering for decompression.  Figure 5 shows the test image 
decompressed under the k1 ordering then decompressed under an alternate ordering.  The vector k can act as a 
decryption key having up to 32! combinations. It is apparent that all orderings are not sufficiently different to 
cause significant scrambling, however, there are large sets that exist that will be sufficient.  It is beyond the 
scope of this paper to explore this.   
 

        
                      (a)                                          (b)                                    (c)                          (d)  

 
Figure 5. DYN files decompressed under the k1 ordering (a) & (c) and decompressed under an alternate ordering 

(b) & (d), showing image degradation. 
 
 
4. CONCLUSIONS 
 
The goal of this paper was to introduce a new method of digital signal compression using image data as an 
example.  We have shown that this new algorithm, based on chaotic dynamical systems, is capable of 
compressing images while being ideal for streaming applications, digital rights management, and parallel 
processing architectures. Since the work in chaotic dynamics by Ott, Grebogi, and Yorke in 1990 [10], [11], 
there has been many applications postulated for the use of chaotic processes in the applied sciences. Few of these 
applications have shown promise in useful technological applications.  We believe that if we are able to push the 
performance boundaries then many applications in digital data transfer are available. 
 
There remains great opportunity to improve the algorithm. We are exploring several areas of focus in order to 
improve the (a) compression ratio, (b) the image quality, and (c) the compression processing time. We are 
exploring improved chaotic oscillation matrices and application specific combined chaotic matrices that are 
dependent on digital data type. We are also exploring deeper relationships of this process with notions like 
regarding digital redundancy and advanced memory modeling.  
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