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Abstract 
This paper proposes a new model for secure communication channels between two 

parties. The new model assumes that adversaries are storage space bounded, but not 
computationally bounded. At the initial phase of the secret communication, both parties 
exchange a large amount of random bits so that adversaries are not able to save them due 
to the storage space limitation. Each party only saves received data. At the second phase, 
each party regenerates the random bits, combines with received data, and generates an 
encryption key iteratively with a one-way hash function. The key is, then, used to 
encrypt the first transmission from one party to the other. After each transmission, the 
key is updated iteratively based on data received. The relationships between the model 
and intelligent systems are discussed. 

1. Introduction 
The basic problem in cryptography is secure communication over an insecure channel. Party A wants to send to 
Party B a secret message over a communication line which may be tapped by an adversary. The traditional 
solution can be illustrated in Figure 1. It requires two channels to realize secure communication between Party A 
and Party B. It is called the secret key approach. Through one channel with guaranteed secrecy, Party A and Party 
B exchange an agreed upon encryption method E and its associated secret key k and decryption method D. On the 
other insecure channel, Party A sends a cipher text c=E(m,k) to Party B. When Party B receives the cipher text c, it 
performs D(c,k)=D(E(m,k),k)=m to decrypt the cipher text. The adversary C should not be able to decrypt the 
cipher text without knowing the encryption method E and the secret key k. 

 

Figure 1:  Traditional Solution 

In 1949, Shannon proved that to reach absolute security, the length of the key, k, needs to be at least as long as 
the message m itself [1]. It is assumed that the adversary has unlimited computational resources in Shannon’s 
theory. Another problem with the traditional solution is the key distribution. It requires a guaranteed secure 
channel to exchange a common key to both Party A and Party B. This is very difficult to realize in many real world 
applications, especially for today’s online applications of e-commerce.  

In 1976, Diffie and Hellman solved this key distribution problem in their seminal paper [2] and started 
so-called modern cryptography. Diffie and Hellman introduced a public key distribution system to eliminate the 
need of a secure key distribution channel. It is based on assumptions that the adversary is computationally 
bounded. That is, it is computationally infeasible for the adversary to decrypt cipher text. More specifically, the 
public key encryption is based on assumptions that some one way functions are "easy" to compute but "hard" to 
invert. Examples of such one way functions are factoring a very large integer, discrete logarithm, RSA functions, 
etc. For detailed discussion of these functions refer to [3]. Many applications have been developed for the public 



key cryptography. In fact, the public key cryptography has enabled private data transactions on the Internet; and 
online shopping, online banking, and e-commence become reality. 

However, the public key cryptography also has its shortcomings. First, the public key cryptography is also 
susceptible to the man in the middle attack [4]. Thus a public key infrastructure has to be established to 
authenticate public keys themselves. Secondly, the computationally infeasibility of some problems may be just 
temporary. As a matter of fact, in [5], Shor has shown that factoring large integers and discrete logarithm can be 
performed in polynomial time on a quantum computer. It leaves a possibility that a passive eavesdropper can 
record all secret communications between two parties, and later with more advanced computational algorithms 
and hardware, the adversary is able to decipher messages. 

To overcome the temporary nature of the computational infeasibility assumed in the public key based 
cryptography, Aumann, Ding and Rabin introduced a bounded storage model in [6]. In the bounded storage model, 
it is assumed that an adversary is computationally unbounded, but is bounded by the amount of storage available 
to store the output of computation. The authors also proved information-theoretic security in this model. However, 
the storage bounded model does require a shared secret key by both parties, which may be the reason why the 
storage bounded model is not as successful as the public key model in real world applications.  

In this paper, we introduce a model, called the asymptotic secrecy model, to address both issues of the secret 
key sharing and computational infeasibility. We also discuss the relationship between the model and intelligent 
systems and how both two can benefit from each other.  

2. The Asymptotic Secrecy Model 
In this model, the following assumptions are made.  

1. The channel between Party A and B is noiseless and a passive adversary can capture all data exchanged 
between A and B.  

2. The adversary is storage space bounded. That is, the storage space of the adversary is less than the total 
storage spaces available to Party A and B.  

Many information based security theories assume a noise channel between two parties, which implies that an 
adversary is not able to obtain the exact the same information as parties involved. With this assumption, 
researchers are able to prove that the information-theoretic security is able to be achieved with privacy 
amplification. See [7], [8] and [9]. In many real world applications, especially today’s data networks, noiseless 
channels are usually required. It may be the reason why it is hard to find real world applications for 
information-theoretic based security theories. In our model, however, it is the second assumption that limits an 
adversary’s capability of knowing all communications between A and B. Hence, our model can be regarded as a 
special case of the information theoretic cryptography. The protocol of the asymptotic secrecy model can be 
described in three phases. 

2.1 Phase I: Initialization 
Party A and Party B exchange unencrypted random texts. Both parties save only the received random texts. 

They exchange enough random texts so as to consume all of their storage spaces. Since the adversary’s storage 
space is less than the total storage spaces of both parties, the adversary is not able to keep all random text 
exchanged between A and B.  

Suppose R1, R2, R3,…, Rp are p random bit streams exchanged between Party A and Party B. li = | Ri | denotes 
the length of the bit stream i for i=1,...,p. Suppose again Ri is transmitted from A to B, when i is odd; from B to A 
when i is even. Thus the total number of bits transmitted between A and B is  

∑
=

=
p

i
iTotal lBits

1
 

Total bits Party A received is  

∑=
even is i

iA lBits  

and total bits received by Party B is  



∑=
odd is i

iA lBits  

It is easy to see BATotal BitsBitsBits += . Note that when li is 0, it means no bits exchanged between Party A 
and Party B. 

The assumption that the adversary is storage space bounded, then, can be formulated as  

MBitsTotal >  

where M is the size in bits of the maximum storage space that the adversary possesses. 

2.2 Phase II: Generating a shared secret 
Both parties regenerate random bit streams, combining with save the bit streams, and use it as the shared secret for 
both A and B to generate a key with a current timestamp. Since the adversary is not able to save all the random text 
exchanged in Phase I, it does not have the shared secret. The timestamp is public. The current timestamp can be 
synchronized with a message exchange. It is used to avoid the adversary to pre-calculate keys in order to save 
storage spaces. A reasonably good pseudo random number generator should be used with given seeds so that A 
and B can regenerate identical random bits. It should not be reversible, i.e., from some random bits to reconstruct 
the pseudo random number generate algorithm or seeds used.  

With this the shared knowledge, we generate an encryption key in the following manner. 

Suppose { } { }mnf 1,01,0: → with m<n is a one-way hash function which is known to both parties and the 
adversary. Then a secret key k can be generated by the following equations.  

( )pp Rfk =  

where  

( ) ( )( )11 −−= iiiii RfRfRf  

for i=1,...,p; R
0
 should be the current timestamp; and f

0
 is the identity function. The symbol || stands for the 

concatenation of the two bit streams. 

2.3  Phase III: Updating keys 
Suppose m1, m2,…, mt are t messages needed to be exchanged between Party A and B. Then, the cipher text should 
be generated by  

( )( )1, −= iiii mfmEc  

for i=1,...,t and m
0
=k, where k is the key generated in Phase II. Then, decryption is performed by the following 

equation.  

( )( ) ( )( ) ( )( )111 ,,, −−− == iiiiiiiii mfmfmEDmfcDm  

for i=1,...,t. 

3. Analysis of the Protocol 
The basic assumption of the protocol is that the adversary is storage space bounded. Its limit is less than the total 
storage spaces of Party A and Party B. When the adversary collects all data exchanged between A and B from the 
very beginning, the adversary does not have enough storage space to save all captured data, hence it does not have 
shared information between A and B. For A and B, they just need to store all data received from the other party and 
they are able to regenerate their own data transmitted to the other party. If the adversary does not collect data from 
the very beginning, it does not know the shared data either. This protocol does not exclude the old fashion security 
practice, i.e., exchanging a shared security through a guaranteed channel, which, in fact, provides more confidence 
in the privacy of the channel between Party A and Party B. 

One concern, one may raise, is that both Party A and B do not know the storage space limit that the adversary 
has, thus, Party A and B are not sure how secure their channel really is. There are many way to mitigate this risk. 
For example, first, both parties should maximize the usage of the opposite party’s storage space by transmitting 
random bit streams as much as it can. Secondly, Party A and B can exchange some apparently public meaningless 
information to discourage the adversary to save the exchanged data. Third, party A and B should use the private 



channel only when it is necessary. Thus, data exchanged on the open channel can be used as common knowledge 
to generate secret keys, and the adversary may not save data on the open channel. 

On the other hand, the same concern can be raised for computationally bounded assumptions as well. We 
should assume adversaries are resource limited individuals and not big organizations or governments.  

The function f in the protocol is a one-way hash function. It can be any hash function with reasonable strength. 
From Phase II of the protocol, we can see that the initial secret key is derived by applying the hash function f 
iteratively in same way that an iterative hash function is applied. Note that the function f may be an iterative hash 
function itself. According to [10], an iterative hash function is at least as secure as its underline compression 
function, i.e., no iterative hash function. Thus, the initial key generated in Phase II should be reasonably strong.  

The worse case scenario is when the size of the storage space of the adversary is just one bit less than the total 
storage space of Party A and B. In this case, the adversary has all common knowledge between Party A and Party 
B except one bit shy in Rp. This requires that the hash function f should be sensitive to at least one bit difference in 
inputs. That is, two inputs with only one bit difference should yield very different hash values. On the other hand, 
the adversary can guess the missing bit, since it is just one bit. In general, the security of the protocol relies on how 
much bits that the adversary cannot save. The more bits the adversary misses the smaller probability it has to guess 
the key correctly. Thus, it is obvious to verify the following proposition.  

 
Proposition 1 Suppose the maximum total storage space of the two parties A and B is N bits and the maximum 
storage space of the adversary is M<N bits. Then the probability that the adversary obtains the initial key k is  

( ) NMkP −= 2 . 

 
On the other hand, the protocol can be applied iteratively. That is, at the second round of the protocol, instead of 
transmitting plain random bit streams, both parties transmit encrypted random bit streams.  
 
Proposition 2 (Asymptotic Security) Suppose the maximum total storage space of the two parties A and B is N 
bits and the maximum storage space of the adversary is M<N bits. Then the probability that the adversary obtains 
the initial key k is  

( ) ( )NMKkP −= 2 , 

where K is the number of rounds the protocol is applied.  

As ( ) ,0, →∞→ kPK  since 0<− NM . Thus, Proposition 2 indicates that even if A and B have just a 
few extra bits than the adversary, they still can achieve the asymptotic security for the communication channel by 
applying the protocol iteratively. 

From Phase III of the protocol, we can see that encryption keys are updated whenever new data is received. 
Thus, encryption keys are never reused to minimize the risk of key discovery attacks. This leaves the adversaries 
the only choice of brute-force attacks. Since keys are hash values, dictionary attacks do not apply. With a 
reasonable length of hash values such as 256 bits coupled with a strong encryption algorithm E, it will be very 
difficult to crack keys for the adversary. It is also a symmetric encryption; E can be selected as a strong algorithm 
without compromise the performance. 

4. Intelligent Systems and the Asymptotic Security Model 
There are two facets in relationships between intelligent systems and the asymptotic security model. On one hand, 
intelligent systems can be applied to enhance overall security of the model. On the other hand, the model can be 
applied to intelligent systems to enhance their securities in communications among their modules and/or 
subsystems. 

As intelligent systems become more and more complex, their subsystems, modules or components become 
more and more focused to certain specific tasks. More often these subsystems may be separated physically and 
have to communicate via unsecured channels. For instance, an intelligent sensor network is comprised of many 
sensor nodes that are deployed to a wide spread area to collect various information. These sensor nodes can not 
only operate independently to perform specific tasks they are programmed to do, but also collaborate among them 
so as to function as a team. Some of them just relay data from sensor nodes to a central system for further process. 
When communicating between subsystems within an intelligent system or between two independent intelligent 
systems, over unsecured channels, encryption is the only choice to guarantee the confidentiality and integrity of 
the data. Our asymptotic security model is particularly suitable for communications between independent 



intelligent systems, when the two systems talks for the first time and they do not have prior shared knowledge to 
derive a secret encryption key.  

Figure 2 depicts an automatic key updating scheme that can work with the asymptotic security model for 
communications between independent intelligent systems.  

 
Figure 2 An Automatic Key Updating Scheme. 

 
The basic idea of the automatic key updating is to XOR a hash value of previously transmitted secret messages 
with the current key to generate the next encryption key. More formally, 

( )
( ) ( )( )211

11

−−−
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where m
i-1

 is the secret message transmitted under key k
i-1

, for i∈{1,2,3,...}; and h is a one-way hash function; k
0
 is 

a shared master key; m
0
 is random data generated during the key agreement phase;  denotes string concatenation; 

and we define m
-1

 and h
0
 are null string and function, respectively.  

When Part A transmits a message very first time to Part B, the first message from A to B is the cipher text of an 
random text m

0
 encrypted with the shared master key k

0
, which can be established via the asymptotic security 

model; the second message is the cipher text of m
1
 encrypted with a new key that is the XOR of the previous key 

with the hash value of m
0
; the third message is the cipher text of m

2
 encrypted with another new key that is XOR of 

the previous key with the hash value of the concatenated string of m
1
 and the hash value of m

0
; and so on.  

At the receiver side, the decryption process is symmetric. Key updating is identical. Both sides share the same 
one-way hash function and the secret key.  

An encryption algorithm paired with the proposed key auto-updating scheme has the following characteristics.  
• Each message is encrypted with a different key. Keys are constantly updated with respect to 

messages.  
• Encryption and decryption keys are self-synchronized assuming the receiver receives all cipher text.  
• It has the "perfect forward secrecy" property. That is, if one key is compromised, messages encrypted 

under other keys are still secure.  
The encryption scheme, however, has also some weaknesses.  Some encryption algorithm needs an 

initialization time before encrypting any message. The more key updates, the more initialization time is spent. 
Thus prolong the overall transmitting time.  If the communication channels are noisy, and the receiver misses 
some messages, the encryption and decryption keys are not synchronized. These weaknesses can be dealt with 
some additional configurations and flow control.  

On the other hand, intelligent systems can be employed to enhance the overall security of the model. For 
instance, instead of just taking a hash of previously transmitted messages, one can use an intelligent system to 
extract knowledge from previous messages, than take the hash of the extracted knowledge. Further more, an 
intelligent system can help both the receiver and the transmitter synchronize encryption keys.  

5.  Conclusions 
This paper proposed an asymptotic secrecy model based on the assumption that an adversary is storage bounded. 
A protocol of the model is introduced and its properties are discusses. An automatic key update scheme is also 



introduced to work together with the asymptotic model. They can be applied to facilitate communications between 
intelligent systems. And intelligent systems can also be employed to work with the asymptotic model.  
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