
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Presentations and other scholarship Faculty & Staff Scholarship

11-2005

A Covert Channel in Packet Switching Data Networks A Covert Channel in Packet Switching Data Networks

Bo Yuan
Rochester Institute of Technology

Peter Lutz
Rochester Institute of Technology

Follow this and additional works at: https://repository.rit.edu/other

Recommended Citation Recommended Citation
B. Yuan and P. Lutz, "A Covert channel in packet switching data networks," Proceedings of The Second
Upstate New York Workshop on Communications and Networking, 2005, Rochester, New York

This Conference Paper is brought to you for free and open access by the RIT Libraries. For more information,
please contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/other
https://repository.rit.edu/facstaff
https://repository.rit.edu/other?utm_source=repository.rit.edu%2Fother%2F771&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

A Covert Channel in Packet Switching Data
Networks

Bo Yuan and Peter Lutz
Department of Networking, Security, and Systems Administration

Golisano College of Computing and Information Sciences
Rochester Institute of Technology

Rochester, New York 14623
{bo.yuan, peter.lutz}@rit.edu

Abstract— This paper presents a covert communication chan-
nel that exists in virtually all forms of packet switching data net-
works. On the one hand, this covert channel, if used properly, can
potentially enhance the overall security of data communications
over networks. On the other hand, the covert channel can also
potentially become a back door to access a destination computer,
and hence becomes a security hazard to the computer. A simple
protocol is specified for communications on the covert channel.
A modified TFTP application is also presented to demonstrate
how to use the covert channel to convey secret messages or to
enhance the integrity of data communications. The application
also illustrates a back door that leaks client’s data files without
user notification. A sliding entropy method is also introduced to
detect some cases of covert channels.

I. INTRODUCTION

As pointed out by Jonathan Millen in [1], the term ”covert
channels” was first introduced by Lampson in 1973 [2]. Since
then, it has evolved into many different, yet very similar
meanings. Gilgor listed five definitions of covert channels in
[3]. In the authors’ view the original definition by Lampson
in [2] is the most general and the most applicable to broad
areas of communications. That is, a communication channel
is covert if it is neither designed nor intended to transfer
information at all.

At its simplest form, covert channels are used to describe
communication between system processes and/or storage de-
vices. Its uses have been broadened to other forms of commu-
nication, most recently in computer networks.

In [4], Rowland outlined three methods to manipulate
TCP/IP header information so as to form covert channels
between a source and a destination. The first method is the
manipulation of the IP identification (ID) field. The ID field
is intended to label an IP frame. When fragmentation occurs at
the data link layer, the ID field is used to identify the fragment
frames so that they may be reassembled back to the original,
unfragmented IP frame. The ID field is a two-byte field. Thus,
instead of using an arbitrary number, an ASCII code may be
used to send a short message.

The second method is to use the initial sequence number
field. When a TCP connection is established, a ”three way
handshake” of SYN/ACK packets occurs. One of the purposes
of this handshake is to negotiate the starting value of the
sequence numbers to be used for packets traveling in either

direction. The initial sequence number used in SYN/ACK
packets is randomly generated. Rowland proposes to use an
ASCII code multiplied by 16777216 instead of using random
numbers for the initial sequence numbers. Thus, short mes-
sages may be embedded in the apparently innocuous choice
of sequence numbers.

The third method is to use forged source and destination IP
addresses to bounce from an intermediate site to a destination.
This involves three hosts, the sender (S), an intermediate,
innocent host called the bounce server (B), and the intended
destination host (D). The data is encoded in the initial se-
quence number field (ISN), as above. The SYN packet then is
sent by S to B. However, the destination IP address is spoofed
to appear to be that of D. When B receives the SYN packet,
it responds to D (not S) with the original ISN +1. When
D receives the reply, it can simply subtract 1 from the ISN
and receive the data. This hides the actual sender (S) of the
information from observers as well as from D.

In [5], Giffin, et al extended Rowland’s work. They dis-
cussed using the TCP timestamp option field to exchange
information. In [6], Bauer presented several covert channels
via HTTP servers. This previous work focuses on a specific
protocol and encodes information in one or more fields in that
protocol.

This paper presents a more generic covert channel based on
a very basic property of packet switching and, hence the covert
channel exists on almost all packet switching data networks.
It can be implemented at different layers of the network,
regardless of the platform involved. A simple protocol is
defined to facilitate communication on the covert channel. A
demo system is also presented to illustrate possible uses of the
covert channel.

II. A COVERT CHANNEL IN PACKET SWITCHING
NETWORKS

In a packet switching network, a message is divided into
many packets of various sizes that are usually much smaller
than the entire message. Each packet is then transmitted
individually into the network. Packets may follow different
routes to their destination. Once all the packets arrive at
the destination, they are reconstructed back into the original
message. Packet switching is the foundation of our today’s

data communication networks. The entire Internet is a large
packet switching data network. Packet switching has also
been extended into the areas where circuit switching was
traditionally used. For instance, voice over IP based Internet
phones are gradually replacing analog telephone systems.

However, there is one issue related the packet switching
that so far has been overlooked. This issue bears on the
very nature of the packet switching itself. When a message
is divided, packets can be sent with different sizes. Only
maximum packet sizes are usually specified in a protocol so
that packets can travel through networks of different technolo-
gies or models. For example, the largest Ethernet II frame is
1526 bytes including the preamble [7]. The fact that packets
can be different sizes provides us another way to exchange
information between a source and a destination.

Here is an example of how this can be achieved. Suppose
we need to send a letter ”a” from a source to a destination.
The ASCII code of letter ”a” is 1100001. Select an arbitrary
message with a sufficient size. We then divide the message
into packets whose sizes follow this pattern: odd, even, even,
even, even, odd, odd. A packet with an odd size represents
”1”, and an even size represents ”0”. When packets reach the
destination, the destination computer checks the size of each
packet and converts packet sizes back to 0 or 1. In this case, it
is odd, even, even, even, even, odd and odd, which is 1100001
(read from lowest order bit to highest), i.e., the letter ”a” in
ASCII.

The information, the letter ”a”, is transmitted by the pack-
ets from the source to the destination. This communication
channel is referred to as the the covert channel, or the hidden
channel, or the second channel, of the packet switching data
network. The message reconstructed from the packets is the
main message, and its communication channel is referred to
as the main channel of the packet switching data network.

The potential for variable sized of packets exist in all
packet switching network technologies such as Ethernet, X.25
and frame relay (except ATM, which uses fixed sized cells).
In an X.25 network, the network protocol allows the user
send packets up to 128 bytes long [8]. With frame relay
technology, the user can send frames of up to 1600 bytes
between the two ends of a leased permanent virtual circuit [8].
Payload sizes of Ethernet frames are between 46 and 1500. But
more importantly, variable sized packets are allowed by many
protocols at higher layers of OSI model. At the data link layer,
the PPP protocol allows payload sizes up to 1500 bytes; at the
network layer, both IP and IPX protocols have a 2 byte packet
length field in their data format, which can specify packet sizes
of up to 65536 bytes; at the transport layer, UDP specifies the
packet length with 2 bytes; TCP uses its sequence numbers to
indicates different amounts of data (i.e., the sequence numbers
are incremented by the size of the payload with each packet).
Thus, the covert channel potentially lives at every corner of
today’s data networks.

III. THE CAPACITY OF THE COVERT CHANNEL

The capacity of the covert channel is defined as the amount
of information it carries relative to the main channel. This
depends, in part, on what protocol is used on the main channel.
For example, if a modified TFTP protocol is used as demon-
strated in the later section, the maximum data transmission
is 512 bytes per packet. Using the binary encoding, i.e., one
packet on the main channel represents one bit on the covert
channel, the minimum capacity ratio is 1:4096. If ASCII
encoding is used, the minimum ratio is 1:512. In general, the
capacity ratio can be calculated by the formula

log2L

M
(1)

where M is the maximum size of a user data unit in bits per
packet; and L is the number of different sizes that packets are
allowed to use to encode information on the covert channel.

A user data unit of a packet is the application data unit of the
packet after all header or trailer information at different layers
is removed, i.e., it is the actual application data transmitted
by a packet. Thus, the maximum size of a user data unit is
neither the maximum size of the protocol data unit (PDU), nor
the maximum size of the transmission unit (MTU).

According to [7] p. 36, a host is not required to receive
a datagram larger than 576 bytes. Thus many UDP based
applications limit themselves to 512 bytes for user data. Thus,
1:4096 is the minimum capacity ratio of the covert channel to
the main channel in most cases of UDP based applications. For
TCP based applications, the maximum segment size (MSS)
is negotiated between the sender and the receiver before
transmission. Its value is selected by both sides to ensure no
fragmentation occurs on the transmission path from the source
to the destination. The default MSS is 536 bytes. For Ethernet,
its value can be up to 1460 bytes before fragmentation. Thus,
in this case, the minimum capacity ratio between the covert
channel and the main channel is 1:11680.

It seems that this ratio is disappointingly small. But consid-
ering massive network traffic on the Internet today at any given
moment, the covert channel, even with its minimum capacity
ratio, would be able to transmit a very large amount of data.
Furthermore, the covert channel need not be used to transmit
massive amounts of data in the first place. It can be used
to transmit keys for authentication, or short secret messages.
It can also transmit some small but critical information to
enable understanding the data on the main channel, or control
information related to data connections, etc. The potential of
the covert channel is limited only by our imagination. We
foresee many applications based on the covert channel in near
future.

IV. APPLICATIONS OF THE COVERT CHANNEL

The covert channel can be used to transmit hidden messages.
It is not a real data communication channel. It lives ”under”
the main channel. The ”medium” of the covert channel is
packets that carry data on the main channel. No additional
packets are generated. Variation of packet sizes is normal

behavior in packet switching data networks. Thus, traffic on
the main channel is not noticeably different from the other
traffic. Hence the covert channel is invisible and difficult to
detect. An eavesdropper has to recognize the traffic and has
to know the way to interpret the traffic pattern in order to
intercept the message on the covert channel. Although the
capacity of the covert channel is much smaller than the main
channel, it is proportional. The larger the message on the main
channel, the more information carried on the covert channel. A
more extended discussion on covert channels and data hiding
can be found in [9].

The covert channel can be used together with the main
channel to enhance the security of the main channel. For
example, the message transmitted on the covert channel can
be employed as the integrity check for the message on the
main channel. The sizes of packets transmitted on the main
channel can be designed to follow some predefined pattern. If
a packet is modified during transmission, the pattern may be
broken at the destination. The modification attack, hence, can
be detected by the receiver.

As an example of the use of this technology, a covert
channel-aware ftp client can download a file and automati-
cally verify the MD5 checksum of the file. When the server
sends a file, packets are delivered in a pattern of sizes that
represents the MD5 checksum of the file. As soon as the
download completes, the ftp client recalculates the checksum
and compares it with the one received via the covert channel.
The current, traditional approach requires two downloads to
complete the process. The checksum of a file is downloaded
separately with the file. A problem with this approach is that
the downloaded checksum is also subject to modification. This
method requires just one download. It would be much more
difficult for an attacker to construct a modification to the
packets during transmission which also maintains the matching
MD5 checksum patten on the covert channel. A typical 128 bit
MD5 checksum just needs 128 packets to complete transmit-
ting the checksum at the worst case, using binary encoding;
16 packets to complete using ASCII encoding.

V. RISKS

The covert channel can potentially be a security risk to the
destination computers. It can serve as a delivery channel for
viruses, worms, or other types of malware. When a covert
channel-aware application is installed onto a user’s computer,
a back door is opened. Without reviewing its source code, it
is very difficult to identify if software is covert channel-aware
or not. (Note that this may be a strong argument for open
source software.) Such software usually performs all functions
that it expected to do and it interprets covert messages only
when there are messages on the covert channel. There are no
extra network connections needed to download data via the
covert channel. Thus, network traffic does not appear different
from ’normal’ traffic, even though the covert channel is in
use. Neither today’s profile based, nor protocol based network
defenses will be able to detect any anomalies. Furthermore, an
attacker can select when to feed data on the covert channel and

what data to send; hence, the client computer may be under
the complete control of the a remote attacker.

One possibility for defending against this weakness of the
packet switching networks is to unify packet sizes at all layers
of the OSI model and for all protocols. This would seem a very
difficult goal to achieve, at least from today’s perspectives.
Another way to detect such covert channels is to monitor
variations in packet sizes, which is the topic of the next section.

VI. SLIDING WINDOW ENTROPY DETECTION METHOD

To detect variations in packet sizes, a nature method to
use is to measure the entropy of packet sizes. Since it just
needs a small number of packets of different sizes to convey
a secret such as a key or a password on the covert channel,
a majority of packet may be transmitted with a constant size.
Thus, the entropy of packet sizes for an entire transmission
may be biased by the number of constant size packets and
may be too small to alert any irregularity. One suggestion is
to use the sliding window approach as described as follows.

Suppose p1, p2, ..., pn is a sequence of n packets. li denotes
the size of packet pi for i = 1, 2, ..., n. For a given integer, m,
called window size, Ei is the Shannon entropy of the probabil-
ity distribution of packet sizes {li, li+1, ..., li+m−1} within the
window, i.e., from pi to pi+m−1, for i = 1, 2, ..., n −m + 1.
Then, the maximum value of Ei is logm

2 , when all packets in
the window have different sizes; and the minimum value is 0,
when all packets have the same size. The general Shannon
entropy of a window can be calculated by the following
formula.

Ei = logm
2 − 1

m

∑
nj log

nj

2 (2)

where m is the window size; nj are counts of different packet
sizes within the window.

The size of the window is a variable set by the user. The
smaller the window size, entropy values are more sensitive
to packet size and the smaller variations can be detected; the
wider the window size, the less sensitive to the variations of
packet sizes.

Note that when high entropies are detected in packet sizes
in a traffic, it is not necessary the case that a covert channel
is in use. Some types of network traffic are inherently with
high entropies in packet sizes. For instance, traffics of online
chat dialogs or instant messaging have this characteristics due
to different lengths of text messages.

For efficiency, most applications maximize packet sizes
allowed by a protocol during transmission. Thus, constant
zero entropies should be detected in most time. Any non zero
sliding entropies indicate that a hidden channel may be in use.

VII. A SIMPLE PROTOCOL FOR THE COVERT CHANNEL

To facilitate communications on the covert channel, a proto-
col is needed. Both the encoding method, the message length
and the message type should be specified. Figure 1 illustrates
an example of a data format for communication on the covert
channel.

Fig. 1. Covert Channel Data Format

Preamble is a byte of alternating 0s and 1s that indicates
the beginning of a data transmission on the covert channel.
The pattern should be 10101011. When it is transmitted, bit
1 can be represented by either even or odd packet sizes. The
receiver should determine which representation is in use ones
from the pattern of the preamble. For instance, if the pattern
ends with two packets of odd sizes, packets with odd sizes
represent bit one. Note that, while 8 bytes of preamble is used
in Ethernet, only one byte is recommended here due to the
limited capacity of the covert channel.

Encoding type is also one byte. It indicates what types of
encoding will be used in the subsequent communication. Value
175 or 10101111 in this field represents binary encoding. That
is, one packet represents one bit. Value 170 or 10101010 in
binary, indicates the ASCII encoding. That is, packet sizes
represent ASCII codes, so each packet represents 8 bits.

Encoding data is two bytes. Its values have different mean-
ings depending on the encoding type. When the encoding type
is ASCII, its value defines the following mapping from packet
sizes to ASCII code.

C = min(S(p)− T, 127) (3)

where S(p) is the size of the packet p; and T is the decimal
value specified in the encoding data field; and C is the decimal
value of an ASCII code represented by the packet p. In the
case of binary encoding, this field is meaningless.

Length field of four bytes indicates the total number of
packets that will be used to transmit data on the covert channel.

Data type is one byte. It indicates the meaning of the data
so that the receiver can interpret it. For example, when data
type is 99 in decimal, the data is the checksum of the data
transmitted on the main channel; when it is 88, the data is a
secret message; when it is 77, the data is a file name with
full path on the client’s machine; when it is 66, the data
is the contents of the file that was specified in the previous
communication.

Data field contains packets that convey information on the
covert channel. The length of the data field is specified in the
length field.

Note that the first four bytes in the data format specified in
Figure 1 are always transmitted by binary encoding. The rest
of bytes are transmitted by the encoding method specified by
the two fields, encoding type and encoding data.

This simple protocol is designed for our demo system only.
More study is needed to improve the protocol. Note that
applications of the covert channel with malicious intention
may not follow any protocols. They may design their own
protocols to further encrypt messages carried on the covert
channel.

VIII. AN IMPLEMENTATION OF THE COVERT CHANNEL
BASED ON A MODIFIED TFTP PROTOCOL

The UDP protocol by J. Postel [10] in the RFC 768 specifies
the following packet format.

0 7 8 15 16 23 24 31
+--------+--------+--------+--------+
| Source | Destination |
| Port | Port |
+--------+--------+--------+--------+
| | |
| Length | Checksum |
+--------+--------+--------+--------+
|
| data octets ...
+---------------- ...

User Datagram Header Format

The length field in the UDP header is the length in octets
of this user datagram including this header and the data. The
length of all other fields are fixed except the data field. Thus,
we can control the length field by specifying how many octets
to be put in the data field so as to demonstrate the covert
channel at the network layer. UDP is selected due to its
simplicity and ease of implementation.

First we make a small change to the Trivial File Transfer
Protocol (TFTP) [11], a UDP based protocol. In fact, the only
thing we modify is the handling of the end-of-file condition.
In TFTP, a packet with a data size less than 512 byte indicates
the end of transmission. If the last packet is 512 bytes long,
another packet with zero data size needs to be transmitted. In
our modified TFTP (MTFTP) protocol, only a packet with a
zero data size can terminate a transmission.

A screen shot of the MTFTP server is illustrated in Figure 2.
In addition to functions such as downloading and uploading
files from/to the server, the MTFTP server also has three
additional functions enabled through the covert channel. The
first function is to send a secret message to the client through
the covert channel. When the message button is checked, a
user at the server side can type in a secret message to send to
a client.

The second function is the checksum function. When it is
checked, the server calculates the checksum of a file being
transmitted on the main channel and sends the checksum
through the covert channel to the client simultaneously. As
soon as the client receives the file, it also has the checksum
of the file on the covert channel. The client can then compare
the checksum received and the checksum calculated of a file
and decide to accept or reject the file.

The third function is called ”GET FILE.” When this button
is checked, the user can specify a file name with full path at
the server side. When a client downloads a file from the server,
this ”GET FILE” command and the file name are transmitted
to the client without the human user’s knowledge. The next
time the client uploads a file to the server, the client program

also sends the contents of the chosen file to the server via the
covert channel, again without the knowledge of the human
user of the client application. This function demonstrates a
back door to access the client machine via the covert channel.

Fig. 2. Modified TFTP Server

Besides downloading and uploading files, the modified
TFTP client is also able to understand messages on the covert
channel. When the data type is 99 on the covert channel,
the client compares the checksum received from the covert
channel and the checksum that the client calculates from the
downloaded file. If they are the same, the download was
successful; otherwise the download failed. When the data type
is 77, the client will read the contents of the specified file into
memory; it will then send those contents back to the server
via the covert channel. These extract functions are performed
behind the scenes; the human user may not know about these
activities. Figure 3 is a screen shot of the demo client.

Fig. 3. Modified TFTP Client

From the network packet captures, we can see that the TFTP
packets have varying sizes. The only noticeable behavior is
that TFTP packets with a size less than 512 are not end of
the transmission, as specified in [11]. See Figure 4. A sliding
entropy method is proposed to detect covert channels. This is
mainly due to the capture software recognizing these packets
as TFTP packets.

Fig. 5 shows sliding entropies of variations in packet sizes
when the covert channel is used to send a short message with
the window size 10 and the step size 1. As you can see that
after packet 63, packet size becomes a constant, which is the
normal characteristic of a TFTP transmission.

Fig. 4. An Ethereal Capture File

1

0.5

0

1.5

packet number

2001500 50

2

100

Fig. 5. Sliding Entropies

The source code of the demo system can be obtained by
contacting the first author.

IX. CONCLUSIONS

The paper presents a covert channel existed in packet
switching data networks. It is demonstrated that the covert
channel can be used to convey secret messages. It can be
used to enhance the integrity of data communication on the
main channel and can also be a back door to leak information
from the client’s host computer. A sliding entropy method is
introduced to detect some cases of this kind of covert channels.

REFERENCES

[1] J. K. Millen, “20 years of covert channel modeling and analysis.” in
IEEE Symposium on Security and Privacy, 1999, pp. 113–114.

[2] B. W. Lampson, “A note on the confinement problem,” Communications
of the ACM, vol. 16, no. 10, pp. 613–615, 1973.

[3] V. D. Gligor, “A guide to understanding covert channel,” National
Computer Security Center, 1993.

[4] C. H. Rowland, “Covert channels in the TCP/IP protocol suite.” First
Monday, vol. 2, no. 5, 1997.

[5] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts, “Covert messaging
through TCP timestamps.” in Privacy Enhancing Technologies, 2002,
pp. 194–208.

[6] M. Bauer, “New covert channels in HTTP: adding unwitting web
browsers to anonymity sets,” in WPES ’03: Proceedings of the 2003
ACM workshop on Privacy in the electronic society. ACM Press, 2003,
pp. 72–78.

[7] W. R. Stevens, TCP/IP Illustrated Volume 1: The Protocols. New York:
Addison-Wesley, 1994.

[8] A. S. Tandenbaum, Computer Networks, 3rd ed. Upper Saddle River,
New Jersey: Prentice Hall PTR, 1996.

[9] M. Owens, “A discussion of covert channels and steganography,” SANS
Institute: Information Security Reading Room, 2002.

[10] J. Postel, “User datagram protocol,” RFC 768, August 1980.
[11] K. Sollins, “The TFTP protocol (revision 2),” RFC 1350, July 1992.

	A Covert Channel in Packet Switching Data Networks
	Recommended Citation

	tmp.1393782123.pdf.WrSm2

