
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Presentations and other scholarship Faculty & Staff Scholarship

2011

Browser web storage vulnerability investigation: HTML5 Browser web storage vulnerability investigation: HTML5

localStorage object localStorage object

Daryl Johnson

Follow this and additional works at: https://repository.rit.edu/other

Recommended Citation Recommended Citation
Johnson, Daryl, "Browser web storage vulnerability investigation: HTML5 localStorage object" (2011).
Accessed from
https://repository.rit.edu/other/763

This Conference Paper is brought to you for free and open access by the RIT Libraries. For more information,
please contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/other
https://repository.rit.edu/facstaff
https://repository.rit.edu/other?utm_source=repository.rit.edu%2Fother%2F763&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/other/763?utm_source=repository.rit.edu%2Fother%2F763&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Browser Web Storage Vulnerability Investigation
HTML5 localStorage Object

Authors Name/s per 1st Affiliation (Author)
line 1 (of Affiliation): dept. name of organization

line 2: name of organization, acronyms acceptable
line 3: City, Country

line 4: e-mail: name@xyz.com

Authors Name/s per 2nd Affiliation (Author)
line 1 (of Affiliation): dept. name of organization

line 2: name of organization, acronyms acceptable
line 3: City, Country

line 4: e-mail: name@xyz.com

Abstract— With the introduction of HTML5, the latest
browser language, a new data storage technique, called
localStorage, has been added to allow websites to store larger
amounts of data for a long period of time on the user’s local
system. This new technology does not (as of this writing) have a
fully implemented independent interface to support end user
control. Unlike cookies, there is not yet an interface for the
user to block, alter or delete localStorage in web browsers.

Nefarious users have files of data they utilize in their illegal
activities that they need to preserve (stolen user information,
credit card numbers, etc.). These users do not want to have a
copy of this data on their personal machines in case of an
investigation. Therefore, nefarious users are constantly looking
for a new method to preserve and store this data, concealing it
in such a way that it won’t be associated with them but
available when needed.

Our project is to model this process by building a web
application that would take a file, encrypt it, slice it up into 26
parts and distribute it to as many client systems as possible. At
a later time, a second web application would watch for return
visits by the holders of the parts of the original file and retrieve
the parts as clients interact with the website. We would be
studying the recidivism rate of clients returning to the website
and the number of copies of each part distributed necessary to
achieve a reliable recovery rate of the whole file.

We will first test this prototype in a controlled laboratory
setting to ensure that it works as intended. Next we have
chosen two websites, the XXXX(http://XXX.XXX.edu/) and
XXX(http://XXX.XXX.edu/) departmental websites, as a test
bed. We have secured permission from the chairs of these
departments to utilize these resources. These sites were chosen
primarily because their viewers are adult learners and because
of their high traffic patterns.

Keywords-component; localStorage, HTML5, evasion,
forensics, obfuscation)

I. INTRODUCTION
Suppose a nefarious user has a file of incriminating

material (credit card number, account number,
username/password or Personally Identifiable Information,
drug client list…) that the user does not want to be
apprehended with but needs access to from time to time.

The users goal would be to store the file somewhere that can
be reliably retrieved but does not reside locally (for very
long) and is not usable or discernable for what it is if found
where stored.

The authors propose a solution– HTML5’s Web Storage
or localStorage. If the nefarious user has access to a domain
(simple Internet Service Provider will suffice) they could
hide parts of any incriminating file on various client systems
without keeping a local copy that he/she might be caught
with. At a later time, when the information is needed, the
user could get the parts back from the clients and
reconstitute the original data.

To explore this scenario, the authors have split the
experiment into 3 parts. The first part (testing phase) of this
study has been completed. We have built a web application
that proves the hypothesis that localStorage can be used for
such a purpose. The second part of this study is to install
the application on a working production site and statistically
determine how many copies of the parts need to be
disseminated in order to ensure retrieval – both over the
short term and long term (would there be a difference
between trying to get the data back in 10 days versus 90
days?). Potentially the effects of the choice of the number
of segments to divide the original file could be studied. The
third part of the study will look at possible detection
characteristics for this sort of behavior and the development
of tools and techniques for defense.

II. PROBLEM EXAMINED
The illicit users have the same needs for information

management and security that the rest of the world has if not
greater. Often their stakes are even bigger. We can break
the needs into two classes. The first class would be one
shared by all digital users, CIA or Confidentiality, Integrity
and Availability[1], and the second would be one that is not
so common, evasion. Each of these issues is addressed in the
proposed solution.

Confidentiality is the limiting of access to data to
authorized or intended users. The data in this case is
encrypted and then segmented into many sections. The
sections are then separated, encrypted and dispersed to
disassociated unaware clients. If any piece or subset of the
collection is discovered and reassembled it is unusable.

Integrity is knowing if the data is trustworthy or in this
case did we get all of the pieces and reassemble it correctly.
In this proposed solution, the individual pieces have a
checksum or digest calculated and appended to the end
before delivery to the client systems. Upon retrieval the
checksum is recalculated and verified to ensure that the
chunk of data has returned intact. Once the pieces have been
reassembled, the original message is decrypted. A final
checksum for the entire original message is verified assuring
that the message has been retrieved intact.

Availability is being able to access the data when and
where needed. In this situation the concept of availability
relates to the reliability of future access to the data. This is
currently being studied as phase two of this project. The
trade off is speed of access for deny-ability or “it’s not on my
drive!” The file is available to the owner with an access time
of hours, days or months depending on many factors. The
benefit is that the file is unavailable to anyone else.

The last issue is evasion. Evasion is an act of subterfuge,
avoiding or eluding detection. The idea here is to hide the
data from an examination of the local system. Once the
pieces are distributed, the local system and web database can
be forensically cleaned and all evidence of the data
eradicated. Even if it were suspected that the web clients
might be involved, a moderately trafficked web site could
have hundreds, thousands or even millions of individual
clients to investigate. Add that the clients are not owned by
the nefarious user being investigated and you have a huge
jurisdiction problem investigating any potential involvement
of the clients.

III. HTML5 AND WEB STORAGE
With the advent of HTML5 and its subsequent adoption

in all modern web browsers (to varying degrees -
http://html5test.com/), programming for a browser based
internet experience recently turned to the better. HTML as a
standard has been around since 1990 and was standardized as
HTML 4 in 1997. HTML5 is still under development (as of
November 2011) and is meant to subsume not only HTML4,
but XHTML1 and DOM2 HTML (JavaScript) as well[2].

Some of the advantages of HTML5 (ubiquitous coding
APIs, numerous new media types, embedded semantic
meanings) while a boon to both developers and users alike,
are outside of the scope of this paper. The area of the
HTML5 improvements that we are planning on exploiting is
the advanced data storage, or Web Storage[3]. Many
developers may think that web storage includes cookies,
various browser dependent client side databases, as well as
storage objects. However, by the specification, the term
Web Storage is limited to the storage objects – specifically
localStorage and sessionStorage.

Since Web Storage includes both localStorage and
sessionStorage, we needed to consider both. Upon a quick
examination we found that sessionStorage matched its name
– it is storage that exists solely for a browser session
(sessions expires when the browser shuts down and the data
is cleared). Because sessionStorage is implemented
effectively, it is of little use to the user for our purpose.
localStorage, on the other hand, works perfectly for what is

needed. From a developer’s point of view, localStorage is an
associative array or hash – a name=value pair that can hold
any textual content.

To understand the need for a localStorage object, a little
history is needed. Since the inception of the HTTP protocol,
it has been stateless and anonymous, so a mechanism had to
be created to make the tracking of state possible. The ‘HTTP
State Management Mechanism’ proposal was created to fill
this void[4]. The outcome of which is commonly known as
cookies. The cookie mechanism is a name value pair that is
served up from the client to the server inside of the HTTP
Request phase (based upon various criteria: path on the
server, domain to be served to, protocol to be served up to –
http or https). While cookies have been used in various ways
through the history of the web, more often than not they are
used to hold a session identifier or token – one created by the
framework the server is implementing (.Net, PHP, JSP) or
one created by hand by the developer.

Historically, cookies were the sole means web browsers
had for long-term storage capabilities. They had limited
length (4096 bytes) and a limited number could be written
per domain (20) for a total of 81,920 bytes of storage space.
Today, localStorage, as a storage mechanism, is limited to
5Mb per origin (domain)[5], or 655,360 bytes of storage (8
times larger). If the browser manufacturers maintain this
suggestion of the specification (currently IE9 allows more -
10Mb per origin), the possibility of using the various client’s
hard drives for other kinds of storage is worth looking at.

As often happens with newer technologies, they are
implemented before they are fully tested. localStorage works
flawlessly in the modern browsers, but the tools that the end
user has to allow, view, update or delete them is very limited.
Combining the amount of storage space with a lack of user
control, a nefarious user would only be encouraged to use it
for ill. At the time of this paper, there is no specific user
interface for localStorage. If a user wants to find out what is
stored on their various browsers there is no easy way. An
advanced user would have to visit the domain they are
interested in and then run a bit of code to see if they had any
localStorage recorded.

for (i=0; i<localStorage.length; i++) {
 key = localStorage.key(i);
 pairs += "key:"+key+" value:"+localStorage.getItem(key);
}
console.log(pairs);

Figure 1. Script for testing what is stored in localStorage.

Adding to the problem of knowing if your localStorage is
being used (it is effectively an invisible attack vector), there
is no clear way to turn it off. Additionally, once it is written
it doesn’t have an easy affordance to remove the data. For
Firefox, DOM Storage (Firefox’s moniker for Web Storage)
can be cleared via “Tools -> Clear Recent History ->
Cookies” ONLY when the range is “Everything”[6]. There
are multiple problems with this interface, but the top are:

• User has to know that all DOM Storage is under
the header ‘Cookies’

• If a user solves the labeling problem they might
only want to clear recent localStorage and not
select “Everything”

For Internet Explorer, the story is similar:
“…users can clear storage areas at any time by selecting
Delete Browsing History from the Tools menu in Internet
Explorer, selecting the Cookies check box, and clicking OK.
This clears session and local storage areas for all domains
that are not in the Favorites folder and resets the storage
quotas in the registry. Clear the Preserve Favorite Site Data
check box to delete all storage areas, regardless of
source”[7].

Clearly, a more specific interface is needed. While it
might not be necessary to split localStorage out from other
data storage capabilities, listing it under Cookies may not be
intuitive for average users. Also, the ability to clear stored
data in a more chronologically granular way would be
useful.

IV. PROBLEM EXPLOITED
To exploit this possible weakness, the authors devised a

web application that would take any textual file, calculate
and attach a checksum, encrypt it, split it into a some number
of parts (26 in our testing), give each part an identifier (both
for the part of the whole and an identifier for which file it
came from), calculate a checksum for the part and append it
to the string then re-encrypt it. We found that from this
formula we could hide the parts on different clients and on
subsequent visits we could get the parts back and reconstitute
our original data. Should a non-textual file be the target, a
simple binary to text translation tools such as base64 or
uuencode would suffice.

A. Web Environment
For the implementation of our web application, we chose

the open source LAMP architecture. LAMP is an acronym
for Linux, Apache HTTP Server, MySQL database, and
PHP server-side scripting environment.

B. Web Software
From a top-level view, the implementation of our

application via web browsers consists of an interface to take
a textual file and use the system described above to split it
and populate a database. When we are ready to populate the
visitors to our site with the parts of our file, we introduce a
small client-side script that communicates covertly (via
AJAX - Asynchronous JavaScript and XML) with a server-
side script. The result of the server-side script is recorded in
the client’s localStorage. Once the nefarious user decides
there are enough copies distributed for his purposes, he can
wipe out his file AND the database.

Some time later, when we wanted to reconstitute our data
we inserted a different client-side script that checks return
visit clients for our data. If any data was found, be it a piece
we hadn’t gotten back yet or one we already had, we
decrypted it, checked the checksum and stored it. After a
period of time, we will have the entire file back.

 For a deeper explanation, there are 2 sets of scripts to get
this to work. One set is used to distribute the parts out to
various clients and the other set is to retrieve it back. Each
set has both a client and a server script used to accesses the
database for storage or retrieval as needed.

The first small client-side script (7 lines of well formatted
code used to proliferate our data out into the net) can be
included on any html page (in our case we employed PHP
with a MySQL database or a LAMP). In it we test if
localStorage is implemented on the particular browser and if
the browser doesn’t already have a copy of a part from our
domain a jQuery AJAX call is triggered to the server for a
part that has been distributed the least amount. That part is
then written to the browsers localStorage under a commonly
used token name (we used ‘uid’) to help hide our data and
intentions.

if(window.localStorage) {
 if(localStorage.getItem('uid')==null){
 $.getJSON('localStorageSet.php',function(data){
 localStorage.setItem("uid",data.uid);
 });
 }
}

Figure 2. JavaScript to retrieve a piece of the file from server and assign
to localStorage.

The localStorageSet.php file that the AJAX call is hitting
goes into the database of encrypted parts, finds the part that
has been least copied to browsers and sends it back to the
client to be injected into the localStorage of ‘uid’. While it is
doing this it also updates the total disseminated count on the
part that it just served up and logs the visit.

Once we are confident that we have populated a
sufficiently large enough number of targets, we felt free to
shred our original nefarious file and the database table
holding the parts. For the truly paranoid a forensic wipe of
the drive and the user would be worry free on being
searched.

The second small client script (3 lines of well formatted
code) can be employed at a later date, when we want to
reconstitute our data. For this we also used a jQuery AJAX
call to send the contents of the specific localStorage data we
want back to the server.

$.post(‘localStorageBack.php’,{
 d:localStorage.getItem(‘uid’)
});

Figure 3. JavaScript to send data back to server for retreval.

The data this sends back to the server is decrypted,

checksum is checked and split into our original encryption,
part and file identification. The data is then populated in a
database table by its part identifier and filename (all data was
logged for future references). Once all of the parts are
recovered, the entire file is reconstituted, decrypted to our
original state and it’s checksum verified.

V. PROOF OF CONCEPT TESTING ENVIRONMENT
The laboratory proof of concept testing environment is

simple and easily duplicated. VMware Workstation 7.1.0
was the foundation for the test environment installed on a
Lenovo T61p laptop with 6Gb of memory. The target web
server was a stock BackTrack5 virtual machine image[8].
Apache 2.2.14, MySQL 14.14 and PHP 5.3.2 were used to
support the testing environment on the server.

A. Configuring the Web Server
The server application used was the default install that

came with BackTrack5. The only addition to this was an
installation of phpMyAdmin, an open source tool for easier
database access (http://www.phpmyadmin.net/). Starting
Apache and MySQL was all that was necessary (no
specialized settings like .httaccess was needed).

In the testing environment, there was no reason to hide
what we were attempting – so we had 2 separate html files,
one to set the localStorage, setData.php and one to get the
localStorage back, getData.php. setData.php had the client-
side code that executed the AJAX call (figure 2). The AJAX
call triggered the server side localStorageSet.php to get the
least distributed part of the file and send it back in JSON
(JavaScript Object Notation) format.

getData.php had the client-side code that used AJAX to
send the contents of the localStorage.getItem(‘uid’) (figure
3). The server-side code this one executed,
localStorageBack.php decrypts the data and checks the
checksum. If the checksum was good the data is stored.

In both cases, localStorageSet.php and
localStorageBack.php we logged all calls and recorded the
pertinent information into our own log for future study.

B. The client setup
To do the work of the Internet client population at large,

additional virtual machines were employed. For the initial
test, a Windows XPpro base image was constructed with no
service packs installed. This was not a necessary insecurity
but established a baseline. A stock install of Firefox 4.0.1
was done with no add-ons. No special configuration of
Firefox was performed. Two scripts were added to the C:\
directory of this initial configuration to aid in the automation
of the test case: setData.bat and getData.bat.

REM Cause Firefox to place data in localStorage
taskkill /F /IM firefox.exe
ping –n 10 127.0.0.1
start /B “C:\Program Files\Mozilla Firefox\firefox.exe”

http://192.168.77.134/evasion/setData.php

Figure 4. setData.bat script for Windows XPpro client.

REM Cause Firefox to retrieve data from localStorage
taskkill /F /IM firefox.exe
ping –n 10 127.0.0.1
start /B “C:\Program Files\Mozilla Firefox\firefox.exe”

http://192.168.77.134/evasion/getData.php
Figure 5. getData.bat script for Windows XPpro client.

First, the scripts make sure that the browser is not still
running by executing a taskkill. This was necessary to make

sure that localStorage was not preserved only during a single
browser session. By terminating Firefox the session is
stopped. Originally the browser was started first followed by
a delay for the localStorage access to take place and then
terminating the browser. This was routinely unsuccessful.
By reversing the order, the browser was offered more time to
complete the exchange. The Windows command shell does
not have a delay tool. The ping command is a mechanism
for a controlled wait with the count parameter taking one
second per count after the first.

C. Assembling the masses
Once the Windows XPpro client is prepared, it is shut

down and only used as a master for cloning. The algorithm
requires at least 26 clients to hold all of the pieces of the
message. The following scripts automated the process of
construction utilizing VMware’s vmrun tool[9]. The tool
can issue instructions to several of VMwares virtualization
tools including Workstation. The following script creates 26
clones of the master Windows XPpro virtual machine.

REM Make Clones of WinXPpro client system

set VMRUN="C:\Program Files (x86)\VMware\VMware

VIX\vmrun.exe"
set SRCVM="C:\LocalStorage\Masters\WinXPpro\win2000Pro.vmx"
set CLONEBASE=C:\LocalStorage\CLONES\WXP

for /L %%i IN (101 1 126) do (
 %VMRUN% -T ws clone %SRCVM%

%CLONEBASE%%%i\WXP%%i.vmx linked

 %VMRUN% -T ws start %CLONEBASE%%%i\WXP%%i.vmx gui

REM needs 60+ seconds to get to login screen
 timeout -T 60 /NOBREAK >NUL

 %VMRUN% -T ws suspend %CLONEBASE%%%i\WXP%%i.vmx

hard
)

Figure 6. MakeClonesWXP.bat script for Windows XPpro clients.

Vmrun is utilized to instruct VMware Workstation to
clone the base Windows XPpro virtual machine 26 times.
After starting the VM a delay of 60 seconds allows the client
to fully boot before the client is suspended. Suspending
allows for a faster cycle time for client visits to the web site.

D. Occupy localStorage
The next phase of the test is to have each of the 26

Windows XPpro clients start a browser, surf to the web
server and run the code to cause data to be deposited in their
localStorage area. It is important for the browser to be
started and stopped to assure that localStorage has
persistence beyond the current session. The following
scripts are run on the host of the virtual machines to first set
or download the data chunk to the client and second to get or
retrieve the chunk from the client.

REM make WXP clients visit web server to download data
set VMRUN="C:\Program Files (x86)\VMware\VMware

VIX\vmrun.exe"

set CLONEBASE=C:\LocalStorage\CLONES\WXP
set FIREFOX="C:\Program Files\Mozilla Firefox\firefox.exe"

for /L %%i IN (101 1 126) do (
 %VMRUN% -T ws start %CLONEBASE%%%i\WXP%%i.vmx

 %VMRUN% -T ws -gu dgj -gp "ATest4LocalStorage!"

runScriptInGuest %CLONEBASE%%%i\WXP%%i.vmx -nowait
"" "cmd.exe /k C:\setData.bat

 timeout -T 60 /NOBREAK >NUL

 %VMRUN% -T ws suspend %CLONEBASE%%%i\WXP%%i.vmx

hard
)

Figure 7. MakeVisitsWXP-setData.bat script for Windows XPpro clients.

REM make WXP clients visit web server to download data
set VMRUN="C:\Program Files (x86)\VMware\VMware

VIX\vmrun.exe"
set CLONEBASE=C:\LocalStorage\CLONES\WXP
set FIREFOX="C:\Program Files\Mozilla Firefox\firefox.exe"

for /L %%i IN (101 1 126) do (
 %VMRUN% -T ws start %CLONEBASE%%%i\WXP%%i.vmx

 %VMRUN% -T ws -gu dgj -gp "ATest4LocalStorage!"

runScriptInGuest %CLONEBASE%%%i\WXP%%i.vmx -nowait
"" "cmd.exe /k C:\getData.bat

 timeout -T 60 /NOBREAK >NUL

 %VMRUN% -T ws suspend %CLONEBASE%%%i\WXP%%i.vmx

hard
)

Figure 8. MakeVisitsWXP-getData.bat script for Windows XPpro clients.

The two scripts differ only in the target script that is run
locally on the client system: setData.bat (see Figure 4) and
getData.bat (see Figure 5). This structure is only necessary
in this test environment to ensure that the browser is
successfully started and stopped and that sufficient time is
given to the client and browser to complete the operations.
Typically the setData.bat script is run first followed by the
getData.bat script. The set/get operation takes about an hour
to complete. The entire environment starting from making
the clones to retrieving the data set takes about 2 hours. The
use of linked clones keeps the storage requirements down to
under 40GB for entire environment.

VI. PHASE 2 – LARGE SCALE
Now that we have proven that we can hide and retrieve

information in a client’s localStorage in a controlled
environment, our task is to discover how many copies of our
encrypted and obfuscated parts we need to disseminate in
order to ensure recovery.

In order to test this we have obtained permission to test
our theories on the authors various departmental web
presences (http://www.xx.xx.edu & http://www.xx.xx.edu).
To make the results of this testing more accurate, we have
decided to remove all visitors from the XXX.XX.x.x domain
(XXX’s domain) simply because many of our lab machines
are forced to visit those sites on browser startup. Examining
the logs for the past 2 months (September and October 2011)

we have found that we can expect around 1 million original
entries or 24,000 visitors who did multiple visits. From
websites with this amount of traffic, one would assume that
we could proliferate numerous copies in a matter of minutes.
If we look at the numbers more closely we find that of clients
who do multiple visits with 10 or greater days between the
visits, the number shrinks to 8,000 – still statistically
significant.

VII. PHASE 3 - DETECTION
Once we have this working on a large scale, the authors

are interested in studying the future application and usage of
localStorage. The goal is looking for possible ways of
monitoring and controlling localStorage activity, and
identifying potential misuse. Intrusion Detection System
tools such as Snort examine network traffic looking for
digital signatures indicate that potential malicious activity is
present. The development of signatures and other tools will
be of primary interest during this phase.

VIII. PREVENTATIVE MEASURES
The history of software interfaces is littered with

examples of poorly designed and implemented user facing
controls. The current state of the different browser interfaces
to control Web Storage is lacking to say the least. The only
preventative measure for not allowing something like this to
happen on a client is to completely disable cookies. It should
be noted that on all modern browsers there are different
levels of cookie blocking (1st-party and 3rd party). However,
since most trust the site they are visiting and 1st-party is what
is being used, this number is relatively small. The number of
visitors blocking 1st-party cookies varies greatly from one
site to the next. Reports of 25% for sites about security and
1% for sites about general health are abundant. To know for
sure one would need to test for their specific kind of site.. It
should also be noted that once a localStorage value has been
set, turning off cookies will not remove it, just make it
inaccessible.

IX. CONCLUSIONS
The authors hope these findings motivate browser

architects to realize what they are making possible with their
implementations and web application developers to think
about the attack vectors they are creating. The need for a
new storage capability in web browsers is not in question.
The need to have the storage be easy to use for both
developers and users alike is not in question. Although it
may be a good idea to often hide implementation details
from users, not giving them simple and intuitive controls
that provide the ability to at least see what is being stored on
their machines is in question.

REFERENCES

[1] M. Stamp, “Information Security: Principles and Practice”, John

Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/0471744190

[2] I. Hickson, World Wide Web Consortium, "HTML5, A vocabulary
and associated APIs for HTML and XHTML, Editor’s Draft." Last
modified November 04, 2011. Accessed November 05, 2011.
http://dev.w3.org/html5/spec/Overview.html.

[3] I. Hickson, World Wide Web Consortium, "Web Storage, Editor's
Draft." Last modified October 04, 2011. Accessed November 05,
2011. http://dev.w3.org/html5/webstorage/.

[4] D. Kristol, and L. Montulli. Netscape Communications, "HTTP State
Management Mechanism." Last modified February, 1997 . Accessed
November 04, 2011. http://www.w3.org/Protocols/rfc2109/rfc2109.

[5] I. Hickson, World Wide Web Consortium, "Web Storage, Editor's
Draft." Last modified October 04, 2011. Accessed November 05,
2011. http://dev.w3.org/html5/webstorage/#disk-space.

[6] Mozilla Developer Network, "DOM Storage." Last modified October
23, 2011. Accessed November 08, 2011.
https://developer.mozilla.org/en/DOM/Storage.

[7] Microsoft Corporation, "Introduction to DOM Storage." Accessed
November 08, 2011. http://msdn.microsoft.com/en-
us/library/cc197062(v=VS.85).aspx.

[8] back|track-linux.org, "Downloads : BackTrack Linux – Penetration
Testing Distribution." Accessed November 14, 2011.
http://www.backtrack-linux.org/downloads/.

[9] VMware, "Using vmrun to Control Virtual Machines." Last modified
2009. Accessed November 14, 2011.
www.vmware.com/pdf/vix162_vmrun_command.pdf.

	Browser web storage vulnerability investigation: HTML5 localStorage object
	Recommended Citation

	LocalStorageVulnerability

