
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

2008

Evaluation of virtual routing appliances as routers virtual Evaluation of virtual routing appliances as routers virtual

environment environment

Ahmed Al-Amoudi

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Al-Amoudi, Ahmed, "Evaluation of virtual routing appliances as routers virtual environment" (2008).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/760?utm_source=repository.rit.edu%2Ftheses%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

 1

Rochester Institute of Technology

B. Thomas Golisano College
of

Computing and Information Sciences

Master of Science in Networking, Security and System

Administration

~ Thesis Report Approval Form ~

Student Name: Ahmed Al-amoudi

Thesis Title: Evaluation of Virtual Routing Appliances as routers
 virtual environment

~ MS Thesis Committee ~

 Date Signature Name

Prof. Charles Border

Chair

Prof. Luther Troell

Committee Member

Prof. Pete Lutz

Committee Member

 2

Evaluation of Virtual Routing Appliances as
routers in a virtual environment

By

Ahmed Al-amoudi

Project submitted in partial fulfillment of the requirements for the
Degree of Master of Science in Networking, Security, and System

Administration

Rochester Institute of Technology

B. Thomas Golisano College
of

Computing and Information Sciences

August 20, 2008

 3

Abstract:

A virtual routing appliance is a system for the rapid, automated management and employment of

virtual networks. Virtual routing appliances utilize virtual machines to enable virtual

infrastructure, and they have been used commonly in order to implement experimental networks

and devoted subnets over a virtual network. Existing research in this area such as cluster-based

virtual routers, and Xen routers require the use of physical resources to establish connectivity

and to guarantee efficient resource utilization. The virtual routing appliance uses dynamic

routing protocols such as RIP, and OSPF to forward traffic between different subnets and

manage IP packets at the IP layer. The virtual routing appliance permits rapidly deployable

virtual infrastructure, which is helpful for installing isolated infrastructure for restricted

purposes, and which is also vital to the deployment of both network and application services.

This research is a self-sufficient initiative to evaluate the feasibility of setting up virtual routing

appliances in a virtual environment. A virtual routing appliance can convey about substantial

cost benefits to organizations, especially educational institutions with limited use of physical

resources.

 4

Table of Contents

1. Introduction……………………………………………………………………6

2. Literature Review……………………………………………………………...8

3. Routing Protocols in a Virtual Environment………………………………….23

4. Creation of Virtual Networks…………………………………………………31

5. Installations and Configurations………………………………………………34

6. Observations and Findings…………………………………………………….43

7. Final Results and Conclusion………………………………………………….58

8. Future Work……………………………………………………………………60

9. Bibliography…………………………………………………………………...61

10. Appendix A: Nagios Configuration……………………………………………63

List of Tables

1. Virtual routing appliances’ interfaces and configuration………………………33

2. Quagga configuration’s options………………………………………………..36

3. Latency results…………………………………………………………………56

4. Throughput results……………………………………………………………..56

5. Final results…………………………………………………………………….57

 5

List of Graphs

1. Topology of virtual routers……………………………………………………9

2. Xen’s classical network internals…………………………………………....12

3. Xen’s routed network internals……………………………………………...12

4. virtual personal overlay network……………………………………………15

5. Programmable VR design…………………………………………...………16

6. VROOM node architecture………………………………………...………..21

7. Programmable transport re-homing with interface rebinding…………….…21

8. RIP packet format……………………………………………………………24

9. OSPF in a virtual environment………………………………………………28

10. OSPF packet format………………………………………………………….29

11. General VRA topology………………………………………………………32

12. Snapshot of Nagios Running on a Virtual Routing Appliance………………38

13. D-ITG Component Architecture……………………………………………..41

14. RIP topology…………………………………………………………………44

15. RIP routing decision topology……………………………………………….46

16. OSPF topology……………………………………………………………….47

17. SNMP agents’ distribution…………………………………………………..55

 6

1. Introduction:

Routing is one of the most significant aspects in modern computer networks that need to connect

with other networks. It is also the most complicated function of a network. Routing is utilized for

sending a packet from one machine and taking it via the network to another machine on a

different network. This routing functionality can be accomplished by using a router. Routing is

no longer the function of just standalone routers; however, routing can be achieved by

computers. The combination of virtual routing functionally that is running on top of computer

operating systems will make it possible to have a virtual router.

Whether using physical or virtual environment, routing protocols must be configured in order to

make the connection successfully happen. There are various routing protocols in the area of

computer networks. The Routing Information Protocol or RIP is one of the oldest and most

important routing protocols. It uses distance-vector algorithms to calculate routes. Another

routing protocol which uses more factors for routing decision is called Interior Open Shortest

Path First (OSPF). This protocol was proposed particularly as an IP routing protocol for use

within autonomous systems. It computes routes based on the destination IP address found in IP

datagram headers.

 7

The primary concern for a virtual routing appliance is forwarding network traffic from one

interface to another based on routing metrics, a latency induces bottleneck in the virtual network,

and the ability to monitor all network devices and generate traffic polls. Analyzing virtual

routing appliances entails performance analysis in the following areas:

• Routing Capabilities (functionalities): Building a comprehensive virtual routing appliance

require some kinds of functions that perform and use routing protocols such as RIP, and

OSPF. Free software is available online that has the ability to support routing functionality.

One of these applications is called GNU Zebra which can route packets at a faster rate than

with traditional software. GNU Zebra is powerful free software that maintains TCP/IP based

routing protocols.

• Latency: A virtual routing appliance is required to capture all network traffic traversing on

the different network segments. This operation is significant to keep track of packets in a

virtual environment and can induce latency or delay in the path of the packet. The ability of a

virtual routing appliance to determine paths in real time at wire speed and in a virtual

environment using VMware is a critical factor in the choice of a routing protocol. My

experiments will have to be benchmarked for latency measured either as one way delays

(OWD) or round trip time (RTT)

• Throughput: Nagios is an open source application that is used to monitor networks. It warns

and watches hosts across the network and alerts an administrator in case suspicious events

occur and when those events come back to the normal status. This tool will be greatly helpful

in this research because Nagios monitors various network services such as SMTP, ICMP,

SNMP and others. Throughput is vital factor in a testing environment. SNMP agents are

 8

mainly deployed in the virtual routing appliances’ interfaces. This helps Nagios to check the

throughput in the virtual environment. .

2. Literature Review:

Introduction:

Virtual routers are not new subject. For the purpose of this literature review, three themes will be

examined. The first theme will identify routing protocols between routers. The second theme will

describe the development of methodologies and the last theme is going to be routing in a

virtualization environment.

2.1 Cluster-Based Virtual Router:

The idea of the experimental research accomplished by Qian and Ge is to find a way to develop

and implement a network in medium to large ISPs [1]. This virtual router will act as a transparent

router to other routers in order to avoid complexity in the Internet structure as well as the path of

the packets.

2.1.1 Virtualization mechanism:

The authors presented their research as a solution for huge networks that require scalability and

survivability. They suggested that in order to successfully maintain the rate of growth of the

 9

network, there is a need to have some sort of virtual routers in the middle of the network

topology. Those virtual routers are utilized to arrange and schedule the non-virtual routers.

In addition, the authors also used a number of external link selection algorithms for virtual router

in response to utilization and survivability enhancement in backbone networks. The following

figure gives a simple topology of the work done by Qian and Qe[1]:

Figure 1: Topology of virtual routers

In order to perform routing and forwarding functions with the external (physical routers), the

virtual router needs to do the following: first, the virtual router has to obtain routing information

sent by the external routers. Then, this router will execute the flood operation, which means that

this router will send the routing information to all internal nodes. Finally, using external links,

this virtual router will be able to send routing information to exterior routers.

2.1.2 Routing Protocols:

These virtual routers can support interior and exterior routing protocols. For example, OSPF as

well as IS-IS will be run to route traffic within the same AS and BGP with other ASs as a border

router. In contrast, my research is intended to only use interior routing protocols such as RIP,

RIPv2. This means that one router and one AS will be put in place in order to route traffic across

 10

the network. In addition, cluster-based virtual routers are a solution for ISPs. My experiment will

be of primary use for educational purpose. For instance, a faculty member may use my virtual

routing appliance to help them set up a fully virtualized environment for their research as well as

a demonstration to students on how routing protocols work.

2.1.3 Testing Environment:

Authors of this paper tested the reliability, scalability, and load balancing. They utilized a

simulation tool which is called "Network Simulator-NS Ver.2". The purpose of this application

is to test the ratio of bandwidth of the external link as well as the load.

This paper is different from mine in many ways. The paper done by Qian and Ge is targeting

data centers. They proposed a solution to fulfill the requirement of backbone networks'

survivability and scalability. This issue led them to embed virtual routers between local networks

and the ISP. The reason is to allow these virtual routers to organize and schedule packets in a

particular AS (Autonomous system). The key advantage in my architecture from this paper is

that mine will be completely virtualized while this paper uses virtual routers mainly in the

middle of the network topology.

2.2. Xen Router Virtualization:

Xen is an open source virtualization project hat provides similar virtualization services as

VMware except with a more integrated hypervisor. This can only work under Linux operating

systems [2].

2.2.1 Virtualization Mechanism:

 11

According to [3], the architecture of Xen simulates that there are multiple domains and a Xen

hypervisor in each physical computer. The Xen hypervisor (also known as the Virtual machine

monitor) has the responsibility of managing the access to the physical resources at the computer.

In addition, each domain controlled by the Xen hypervisor represents a single virtual machine.

The authors of this research point out that in case one of those virtual machines needs to utilize

privileged command, a module called hypercall must be used. The function of this module is to

inform the hypervisor that a virtual machine needs to perform a privileged instruction.

The first virtual machine in Xen is named "domain0". This domain is used by system

administrators in order to start a new virtual operating system. Furthermore, when the hypervisor

boots, dom0 automatically boots and controls management of the physical hardware. In addition

to that, all drivers are stored in dom0 (also known as IDD, Isolated Driver Domain), so all

devices kept in dom0 are accessed by all other domains through point-to-point links [3].

The following figure illustrates the Xen's system architecute. The operation of forwarding

packets in Xen has been divided into three methods. The first one is called bridging [3]. In this

mechanism, in order to permit transparency for applications between the real and the virtual

interface, Xen utilizes bridging along with dom0. The purpose of the following figure is to show

how the packets have been moved from the Driver Domain (dom0) to the guest domain (dom1)

using software bridges in dom0.

 12

Figure 2: Xen’s classical network internals

The second mechanism is called routing. Unlike the first mechanism, IP addresses are required to

be assigned to interfaces in the guest domains and dom0 to facilitate packet routing. The

following figure shows how this operation is accomplished. In this case, packets are first moved

from the dom0's physical interface (noted as ethY interface) to the proper back-end interface,

vifX.Y. Then, it is the responsibility of the Xen hypervisor to route the packets from both back-

end interfaces reside in dom0 and domU.

Figure 3: Xen’s routed network internals

 13

2.2.2 Routing Protocols:

This paper does not indicate any routing protocols used in the Xen architecture. This is

reasonable because all network traffic occur internally (in the same subnet). This means that

there is no need for routing protocols to be deployed in this scenario.

2.2.3 Testing Environment:

Clark developed an architecture called the Heterogonous Experimental Network (HEN) testbed.

This environment basically consists of many network hosts with different capabilities. Every

node in HEN has multiple interfaces which makes it easy for an experimenter to change the OS

in the node in a timely manner. The testbed consists of three components: traffic generator,

traffic sink, and the system under test. They used Dell servers in order to perform both traffic

generator and traffic sink and a Sun Fire X4100 with one 2.2 GHz AMD for the system under

test.

Even though this paper seems to have some points in common with my research such as using

hypervisors to manage all guest domains, it is slightly different from the solution I propose. In

my case, I will be using open source tools in order to perform routing functionality to transfer

packets between the virtual routing appliance and hosts.

2.3 Network-Based Virtual Personal Overlay Networks Using Programmable Virtual

Routers:

 14

Some attempts have been made towards virtualization using network programmability.

Programmable networking aims to simplify the use of network services. As a result, the network

will be able to provide the process of service creation and deployment [4]. The next paper

examines the use of programmable virtual routers in virtual personal overlay networks.

2.3.1 Virtualization mechanism:

Louati and Zeghlache suggested a new method of facilitating communication between Virtual

Private networks. A virtual router model must be utilized in both providers' edge (PE) networks

in order to simplify the dynamic deployment and management of Virtual Personal Overlay

Networks (VPONs). A VPON is defined as a number of network tunnels that specify a virtual

overlay of individual clusters on top of the actual network communication topology [5].

Moreover, a new terminology has been introduced in their research which is Personal networks

(PNs). A personal network is a set of clusters that involves wireless nodes around the user that is

called the Private Personal Area Network (P-PAN) [5].

Louati and Zeghlache outline in their paper two different types of VPON: user-managed VPON

and provider-provisioned VPON. The difference between these two categories is that the first

one has the VPON application deployed and maintained by the user. However, the second

category relies on the service provider for managing and deploying the VPON service [5]. Thus,

in order to make this happen, programmable virtual routers are needed to run on both edge

nodes. As a consequence, these two virtual routers will provide flexibility and will support

dynamic tunneling deployment and management [5].

 15

The following figure depicts the provider provisioned network-based VPON remote access

VPON approach. In this example, the VPON involves both secure cluster gateways and secure

provider edge. As we can notice from the figure, any wireless nodes in the P-PAN cluster needs

to establish a connection with the secure cluster gateway. This will ensure a connection in a

secure manner. As a result, all nodes in the network can communicate with each other using the

VPON. The provider edge (PE) routers are required to be flexible, adaptive, and self-organized

in order to support the dynamic aspect. As a result, programmable virtual router instances need

to set within PEs [5].

Figure 4: virtual personal overlay network

In order to provide the routing decision between different programmable virtual router instances,

a Click router in being used. The Click router is a software architecture and is used to facilitate

the design of the router forwarding mechanism [5]. The following figure demonstrates the design

of a virtual router. An IP classifier is responsible for isolating the incoming traffic coming and

going from all virtual router instances. In addition, each one of those intake has its own logical

address. So, the IP classifier parameter contains the logical IP address of the instance and the

 16

VPON-ID. Louati and Zeghlache stated that "The VR instance and IP classifier parameters are

added at runtime when a new VPON-ID is provisioned by the management plane into the PE ".

Figure 5: Programmable VR design

2.3.2 Routing Protocols:

Even though this paper does not mention what routing protocols they used for the experiment, it

seems that a combination of interior and exterior routing protocols is deployed. We can clearly

see from figure 4 that three gateways have been used to perform the routing decision. Some of

those protocols that I would imagine may include OSPF, IS-IS, and RIP.

2.3.3 Testing Environment:

In this research, the authors implemented their virtualized environment using Click Router. It is

innovative application architecture for creating configurable routers. Elements are packet

processing modules that are the input in order to assemble a Click Router. According to Morris,

Kolher, Jannotti, and Kaashoek, Individual elements implement simple router functions like

packet classification, queuing, scheduling, and interfacing with network devices [6].

 17

This research is different from mine because it is intended for ISPs. It helps edge providers and

maintains a network infrastructure to connect their users including wireless hosts with each

other. In terms of programming, as was observed in the above figure, the authors employ XML

(Extended Markup Language) in order to forward network traffic. On the other hand, the virtual

routing appliance will be quite simple in terms of implementation. It will only provide access to

wired users that will be administrated within the same AS. Additionally, if needed, the interfaces

attached to the virtual routing appliance will be programmed using Perl or Shell programming

languages.

2.4. IP Infusion Virtual Routing for Provider Edge Application:

The idea of using virtual routing has been introduced and published by ISPs and other firms that

are interested in this topic. According to [7], the authors of the article suggest that Internet

Service providers may need to use Virtual Private Network (VPN) to solve the issue of

scalability. Deploying VPN services instead of utilizing real network hardware will help

companies to decrease the cost to the end user. They define "Virtual routing" as a router which

can be configured to act as multiple routers in the same time [7].

2.4.1 Virtualization mechanism:

Then, the authors demonstrated some general requirements that must be taken care of before

deploying virtual routers. First, each virtual router needs to be completely separated from other

router and must have its own information about the routing decisions and protocol. Also, in

terms of manageability, the virtual router should be controlled by authorized administrators of

 18

that specific virtual router, and these administrators are required to apply standard management

protocol and services [7].

There are also some VPN specific virtual router requirements associated in this technology. They

stated that all routers should share the same VPN id if they are members in that specific VPN

domain. Additionally, they said that any routing protocols can be used in the backbone network

as long as they do not affect the traffic flow of the VPN services. From security point of view, it

is recommended that designers need to provide some level of security such as authentication and

encryption in the network where needed.

In this solution, the authors point out that all virtual routing occur in the software layer. This

layer is basically an emulation of the physical router in the application layer. The virtual router

consists of all components that might be expected on a physical router. Furthermore, there is a

new component that is called "VR Management Authority". This element is responsible for

maintaining the router configuration and managing the configuration of the router.

2.4.2 Routing Protocols:

The virtual router has a set of routing protocols for performing routing decision. This may

include learning the routes about other networks, building relationship with neighbor routers, and

discovering neighbors. There is also a component called "Forwarding Plane Base". This is used

by the TCP/IP stack to send packets to a particular virtual interface, and when we want to

forward packets, it is the role of the TCP/IP stack to decide the appropriate FIB to use based on

the received interface. IP Infusion virtualized environment initially focuses on BGP, static

routing, or RIP.

 19

2.4.3 Testing Environment:

Throughout the IP Infusion's discussion, the authors focus mostly on the concept of virtual

routing. They do not explain which testing applications they use to test their experiment.

However, this is going to be different from my research. One of the tasks that will be included in

my research is to implement a testing environment in order to measure the quality of the routing

decision.

In general, this solution is good for Internet service providers to deliverer packets from one

machine to another over the Internet/Intranet. IP Infusion suggests using virtual routing along

with VPN to reduce the cost of using many network resources and make it easy for network

designers to scale their networks based on this technology. Unlike this research however, the

virtual routing appliance that I propose will be focusing not only on the routing protocols, but it

will provide a testing environment for the topology that will be created. Furthermore, this

research is intended to be a solution for ISPs and mine will be used towards educational

environment.

2.5 VROOM: Virtual Routers On the Move:

Network management is not new in the area of networking. Much research has been published

looking as ways to address issues such as scalability, availability, or redundancy. Other

researches have dealt with problems allowing virtual routers to move from one physical router to

another without the need to change the IP address. The next paper with discuss this technology in

details.

 20

2.5.1 Virtualization mechanism:

Wang, Merwe, and Rexford propose a new solution for allowing a virtual router to easily move

from one physical router to another. They came up with a new technology which is called

VROOM (Virtual ROuter On the Move).The authors argued that in order in reduce the

complexity of network management, there is a need to split the physical and the logical

configuration of a network. As was discussed in their research, VROOM is a new architecture

that has the ability to give the virtual routers the absolute freedom to move from one physical

node to another.

Furthermore, VROOM does not disrupt the flow of traffic or modify the logical topology when

VROOM migrates with a virtual router to a different physical router. This sometimes occurs

when a physical router must go for planned maintenance. The virtual router can move to another

physical router in the same Point-of-Presence (POP). The following figure depicts a router in the

VROOM architecture. The figure yields that there are two layers, a substrate layer and a logical

layer. According to [8], "The primary purpose of the substrate layer is to provide a dynamic

binding between the interfaces of the logical routers and interfaces and links in the substrate

level". On the other hand, the logical layer includes virtual router and is the same as the today's

physical IP level routers.

 21

Figure 6: VROOM node architecture

In the next figure, Router A is re-binding from router B to router C using the programmable

transport. The research that is done in this paper suggested that in order to make this happen, two

extensions need to be made. The first extension is to dynamically adjust the binding between the

physical host and its logical router. Secondly, the virtual router needs to migrate from one

physical router to another.

Figure 7: Programmable transport re-homing with interface re-binding

2.5.2 Routing Protocols:

The authors of this research deploy the Border Gateway Protocol (BGP) which is the core

routing protocol of the Internet. BGP does not utilize traditional interior gateway protocols

metrics. It makes routing decisions based on network policies and path.

 22

2.5.3 Testing Environment:

The network topology consists of two subnets. Each subnet has four physical servers. The goal

of this topology is to study the round-trip delay time for the migration. The authors did not spend

much time testing and verifying the technologies they discussed in their research.

In conclusion, this research is different from mine in many ways. First of all, the authors run

their virtualized experiment under Linux OS using Xen virtual machines. In my experiment, I

will intend to use VMWare in order to create a virtual environment. Also, this research was a

primary target at ISP network so it will facilitate traffic moving among backbone routers. On the

other hand, my paper will aim to be used in education. Lastly, it is clearly seen that VROOM

research lacks a clear testing methodology and uses powerful testing tools in order to accurately

measure different aspects of monitoring their testing environment. However, in my experiment, I

am using tools such as Nagios and I-ITG to generate and test packets coming from virtual

machines.

3. Routing Protocols in a Virtual Environment:

The purpose of routing is to decide where to send network packets intended for addresses that are

located outside the local network. Routers, specifically virtual routers, collect and maintain

gathered routing information in order to permit the sending and receiving of such packets.

 23

Conceptually, there are two basic methods for routing. Routers can utilize planned static routes,

or they can dynamically compute routes using any routing protocols, such as RIP, or OSPF. The

second type of routing has the ability to discover routes when those routers broadcast their

routing tables through Ethernet or serial interfaces.

For the purpose of my thesis, no static routes are used within the virtual routing appliance.

Instead, the above dynamic routing protocols are the core protocols that are used for the scenario.

The next few paragraphs discuss these routing protocols in detail for better understanding of how

they are actually designed and how they work.

Routing Information Protocol (RIP):

RIP is considered to be one of the oldest routing protocols. This protocol calculates routes by

using distance-vector algorithms. RIP is most functional as an interior gateway protocol [9].

Thus, it is not common that to see this protocol used in Internet. Routing protocols that are

controlled and administrated within the same autonomous systems are referred to as an interior

gateway protocol. Some of capabilities and features that RIP supports will be discussed next.

This includes routing timers, routing update process, routing stability, and RIP routing metrics.

RIP broadcasts its routing information at regular basis and when the network topology alters. In

case any changes occur in the topology, the virtual router updates its routing table to adopt the

new route. When the virtual router uses RIP, it only maintains the best route to a destination

network. RIP then informs other virtual routers of the change, but only after it updates its own

 24

routing table. In terms of routing metrics, RIP only uses one metric, which is the hop count, for

routing calculation between a source and destination network. Each path from the source to the

destination is given a value. Therefore, when a packet leaves the source machine and reaches the

first virtual routing appliance, the hop count is incremented by 1 and that is added to the metric

value.

RIP maintains routing stability by avoiding routing loops from occur. It limits the number of the

hop count that is allowed in a path between the source and the destination. The virtual routing

appliance will drop packets that have hop counts exceeding 15 and the network destination is

considered unreachable [10]. RIP route timers are used to maintain the validity of each route that

is saved in the routing table. Figure 1 depicts the RIP packet format that consists of nine fields.

Figure 8: RIP packet format

As we saw in the previous figure, a RIP packet format consists of nine fields. This paragraph will

expand each component listed in the format. The command field which requires one octet shows

whether the packet is generated as a request or as a response to a request. In the first case, the

request asks the virtual router to send all or part of its routing table. A response packet can be

generated in either response to a request or as an unsolicited update [10]. The version number

field is used to determine a RIP version that was used to generate the RIP packet. Yet, only two

version numbers have been assigned, number 1 and 2. Although I am primary concerned with

RIP version 1, it is important to explain the difference between those two versions. The key

 25

features that RIP 2 provides but not RIP1 are authentication and subnet masking. RIP 2 has the

ability to use a simple authentication mechanism to secure table updates. More importantly, RIP

2 supports subnet masks. If the network address does not have a subnet mask, this field is set to

zero.

The Address-Family Identifier (AFI) indicates the address family used. RIP is implemented to

provide routing information for different protocols. Consequently, the open standard RIP needed

a mechanism for determining which type of address is being carried in its packets. The AFI for

IP is 2. The address field contains an internetwork address. This can be a gateway, a network or

even a host. Finally, the metric field specifies the number of virtual routers have been traversed

to the destination. This value is incremented as it passes through a virtual router. The following

paragraph explains the commands that are used in my experiments for RIP.

Traditional routing applications present all of the routing protocol functionalities as one process

software. However, Quagga approaches this differently. Quagga is implemented from a number

of many daemons that work collectively in order to construct the routing table. In Unix and other

multitasking operating systems, a daemon is a computer program that runs in the background,

rather than under the direct control of a user [11]. For example, the Ripd daemon deals with the

RIP protocol; the last letter “d” represents the term “daemon”. In addition, there is a kernel

routing table manager zebra daemon which is running under the virtual routing appliance

machine. This is used to update the kernel routing table and for redistribution of routes between

several routing protocols. If there is a need to add new routing protocols daemons to the whole

 26

routing system, this can be accomplished by running only the protocol daemon associated with

routing protocol in use.

The first command that needs to be issued is router rip. This command is necessary in order to

enable RIP protocol. This command must be entered before issuing any other RIP command.

Then, RIP protocol needs to be set by a network. The command for this is network a.b.c.d. For

example, if network 10.0.0.0/24 was RIP enabled, this would result in all pool addresses from

10.0.0.0 to 10.0.0.255 being enabled for RIP protocol. Another command that can be optionally

used is neighbor a.b.c.d. It is to establish a direct link between virtual routers when a neighbor

does not understand multicast.

Although RIP protocol has been marvelously suited during the early days of networking,

technology has radically adjusted the way internetworking used and built. Some of the greatest

limitations of RIP protocols are failure to support paths longer than 15 hops, relatively slow

convergence, reliance on fixed metrics to calculate routes, and inability to provide dynamic load

balancing.

Open Shortest Path First (OSPF):

OSPF is the second virtual routing protocol that is supported in my experiment. This paragraph

sheds some light on this protocol. One endeavor to enhance the scalability of networks was to

base routing decisions on link states rather than hop counts or other distance vectors. OSPF has

two major features. The first characteristic is that the protocol is open, which indicates that its

specification is in the public domain [12]. The second feature is that OSPF is based on the

 27

Shortest Path First (SPF) algorithm, which is also referred to Dijkstra’s algorithm [12]. This

algorithm permits the selection of routes based on link states, as opposed to only distance

vectors. This protocol was originally implemented as an IP routing protocol for exercise within

autonomous systems. Therefore, OSPF is not capable of carrying out datagrams of other routable

networks such as Apple-Talk or even IPX.

One of the key advantages that an OSPF supports is the ability to rapidly detect topological

changes in the autonomous system. Other advantages include calculating a separate set of routes

for each IP type of service, utilizing multicasting to minimize the load on systems not

participating OSPF and carrying out data equally between equal-cost routes [13]. Unlike RIP

protocol, the core concept of OSPF routing protocol is that it works within a hierarchy. The

biggest part of the hierarchy is the autonomous system. Each AS can be divided into several

areas which can possibly contain a group of contiguous networks as well as hosts. Virtual routing

appliance can be assigned to different areas based on interfaces that re associated with a network.

The following drawing gives an example how OSPF looks like in a virtual environment.

 28

Figure 9: OSPF in a virtual environment

This paragraph discusses an OSPF packet format. OSPF is considered to be a fairly complex

routing protocol. Thus, it utilizes an extensive amount of data structure and each structure

executes a particular task. This is identified as the OSPF header. The following figure shows the

OSPF packet format which contains of nine fields and has a header size of 24 bytes.

 29

Figure 10: OSPF packet format

• Version Number: The first field seen in an OSPF header is intended to identify the

version number. The current virtual routing appliance that I am proposing supports OSPF

version 2 and version 3.

• Type: This field explains which of the five different OSPF packet types is associated to

this specific header. The header type can be one of the following:

o Hello packets (type 1): Is utilized to initiate and maintain relationships among

neighboring virtual routing appliance.

o Database description packets (type 2): This packet is used between two OSPF

virtual routing appliances in order to build an adjacency.

o Link-state request packets (type 3): This packet describes a virtual routing

appliance requests particular piece from a neighboring virtual routing appliance.

This happens when the neighboring virtual routing appliance has more current

information.

o Link-state update packets (type4): This packet is response to link-state request

packets and is responsible to carry out Link-state Advertisements (LSAs) to

neighboring virtual routing appliances.

o Link-state acknowledgment packets (type 5): This packet ensured reliability of

LSA packets distribution. Therefore, the receiver virtual routing appliance must

acknowledge a receipt of the packet.

 30

• Packet length: This packet is used to notify the receiver the total length of both the

payload and the OSPF header.

• Router ID: Each virtual routing appliance is given a unique ID number. It is populated

by the OSPF protocol before sending any other information to other virtual routing

appliances.

• Area ID: As discussed in figure 3, this field is responsible to specify the area ID number.

• Checksum: This field stores a result of a mathematic algorithm calculation to make sure

that a packet received is identically the same as the on sent.

• Authentication type: Involves the authentication type. Each virtual routing appliance

must be authenticated during OSPF protocol exchanging.

• Authentication: This filed is used for actual carrying of authentication information.

• Data: Contains encapsulated upper-layer information.

In order to start the OSPF configuration process in Quagga, it is necessary to first identify the

OSPF virtual routing appliance. The command router ospf enables the OSPF process. The

second step is to set up the virtual routing appliance ID of the OSPF process. This can be

accomplished by issued ospf router-id a.b.c.d command. The ID number can be either an IP

address of the virtual routing appliance or any arbitrary 32 bit number and must be unique. The

next step is to associate a network as well as an area to a specific interface by typing network

a.b.c.d/m area a.b.c.d command. These are the essential commands that are required to get

virtual routing appliance route traffic properly.

 31

OSPF is considered to be one of the most great and provides several features in terms of open

source routing protocols. Its complexity is probably the biggest limitation because building,

maintaining, and designing OSPF networks require a degree of expertise. One way to decrease

this complexity to use the default setting which greatly helps to simplify the design of this kind

of networks. When setting properly, users will notice quick convergence and solid performance.

4. Creation of Virtual Networks:

Three virtual routing appliances are utilized in this research in order to test the traffic behavior.

Those virtual routers are the core aspects and act as packet forwarders between heterogeneous

LANs. Routing decision is made based on the routing table resides in each configuration of the

virtual routing appliances. Additionally, six VLANs are created using VMware features in order

to ensure that all VLANs are isolated from each other and there is no way for packets to be

forwarded among VLANS unless there is a layer three device. The network topology shown

below is used to perform two different experiments. Each one of those experiment employs

specific dynamic routing protocol, RIP and OSPF respectively. I am using 192.168.X.X IP

address poll for all nodes in this research.

 32

 Figure 11: General VRA topology

 The above figure shows that some nodes have three interfaces. This can be possibly added

using the VMware feature called “Add Adaptor”. It is important to know which interface

corresponds to which IP address. The following table illustrates all interfaces in the previous

network topology and the IP address associated with each adaptor.

Device Name VLAN Name Interface/Adaptor IP Address

VRA 1 VLAN 6 Eth1 192.168.2.1/24

VRA 1 VLAN 1 Eth2 192.168.1.2/24

VRA 1 VLAN 4 Eth3 192.168.4.1/24

VRA 2 VLAN 5 Eth1 192.168.5.1/24

 33

VRA 2 VLAN 2 Eth2 192.168.3.2/24

VRA 2 VLAN 6 Eth3 192.168.2.2/24

VRA 3 VLAN 5 Eth1 192.168.5.2/24

VRA 3 VLAN 3 Eth2 192.168.6.2/24

VRA 3 VLAN 4 Eth3 192.168.4.2/24

VM 1 VLAN 1 Eth1 192.168.1.1/24

VM 2 VLAN 2 Eth1 192.168.3.1/24

VM 3 VLAN 3 Eth1 192.168.6.1/24

Table 1: Virtual routing appliances’ interfaces and configuration

The previous table shows that all virtual routing appliances have three interfaces. Each interface

is assigned into different VLAN. As a result, for example, if VM1 needs to send packets to

virtual routing appliance 1, packets should be forwarded to Eth2 in the virtual router. This

ensures that all VLAN are totally isolated from each other. The following screenshot is taken

from my VMware Workstation’s main page:

 34

5. Installations and Configurations:

Three major applications are needed to be set up and configured in order to establish the test

environment for my experimental research. One physical machine is used to emulate this testing

environment. Quagga, which is a newer version of GNU Zebra project, is installed in two virtual

routing appliances that are running under Linux Ubuntu OS. These virtual routing appliances

represent the core function for routing between virtual hosts that are running under Windows XP

SP2. In this sense, most of the configuration and tuning are applied to the virtual routing

appliances. This component utilizes the same Cisco ISO commands for routing. Although

Quagga is intended to work under a physical machine, it can be tuned to work in a virtual

environment. In addition, Nagios, which is a tool that performs monitoring tasks, is installed in

both virtual routing appliances. Even though all these nodes are residing in the same physical

machine, they are totally isolated into three subnets. This involves virtual Network Interface

Cards (NICs) on both virtual hosts and virtual routing appliances.

Hardware and Software Specifications:

1. Laptop

• Processor: Intel Pentium® M 2.00 GHZ

• RAM: 1 GB

• Hard Disk: 80 GBs.

• Microsoft Windows XP Version 2002 (Service Pack 2).

 35

Step 1: Installation and Configuration of Quagga:

Ubuntu 7.10 the Gutsy Gibbon release, which is a Linux based OS, has been selected as the

foundation for Quagga. The only prerequisite to get Quagga to work is to update all packages

from Synaptic Package Manger and choose to install Quagga. This experiment uses Quagga

0.99.9 release which supports BGP4, BGP4+, OSPFv3, IS-IS, RIPv1 as well as RIPv2. An

operating system with Quagga installed operates as a dedicated router. Using Quagga, a virtual

machine can exchange routing information with other virtual routers utilizing routing protocols.

Quagga takes advantage of this information to update the kernel routing table so that the right

packet is forwarded to the right destination. The latest version of GNU Quagga can be

downloaded from http://www.quagga.net. The simplest way to install this package after

downloading is to type the three following commands:

% configure

% make

% make install

 The next step is to configure and make some adjustments to this utility. It is necessary to specify

what routing protocols Quagga is going to support. By default, the only routing protocol that

Quagga supports is RIP. In order to change the default configuration, a user needs to activate the

Quagga daemons matching the routing protocols that are required on a virtual routing appliance.

The following command allows the user to choose the proper routing protocol:

#vim /etc/quagga/daemons

Each routing protocol has three options:

 36

Entry Number Priority

0 or “No” Disabled

1 or “Yes” Highest priority

2 � 10 Lower priority

Table 2: Quagga configuration’s options

The “daemons:” configuration file looks like the following:

Notice that in the following example zebra, ospf and rip routing protocols are included and the

OSPF has a higher priority when routing information than rip.

zebra=yes

bgpd=no

ospfd=yes

ospf6d=no

ripd=2

ripngd=no

isisd=no

After successfully choosing the routing protocols for your needs, it is required to create a

configuration file every time a Quagga daemon is activated. There can be six configuration files

based on the implementation of a virtual network. For instance, files such as bgpd.conf and

ripd.conf are used in order to store configuration commands within these two specific files. Upon

starting Quagga, these files are loaded into the running configuration in the virtual appliances’

memory. This will facilitate a user ability to enter a set of commands in the Quagga command

line. These files must be saved in the /etc/quagga/ directory. The following is a sample config

files for zebra and ripd daemons:

 37

!

! Zebra Configuration Saved from vty

! 2008/06/11 04:11:31

!

hostname Router

enable password zebra

!

interface eth0

ipv6 nd suppress-ra

!

 interface lo

!

linevty

Sample of Zebra config file

!

! Zebra Configuration Saved from vty

! 2008/06/11 04:11:31

!

hostname ripd

password zebra

log stdout

!

Router rip

!

line vty

!

Sample of ripd config file

The first config file basically assigns a hostname to the virtual router as well as the password. It

also states that these commands have been entered via a local administrator. The other config file

has almost the same characteristics except that the virtual router utilizes rip as a routing protocol.

Finally, it is necessary to provide a user or group ownership to Quagga and Quaggavty

respectively to the files inside the /etc/quagga directory:

#chown quagga.quaggavty/etc/quagga/*.conf

#chmod 640 /etc/quagga/*.conf

#vtysh

 38

Step 2: Installation and configuration of Nagios:

 Nagios is installed on the target virtual routing appliances. For monitoring purposes, it is

important to install and configure this software in order to study the results. Before installing

Nagios, a user must install the following packages:

• Apache2: Apache provides several features, many implemented as complied modules

that expand the major functionality. These range from a server-side programming

language scheme to authentication support. Apache is essentially utilized to support both

static content such as text and pictures and dynamic Web pages such as Flash

technologies. The combination between Nagios and Apache enables me to use the web

interface to poll the status of different hosts that are assigned in the configuration file for

Nagios. The following snapshot explains the different services that monitor the localhost

that resides in the virtual routing appliances.

Figure 12: Snapshot of Nagios Running on a Virtual Routing Appliance

 39

• GCC compiler and development libraries: GNU Compiler Collection contains a number

of compliers implemented for various programming languages by the GNU Project. The

GNU compiler was originally produced to only handle C programming language. By the

time, this project was extended to compile Java, C++, Pascal, and FORTRAN. This

package is mandatory in order to compile the Nagios that is written in C.

• GD development libraries: GD library stands for Gif Draw and is used to manipulate

images. Additionally, it can create other image formats such as PNG, JPEG and WBMP

images. This package is required in Nagios since there is an option to visualize the host

machines from the web interface.

The configuration of Nagios begins by creating a new Nagios user account and giving it a

password. This step is important for authentication purposes when a user needs to connect to the

web interface. The following sets of commands should be utilized to create a new user:

#/usr/bin/useradd nagios

#passwd nagios

 Step 3: Installation and configuration of Distributed Internet Traffic Generator

D-ITG Configuration:

D-ITG offers two options for packet delivery. The first one, which works under Windows OS,

uses GUI to manage traffic flows as shown below. The second alternative runs under Linux OS

 40

and requires a user to type commands manually. Several parameters cab be assigned in a D-ITG

command such as delay meter, protocol, source and destination ports, traffic speed and volume.

Snapshot Sample of D-ITG GUI Interface

Component of D-ITG:

ITGSend: this is the sender component of the D-ITG component. ITGSend creates several

simultaneous flows of protocol traffic. It is a multithreaded platform accountable for producing

and sending network packets according to particular input parameters [14]. This component

exists on the sender virtual host and has the capability of generating a number of several flows

concurrently. Each flow is managed by a single thread. The traffic flow behavior can be

controlled by various command line options. As listed above, those options may include but are

not limited to meter (one way delay or round trip delay), source and destination ports, packet

size, protocol type, and flow duration.

 41

ITGRecv: This component has the role of receiving traffic sent by ITGSend. It should apparently

run on the receiver virtual host to achieve a connection [14]. It is mandatory to synchronize the

clocks in the sender and the receiver virtual hosts for accurate results when calculating one way

delay. Clocks can be not synchronized if a round trip delay is utilized for measurement of the

delay. The logs may be sent to a third virtual host but I chose to capture it locally on the

receiving virtual host for the purpose of this testing.

ITGDec: This is the decoder component and is responsible for analyzing the results of the testing

generated by utilizing the D-ITG platform. It parses the log files generated by ITGSend and

ITGRecv components and computes jitter, delay, and bit rate at specific intervals on the test as a

whole. Delay is the time variation between sending and receiving packets. On the other hand, the

testing time is between the reception of the first and last packet received by the ITGRecv

component.

Figure 13: D-ITG Component Architecture

 42

6. Observations and Findings:

RIP Scenario:

The first routing protocol installation in my proposed virtual environment is RIP. As discussed

earlier in this report, RIP relies only on hop count to measure a cost to a given route. It is

important to notice that all links in this topology have the same link speed although it is not

affecting the routing decision for any of the virtual routing appliances. The following drawing

gives a better understanding of the whole environment including the three virtual routing

appliances as well as the virtual machines.

R
IP

R
IP

R
IP

R
I
P

Figure 14: RIP topology

After configuring those virtual routing appliances to be RIP capable, all router are staring to

learn new networks. Upon configuring RIP protocol in the virtual routing appliances, each

virtual routing appliance learns and advertises RIP routes with all neighbors by default. My

 43

observation is that all virtual routers are successfully able to learn all routes in my topology and

hence can ping any virtual appliance/machine. The following is a screenshot taken from the first

virtual appliance when typing show ip route.

The above screenshot shows many routes that need to be explained in this paragraph. First, the

“C” sign indicates that loopback address for that specific machine. This is generally used for

testing purpose to ensure that that machine can ping itself. The “K” sign is only found if one

used GNU Zebra which refers to a kernel route. The idea behind it is that Gnu Zebra supports

multi-thread by combining all routing protocols into single configuration file.

 I also found that three routes are directly connected to the first virtual appliance. The reason is

that this virtual machine is assigned with three NIC different interfaces and referred to the

symbol “C” which means that this route is directly connected to the virtual machine. Finally and

most importantly, I observed that three new routes have been learned from neighbors. Going

back to the topology, we can obviously see that 192.168.3.0/24 network has been learned via the

second virtual routing appliance which the IP address of 192.168.2.2.

 44

The value of 120 indicates the administrative distance of the information source which is RIP in

this topology and the hop count value in this case is 2 because packets are forwarded through

two virtual routers to reach to that specific network. Eth5 means that RIP has been advertized by

this interface. The last value specifies the last time the route was updated, in hours: minutes:

seconds.

The last observation in this section discussing the path are taking when leaving the first virtual

machine and targeting the second virtual machine. After studying the behavior of RIP protocol

and applying its configuration in my virtual environment, the result was that the sender virtual

machine is taking the shortest path to the destination which goes through VLAN6. The next

drawing clearly demonstrates the behavior of packets sent from the first virtual machine to the

second virtual machine.

Figure 15: RIP routing decision topology

 45

The following is a tracert command issued from the first virtual machine and targeting the

second virtual machine. The result is that all packets are traversing from VRA1 to VRA2 which

proves the concept of the RIP routing protocol.

 46

OSPF Scenario:

The second experiment that is conducted in this research uses an OSPF protocol in all virtual

routing appliances. Unlike the RIP protocol, OSPF depends on different measurements and

criteria when calculating routing paths. As described in RFC, the OSPF protocol employs path

cost at its basic routing metric. In practice, it is known by the link speed (bandwidth) of the

interface addressing the given route. In my virtual network environment, I tend to use mixed

speed that can be set up from the VMware options and from a virtual routing appliance command

line. The following drawing shows all VLANS associated with their link speed. This enables me

to study the behavior of the OSPF protocol.

O
S
P
F

O
S
P
F

O
S
P
F

O
S
P
F

C
o
s
t=
1
0

C
o
s
t=
1
0

C
o
s
t=
1
0

C
o
st
=
10

Figure 16: OSPF topology

 47

The purpose of this experiment is to see what path packets are taking when sending traffic from

the second virtual machine to the second virtual machine. It is important to notice in the above

topology that not all links have the same speed of bandwidth. The screenshot taken from the first

virtual appliances explains the path cost for all three interfaces connected to that virtual node. It

shows that the Ethernet1 and Ethernet3 have the path cost of 10, meaning that their speed links

are 10 Mbps. On the other hand, I tuned the speed link for Ethernet2 to be 56 Kbps using the

bandwidth 56 command. As a result, Ethernet 1 and Ethernet 3 have a total path cost of 10 and

Ethernet 2 has a cost of 1786. This means that Eth1 and Eth3 have a higher priority when

sending traffic.

One of the key observation when looking at the routing table of the first and the second virtual

routing appliances is that they have two paths to the same destination in case all their interfaces

have the same link speed. However, the following routing table taken from the first virtual

routing appliance shows that there is only one entry stored in that table. This is because OSPF

 48

selects the best route to the destination and stores it in its routing table. Note that the first routing

appliance in this scenario is forwarding packets to 192.168.4.2/24 when the first virtual machine

pings the second virtual machine.

The next screenshot obtained from the first virtual machine shows the complete route from the

first virtual machine to the second virtual machine. It explains an obvious observation that the

traffic is traversing through the third virtual routing appliance even though it is longer.

 49

Determination of Latency:

Part 1: TCP

Delay measurement with RIP protocol

This section presents the commands utilized for measuring latency induced by RIP protocol for

each of the two protocols of TCP and UDP. The precise commands and their output are shown.

The results points out the average delay for each packet. A delay measurement is applied for

both RIP and OSPF scenarios and the results are summarized in the table at the end of this

section. All the following commands are generating from the first virtual machine and targeting

the second virtual machine.

Command: ITGSend.exe –m rttm –a 192.168.3.1 –rp 10001 –T TCP –t 30000 –l

send_tcp_rip –C 100000 –c 1000

--

Flow number: 1

From 192.168.1.1:1036

To 192.168.3.1:10001

__

**************** TOTAL RESULTS ******************

__

Number of flows = 1

Total time = 29.970407 s

Total packets = 31717

Minimum delay = 0.010905 s

Maximum delay = 0.681792 s

Average delay = 0.131910 s

Average jitter = 0.001435 s

 50

Delay standard deviation = 0.069519 s

Bytes received = 31717000

Average bitrate = 8466.218026 Kbit/s

Average packet rate = 1058.277253 pkt/s

Packets dropped = 0 (0.00 %)

Delay measurement with OSPF protocol

Command: ITGSend.exe –m rttm –a 192.168.3.1 –rp 10001 –T TCP –t 30000 –l

send_tcp_ospf –C 100000 –c 1000

--

Flow number: 1

From 192.168.1.1:1064

To 192.168.3.1:10001

__

**************** TOTAL RESULTS ******************

__

Number of flows = 1

Total time = 29.947127 s

Total packets = 7450

Minimum delay = 0.035168 s

Maximum delay = 1.786886 s

Average delay = 0.401525 s

Average jitter = 0.006812 s

Delay standard deviation = 0.309101 s

Bytes received = 7450000

Average bitrate = 1990.174216 Kbit/s

Average packet rate = 248.771777 pkt/s

 51

Packets dropped = 0 (0.00 %)

Part 2: UDP

Delay measurement with RIP protocol

Command: ITGSend.exe –m rttm –a 192.168.3.1 –rp 10002 –T UDP –t 50000 –l

send_udp_rip –C 100000 –c 1000

--

Flow number: 1

From 192.168.1.1:1055

To 192.168.1.10:10001

__

**************** TOTAL RESULTS ******************

__

Number of flows = 1

Total time = 49.974237 s

Total packets = 33367

Minimum delay = 0.000772 s

Maximum delay = 1.453843 s

Average delay = 0.015954 s

Average jitter = 0.001533 s

Delay standard deviation = 0.055672 s

Bytes received = 33367000

Average bitrate = 5341.4722247 Kbit/s

Average packet rate = 667.684031 pkt/s

Packets dropped = 191773 (85.18 %)

Error lines = 0

 52

Delay measurement with OSPF protocol

Command: ITGSend.exe –m rttm –a 192.168.3.1 –rp 10002 –T UDP –t 30000 –l

send_udp_ospf –C 100000 –c 1000

--

Flow number: 1

From 192.168.1.1:1070

To 192.168.3.1:10002

__

**************** TOTAL RESULTS ******************

__

Number of flows = 1

Total time = 30.004165 s

Total packets = 923

Minimum delay = 0.079857 s

Maximum delay = 7.485252 s

Average delay = 0.777670 s

Average jitter = 0.0383684 s

Delay standard deviation = 0.838684 s

Bytes received = 923000

Average bitrate = 246.099167 Kbit/s

Average packet rate = 30.762396 pkt/s

Packets dropped = 230525 (99.60 %)

 53

Final results for latency:

For each of the two protocols of TCP and UDP, the results for delay are summarized in the

following table. The latency induced by RIP protocol is unlike the delay with the OSPF protocol.

Finally, the mathematical mean for all two protocols is calculated to show the average latency

induced by RIP and OSPF routing protocols in a virtual environment.

Sr. No. IP Protocol RIP Protocol

(in milliseconds)

OSPF Protocol

(in milliseconds)

1 TCP 131.910 401.525

2 UDP 15.954 777.670

 Average Latency 73.932 589.5975

Table 3: Latency results

The average latency of all two protocols at 10 Mbps is 73.932 milliseconds for the RIP scenario

and 589.5975 milliseconds for the OSPF scenario.

Determination of Throughput:

This section targets the performance of the virtual environment, particularly the throughput. The

throughput is always measured as a packet per second. Throughput would be to take two

measurements of the total number of packets that have come in or out of a particular interface

and take the packets at the second time and subtract it from the packets at the first time. This

calculates the number of packets that have gone in and out in that time period. Finally, the time

at point one and the time at point two needs to be collected and then subtract them and perhaps

multiply them by a scale. The following formula illustrates the way the throughput is measured:

 54

Scaleondsonds

inPacketsinPackets
ondpktsPerSec

*secsec

)(

12

12

−

−
=

The idea here is simple. The first virtual routing appliance is responsible to monitor the other two

virtual routing appliances and the virtual router itself. The first appliance generates SNMP

requests throughout the network and list the result in a nicely format in Nagios. The following

drawing shows the interfaces that send or receives SNMP requests.

Figure 17: SNMP agents’ distribution

 The next step is to create services inside Nagios that will appear on the web-based browser. This

browser shows the result of the services that have been generated for each piece of a virtual

router. The two following files need to be created in order to achieve this task. “localhosts.cfg” is

the file where all the IP addresses of the three virtual routing appliances as well as host names

 55

are defined. It also specifies the service’s name that will appear in Nagios and the command

name. The “commands.cfg “shows the actual SNMP command that is used to send a request to a

specific router’s interface. The appendix section lists all the hosts’ and services’ configurations.

An awk script is also created to calculate the throughput for the three virtual routing appliances.

The script stores the initial reading in a separate file. It then computes the second reading and

subtracts it from the first reading. The result of the calculation is shown in Nagios web-browser.

In this example, the RIP protocol is used to route traffic between the three different subnets.

Since the primary concert is to study the throughput in only the three virtual routing appliances,

the other three virtual machines ate omitted from this scenario. The following screenshot taken

from Nagios shows the statistic polls from the web-browser. It is important to note that there are

two types of services I have created; the average packets sent and the average packets received.

The following screenshot and table show the throughput calculated from the awk script and

being embedded into the Nagios web-browser.

 56

Machine Name Mode Throughput Rate

(packets per seconds)

VRA1 Sent 0.39945

 Received 0.050395

VRA2 Sent 0.00

 Received 0.106732

VRA3 Sent 0.0764897

 Received 0.0460082

Table 4: Throughput results

The average throughput of all three virtual routing appliances is 0.23796985 packets per second

in the sent mode and 0.06771173 packets per second in the received mode.

7. Final Results and Conclusion:

The last cumulative findings for the quantitative tests accomplished for the virtual routing

appliances are the average of results for the all scenarios for latency and throughput parameters.

Parameter Average Rate

Latency RIP 73.932 milliseconds

Latency OSPF 589.5975 milliseconds

 57

Throughput Sent 0.23796985 packets per milliseconds

Throughput Received 0.06771173 packets per milliseconds

Table 5: Final results

Details of results for each parameter

• Latency (RIP): the latency observed in the RIP scenario is less than from the one found

in the OSPF scenario. The reason is that traffic traverses through two hop counts

resulting in less network latency although the OSPF build relationship with neighbor

virtual routers faster. The value of 73.932 milliseconds came from both TCP and UDP

packets generated from D-ITG and calculated the average of those IP packets.

• Latency (OSPF): the latency of on the other hand found in the OSPF scenario is

obviously much higher than the one seen in the RIP scenario. I had to tune the first

scenario by adjusting the bandwidth between the first virtual routing appliances and the

second virtual routing appliance to be 56 Kbps. As a result, packets are traversing via the

third virtual routing appliance that causes the latency to be higher. In order to get a better

performance, the bandwidth between the three virtual routers should return to their

previous status which is 10 Mbps.

• Throughput (Sent/Received): The throughput values in the above table indicate that the

three virtual routing appliances send and receive traffic at low rates. The reason behind it

is that I intended to isolate my virtual environment from the Internet. However, in order

to increase the throughput rate, it is recommended to add three NIC interfaces and

 58

associate them with each virtual routing appliance. Downloading and uploading files

from the Internet would help enhance the throughput rate for all virtual machines.

The virtual routing appliance lessons the degree of building a virtual environment. It can be

deployed as a virtual router with the assurance of forwarding packets to the right destination.

According to the findings and observations of the tests conducted for this evaluation, a virtual

routing appliance is best suited for educational and experimental purposes. It could usually be

deployed to route traffic between subnets without the need to add physical resources.

8. Future Work:

The evaluation of the virtual routing appliance was conducted with limited routing protocols and

was not using advanced features. The scale of this evaluation can be enlarged by testing the

proposed virtual routing appliance with more routing protocols’ configurations and conditions.

These may include deploying other routing protocols such as EIGRP, BGP, and ISIS. The

research can be also expanded by generating traffic for additional protocols, utilizing multiple

routing protocols in a single scenario. Future research can also involve using Nagios to calculate

additional services such as utilization, bandwidth, and response time.

 59

9. Bibliography:

[1] Ge, J., & Qian, H. (2001). Cluster-based virtual router. Retrieved February 23,

 2008, from http://www.ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/7719/

 21186/00983561.pdf?tp=&arnumber=983561&isnumber=21186

[2] Clark, C. (2006, September 29). Xen User's Menual. Retrieved April 24, 2008,

 from http://www.cl.cam.ac.uk/research/srg/netos/xen/readmes/user/user.html

[3] Egi, N., Greenhalgh, A., Handley, M., Hoerdt, M., Mathy, L., & Schooley, T.

 (2007, August 13). Evaluating Xen for Router Virtualization. Retrieved

 February 23, 2008, from http://www.ieeexplore.ieee.org/Xplore/

 login.jsp?url=/iel5/4317769/4317770/

 04317993.pdf?tp=&arnumber=4317993&isnumber=4317770

[4] Campbell, A., Kounavis, M., & Vicente, J. (n.d.). Programmable Networks.

 Retrieved April 24, 2008, from http://www.comet.columbia.edu/genesis/papers/

 dag.pdf

 60

[5] Louati, W., & Zeghlache, D. (2005, August 8). Network-based virtual personal

 overlay networks using programmable virtual routers. Retrieved February 23,

 2008, from http://www.ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/35/

 32153/01497558.pdf?tp=&arnumber=1497558&isnumber=32153

[6] Morris, R., Kohler, E., Jannotti, J., & Kaashoek, M. (1999, December). The Click

 modular router. Retrieved April 27, 2008, from http://pdos.csail.mit.edu/

 ~rtm/papers/click.pdf

[7] Kirk, J. (2002). Virtual Routing for Provider Edge Applications. Retrieved

 October 16, 2007, from http://www.ipinfusion.com/pdf/

 VirtualRouting_app-note_3rev0302.pdf

[8] Wang, Y., Keller, E., Biskeborn, B., Merwe, J., & Rexford, J. (n.d.). Virtual

 Routers on the Move: Live Router Migration. Retrieved February 23, 2008,

 from http://www.cs.princeton.edu/~yiwang/papers/vroom.pdf

[9] Hedrick, C. (1988, June). Routing Information Protocol. Retrieved June 11, 2008,

 from http://www.ietf.org/rfc/rfc1058.txt

[10] Sportack, M. (1999). Routing Information Protocol (RIP). Retrieved June 16,

 2008, from http://www.cisco.com/en/US/docs/internetworking/technology/

 handbook/RIP.html

 [11] Daemon (computer software). Retrieved June 16, 2008, from

 http://en.wikipedia.org/wiki/Daemon_%28computer_software%29

 [12] Open Shortest Path First (OSPF). Retrieved June 17, 2008, from

 http://www.cisco.com/en/US/docs/internetworking/technology/handbook/OSPF.html

 61

 [13] Daniel, B., Omer, B., & Carmel, R. Open Shortest Path First. Retrieved

 June 17, 2008, from http://www2.rad.com/networks/1995/ospf/ospf.htm

[14] Avallone,, S., Botta, A., Dainotti, A., de Donato, W., & Pescap´e, A. (2008, May

 2). D- �ITG V. 2.6.1d Manual . Retrieved July 4, 2008, from

 http://www.grid.unina.it/software/ITG/codice/D-ITG2.6.1d-manual.pdf

10. Appendix A: Nagios Configuration:

Localhost.cfg

There are the virtual hosts’ information that are used as an input for Nagios
define host{
 use linux-server
 host_name localhost
 alias localhost
 address 127.0..0.1
 }
define host{
 use linux-server
 host_name VRA2
 alias VRA2
 address 192.168.5.1
 }
define host{
 use linux-server
 host_name VRA3
 alias VRA3
 address 192.168.6.2
}

These are the services that need to be define

define service{
 use generic-service

 62

 host_name localhost, VRA2, VRA3
 service_description Average Packets Sent
 check_command check_OutIpRate
 }
define service{
 use generic-service
 host_name localhost, VRA2, VRA3
 service_description Average Packets Received
 check_command check_InIpRate
 }

Commands.cfg

This command checks the ip packets received in a particular interface

define command{
 command_name check_InIpRate
 command_line $USER1$/check_InIpRate $USER1$ $HOSTADDRESS$
 }

This command checks the ip packets sent to a particular interface
define command{
 command_name check_OutIpRate
 command_line $USER1$/check_OutIpRate $USER1$
$HOSTADDRESS$
 }

Check_InIpRate:
#!/bin/sh
NOTE: the next three lines should be ONE LONG line in the script
 (echo "$2"; snmpget -v 2c -c public "$2" system.sysUpTime.0 ;snmpget -v 2c -c accessRO "$2"
ip.ipInReceives.0) | awk -f "$1"/check_InIpRate.awk

Check_OutIpRate:
#!/bin/sh
NOTE: the next three lines should be ONE LONG line in the script
echo $* >/debug
(echo "$2"; snmpget -v 2c -c public "$2" system.sysUpTime.0; snmpget -v 2c -c accessRO "$2"
ip.ipOutRequests.0) | awk -f "$1"/check_OutIpRate.awk

Check_InIpRate.awk:

BEGIN {
seconds1 = seconds2 = 0;
inPackets1 = inPackets2 = 0;
}

 63

NR == 1 {
fname= "/usr/local/nagios/libexec/check_InIpRate_"$1".dat"
rc = system("test -f " fname);
if (rc == 0) {
 getline seconds1 <fname;
 getline inPackets1 <fname;
 }
}
NR == 2 {
seconds2 = $4;
seconds2 = substr (seconds2, 2);
seconds2 = substr (seconds2, 1, length(seconds2)-1);
seconds2 = int (seconds2 / 100);
}
NR == 3 {
inPackets2 = $4;
}
END {
if(seconds1 != 0 || inPackets1 != 0) {
 ## There IS a file, do the calculation
 pktsPerSecond = (inPackets2 - inPackets1) / (seconds2 - seconds1);
 print pktsPerSecond " Packets per second";
 }
else {
print "RESULTS NOT AVAILABLE";
 }
print seconds2 >fname;
print inPackets2 >>fname;
}

Check_OutIpRate.awk:
BEGIN {
seconds1 = seconds2 = 0;
outPackets1 = outPackets2 = 0;
}
NR == 1 {
fname= "/usr/local/nagios/libexec/check_OutIpRate_"$1".dat"
rc = system("test -f " fname);
if (rc == 0) {
 getline seconds1 <fname;
 getline outPackets1 <fname;
 }
}
NR == 2 {
seconds2 = $4;
seconds2 = substr (seconds2, 2);

 64

seconds2 = substr (seconds2, 1, length(seconds2)-1);
seconds2 = int (seconds2 / 100);
}
NR == 3 {
outPackets2 = $4;
}
END {
if(seconds1 != 0 || outPackets1 != 0) {
 ## There IS a file, do the calculation
 pktsPerSecond = (outPackets2 - outPackets1) / (seconds2 - seconds1);
 print pktsPerSecond " Packets per second";
 }
else {
print "RESULTS NOT AVAILABLE";
 }
print seconds2 >fname;
print outPackets2 >>fname;
}

	Evaluation of virtual routing appliances as routers virtual environment
	Recommended Citation

	Microsoft Word - Thesis Report-Aug08.doc

