
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Presentations and other scholarship Faculty & Staff Scholarship

2012

A Physical Channel in a Digital World A Physical Channel in a Digital World

Michael Deffenbaugh

Daryl Johnson

Bo Yuan

Peter Lutz

Follow this and additional works at: https://repository.rit.edu/other

Recommended Citation Recommended Citation
Gaming has always been a very prevalent part of our society. There is a long history of using various
board games as methods of covert communication, from what we could call “differential” communication
(i.e. the movement of pieces constitutes the “language”) to the idea of “game state” communication
(where the current state of all the manipulatable objects in the game world represents a message). For
many years we have seen covert channels in games like chess, checkers and other simple board games
and even evolution to more “complex” computer games like magnetron. Enter the 21st century and the
advent of the high performance personal computer.

This Conference Paper is brought to you for free and open access by the RIT Libraries. For more information,
please contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/other
https://repository.rit.edu/facstaff
https://repository.rit.edu/other?utm_source=repository.rit.edu%2Fother%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

A Physical Channel in a Digital World

Michael D. Deffenbaugh, Daryl Johnson, Bo Yuan, Peter Lutz

Rochester Institute of Technology

Rochester, NY

mddeff@zeroent.net,{daryl.johnson,bo.yuan,peter.lutz}@rit.edu

Abstract -- Gaming has always been a very prevalent part of our

society. There is a long history of using various board games as

methods of covert communication, from what we could call

“differential” communication (i.e. the movement of pieces

constitutes the “language”) to the idea of “game state”

communication (where the current state of all the manipulatable

objects in the game world represents a message). For many

years we have seen covert channels in games like chess, checkers

and other simple board games and even evolution to more

“complex” computer games like magnetron. Enter the 21st

century and the advent of the high performance personal

computer.

Keywords – Covert Channel; Computer Game; Garry’s Mod; Valve;

Gaming

I. Introduction

In the 80’s, 90’s and early 2000’s we see amazing

advances in computer games both in the aesthetic/graphical aspects

of computer games but also in the types and complexities of game

play, including the associated physics engines [1]. One of the

biggest advances we see is in the client/server model where more of

the interaction is handled by the server, but the rendering is done

client side. The development of this technology happens around the

same time when we start to see more and more powerful personal

workstations (likely not by coincidence). The gaming companies

utilize this and migrate to a client-render model and this opens up a

litany of opportunities for covert channels.

As Lampson defined back in 1972, a covert channel is one

that is not intended for communication [2]. Covert channels are

nothing new however there hasn’t been a lot of development into

game-based channels. This is not the first occurrence of using video

games as a method for covert channels. Sebastian Zander, Grenville

Armitage, and Philip Branch authored a paper [3] in 2008 titled

“Covert Channels in Multiplayer First Person Shooter Online

Games”. In this paper, they detailed the use of the Quake 3 engine

as a means of implementing a covert channel. Their channel relied

on making minute modifications to player’s movements

(imperceptible to the “unwitting players” but detectable by client

side programs).

II. Channel Overview

 This covert channel utilizes a computer game called

“Garry’s Mod” (leveraging the Valve Source physics and graphics

engine). Garry’s mod is a “sandbox” game that allows users to

spawn props and construct various inventions. An example is that a

player can construct a car that they can then drive around the map.

The Garry’s Mod “paradigm” even allows users to create

functioning electronics (using an add-on called “WireMod”) that

allows them to affect various in-game objects.

Covert channels span from physical channels such as

leaving classified documents in a trash bag under a bridge to digital

ones like embedding information in TCP checksums. This channel

merges the two worlds. It is a digital covert channel in that it occurs

in the digital world utilizing computer programs and network

protocols however in the game it occurs as a “physical” channel (in

that the player/sender creating the messages is manipulating physical

game pieces).

This paper will discuss in detail the idea of using Garry’s

Mod in particular as a covert channel. We will provide an example

language but it should be noted that this is one of many that can be

used. Garry’s Mod has a lot of different ways one could utilize

various game mechanics to create a channel.

III. Garry’s Mod In-depth

 Before we delve into the nitty-gritty of how Garry’s Mod

is to be used as a covert channel, we first must understand how it is

to be used as a game.

 Each player has the game client installed on a local system

and when they start up the game they can browse for servers hosting

various instances of the game on the internet. Both companies as

well as private individuals host servers for various purposes/game

types. A large portion of the servers setup for the Garry’s Mod

community are “build” servers, meaning they are just there for

people to come and build various contraptions, in the true spirit of

Garry’s Mod. There is a large variety of other servers created for

specific purposes such as Role Playing Game servers (where players

take on various rolls such as shop keeper, and have inventions, such

as a shop, to augment the “reality” created) or space-build servers

(where players must build contraptions that will provide life support,

propulsion, etc. in a simulated space environment). For the purposes

of this discussion, we will focus on general build servers which are

not only arguably the most prevalent type of server, but also the one

that places the fewest restrictions on player actions.

 Once a player enters a server they can start spawning props

to construct whatever they want, whether it be some invention they

thought of, or in our case, a covert message. They have the ability to

spawn whatever prop or props they want and then are provided with

a set of tools to either constrain props together (using methods such

as “welding” two props together or binding them together with

“rope”) or attach forms of propulsion to them (adding motors and

wheels, or adding vector-based thrusters). This leaves the player

limited by almost nothing but their imagination.

 While there is an entire ecosystem of modifications (mods)

that can be added to Garry’s Mod, the most prevalent is “WireMod”

[4]. As described above, WireMod is a set of props that can have

values or do simple (or complex) computations. The makers of

WireMod have even developed a language called Expression2 [5].

A Perl/Gnu-C like language, Expression2 allows players to program

some of the more complex chips to run their inventions.

An example of WireMod is where a player could build a

car that, when it detects it’s about to flip over, it fires a thruster to

correct itself (via a programmed chip linked to a thruster on-board

the car). This has even gone to the extent where we have people

who have made their own operating system atop computers that

interact in a client-server model with-in Garry’s Mod (termed

“ConOS” [6]) completely constructed out of WireMod components.

IV. The Covert Channel

The proof-of-concept was developed to demonstrate that

this game could in fact be used as a means for a covert channel. The

“example language” that was developed utilizes the “color” tool

within Garry’s Mod to alter the RBGA(red, blue, green, alpha)

values of a specified prop; in this case, a 55-gallon drum. The

encoding method is accomplished by encoding a character into its

ASCII decimal value (0-255) as one of the RGB values of the prop.

As such each prop can hold 3 characters. So for example if you had

one prop with RGB values of 87, 105, and 110 respectively, this

would be translated to “Win”.

 Ordering is handled simply by the order in which they

were spawned (i.e. the first prop spawned is the first “packet”,

second prop is the second packet, and so on). The advantage to

using this ordering method is that it is something that the message

author doesn’t have to worry about, as they spawn containers, they

are in proper order. The main disadvantage is that if one needs to

change part of the message, the message effectively needs to be re-

entered/re-encoded.

 The final part is channel noise, determining what is in the

channel and what is not. The alpha value is used to determine if a

prop is in the channel or not. The alpha value of the prop (for game

purposes) dictates how translucent the object is (an alpha value of 0

is completely transparent; an alpha value of 255 is completely

opaque). Essentially you specify a “key” to be used for a specific

alpha value, and any prop with said value is in one’s channel;

however, this method comes with some inherent downsides.

 If a random player (not participating in the covert

communication) happens to set one of their props to the specific

alpha value used as the key for the covert channel, their prop (and its

RGB values) will appear as in the channel and as such be decoded

by the client and added to the message. This is less likely to happen

with sufficiently random values for alpha as alpha values tend to

either be exactly or close to 0/255. Choosing something relatively

random (and not on a round number, i.e. not ending in 0 or 5) should

eliminate most if not all of the noise from that source.

 The other source of noise is a little more difficult to work

around. Through our testing we noticed an interesting behavior in

the Source Engine. It seems that when you have a gib (a piece of

scrap from a larger prop that was destroyed) that is on fire (say from

a wooden crate or flammable barrel), as the client turns to face away

from said gib, the client side renderer has the gibs alpha fade from

255 to 0, thus causing the gib to temporarily “enter the channel”. As

the client for this language is constantly evaluating the current game

server and all of the props inside and displaying its results live to the

client’s screen, a reader of the channel would notice some artifacts in

the message. It should be noted that when the client turns to face the

gib that is on fire again (to bring it back into view), the effect is

reversed and it fades (quickly) from 0 to 255. The flame effects

themselves can also produce random alpha values (thus sometimes

falling into the channel).

 In the demo video, available at

http://file.zeroent.net/mddeff/pub/gmcc/, we see that the user takes

2:18 seconds to create the message “Covert Channel Example”,

encode it into ASCII decimal values, and then affecting the

properties of the 55-gallon drums. That roughly translates to 0.159

Bps or 1.275 bps. Garry’s mod allows a player to make a

contraption off-line then effectively “copy and paste” it into the

current server. It would allow us to create a message off line and

then paste it into the server. With preloading the message, we were

able to load and paste a 53 byte stream in 2 seconds, this works out

to be 26.5 Bps. The downside to this is that there is more

preparation required off-line.

A. Advantages

 As with every covert channel or covert channel, we must

evaluate its ability to function effectively.

 Noise in a covert channel is defined as the amount of data

the falls into the parameters of the channel that was not intended to

be part of the covert communication. In the case of the Garry’s Mod

covert channel, channel noise ends up being other players and other

interactions in the game. However it all depends on what the

language is defined as. For example, if your language is if a player

spawns a certain prop at a certain time, that means a certain

message; noise in that channel would be every time any player

spawns any prop that wasn’t intended to be part of the channel.

However with the proof-of-concept language discussed in this paper,

the channel noise is any time a player modifies the default color

properties (RBGA values) of a prop and happens to hit the specific

alpha value, thus putting it in the channel.

 Due to the sheer amount of Garry’s Mod servers running at

any time, it is not uncommon for a single player to be in a server

“playing” by themselves. Normally it is the mark if an ineffective

covert channel if it causes highly observable traffic, however in this

case, even though the traffic is observable, it still appears normal.

Furthermore, the concern of having the channel be

conspicuous to other non-covert channel users is to some extent a

non-issue. Even if you have a player in the game who is doing

nothing more than spawning barrels and changing the color (like the

proof-of-concept language), other players or server administrators

won’t typically question what they are doing. They may not be

viewed as terribly competent players, but no ulterior motives will be

assumed. This allows us to operate almost any type of channel

within Garry’s Mod. As Harry Chriss (see acknowledgements) said,

“Nothing is too weird for Garry’s Mod.”

While there are literally hundreds of Garry’s mod Servers

running at any time (see table 1), any average user has the ability to

create a server at any time that other users can join. This allows the

message sender to setup servers with specific settings that may aid in

the particular language they have developed.

Table 1 - Survey of Garry's Mod Servers [7]

Date/Time Servers Players Slots

5/22/2012

04:59

288 219 5283

5/23/2012

00:01

271 205 4978

5/24/2012

00:48

274 237 5068

Another property of this covert channel is that as long as

the server stays up (and depending on the server configuration), any

storage base channel can turn into a dead-drop style message. Some

of the limitations on the dead-drop concept include the fact that

many servers employ “prop cleanup” scripts where after a certain

amount of time of a user disconnecting from the server, their props

are automatically removed. That being said, if the message sender is

running their own server, they can remove this limitation.

Depending on the language chosen, a Garry’s Mod covert

channel can either act as a timing based channel or a storage-based

channel. For the purposes of this paper, we are utilizing the

definitions as described by the Trusted Computer Security

Evaluation Criteria (TCSEC). The proof-of-concept channel is a

storage-based channel as it a form of communication by “modifying

a stored object”, in this case, a 55-gallon drum prop. An example of

a timing based channel is where you have a player who sets off a

series of explosions in the game to represent “S.O.S.” in Morris

code.

Observability is another advantage in using the Valve

Source graphics/physics engine. The game client and server

communicate in such a way that the client knows about every event

that transpires on the server at any given instant. This means that if

Player A spawns a barrel and colors it a certain color, all other

players in that server know that just happened. Even though the

actual user might not be able to see my barrel on their screen from

across the map, each gaming client has the knowledge that it exists

and in what state it exists. This is advantageous in that it doesn’t

require the receiver of the message to be in physical proximity (in

the game) to the sender. This can even be more advantageous as

when one does a “video capture”, a client is essentially taking a

recording of every event that is transpiring in the game (a player

jumping, another one firing a gun, and yet another spawning a prop).

When this “video” is played back, the client simply re-renders the set

of instructions just as if it were getting them from the server.

B. Limitations

 Unfortunately there are some significant limitations to the

practicality of this channel. The biggest limitation of the channel is

the large client-side requirements (for those sending and receiving

the message). Given that both the sender and receiver of the

message must have the Garry’s Mod client installed. The

requirements of which include a relatively high end graphics card

and a decent CPU, this limits the types of systems that can be

communicating in the covert channel [8].

 One of the other limitations is that as of now we have not

developed a way to programmatically create or transmit a message.

This means that in order to send a message, a user must manually log

into the game and create the message. This currently is the biggest

limitation in the bitrate of most of the channels created for the

GMCCF, in that the speed of the channel is based largely on the

speed of the player’s ability to manually encode the message. That

being said, the reading/decoding of the message has been automated

and example LUA script can be found at

http://file.zeroent.net/mddeff/pub/gmcc/init.lua.

 Another limitation that we run into is that there must be a

hosted dedicated server for us to log into and transmit the message

on. And if one doesn’t exist that suits the needs of the particular

language, then one must be created. Another note to mention about

server requirements is that there is a server-side variable set called

“sv_pure”. This variable determines if clients are allowed to run

client side scripts (in this case, our reader lua script), if set to 0, we

can run client side scripts, if set to 1, we can’t. Almost all of the

Garry’s Mod servers have sv_pure set to 0 however it technically

isn’t guaranteed and as such must be acknowledged as a limitation of

the channel.

 The largest limitation that should be noted is one that is

more about the practicality of using this channel. This channel has

the potential for transmitting a lot of data at once, that being said,

given the requirement of a custom gaming client using custom TCP

ports, it requires that the transmitting party have the ability to either

have access to a system with the Garry’s Mod client already installed

(not very likely in a secured environment where information would

need to be exfiltrated from) or the sending party would need to have

the ability to install it to one of the local computers (would be rather

non-covert).

Furthermore, the transmitting party would need to be able

to actually have their client’s game traffic leave the network and hit

the server being hosted on the internet. A lot of companies block

common gaming ports inbound and outbound simply for loss of

productivity reasons, and as such this presents another limitation. In

summary, any covert channel leveraging Garry’s Mod requires that

both the sender and the receiver have some modicum of control of

the systems as well as the network in between their client computers

and the server hosting the game instance.

V. Additional language concepts

 There are a few other ideas that are worth more research to

determine the best method for communicating using Garry’s Mod.

 One method that was tested was having a time sensitive

storage-channel where the message was time sensitive in that it was

only viewable for a certain amount of time before it self-destructed,

using the explosive barrels as the prop. It was insinuated that if the

reader was too close to the message when it self-destructed

(exploded), it would be considered a “volatile” message, as it would

likely kill the player.

 A variation of the proof-of-concept language was where

each of the props “z-axis” value, or “elevation” determined which

prop or “packet” came in which order. As the Garry’s Mod physics

engine allows the player to arbitrarily freeze a prop in any x, y, z,

yaw, pitch, roll orientation, one could develop a language where the

highest elevated prop is the first “packet” in the message, the second

highest prop is the second packet, and so on.

 Another covert channel could be stenography within the

maps themselves. Some advantages include the fact that it does not

require the actual existence of a server. The sender in this case

would author a map that contains the message within the map, and

then the reader would download it (either by joining a server running

the map) or by downloading it out-of-band and then running it

locally. The most prominent disadvantage includes the fact that it

requires a different map to be created for each message that is sent.

Map creation is no simple task and the time it would take to properly

make a map and encode a message in it would be very lengthy,

however could store upwards of gigabytes of data. It should be

noted that computer game map stenography is not limited to Garry’s

Mod and could be accomplished with any reasonably current video

game.

VI. Conclusion and Future work

 The development of the Garry’s Mod Covert Channel

(GMCC) shows us that new types of covert channels are emerging

very rapidly. We can expect to see a lot more research done not only

in the traditional gaming arena but in anywhere where there is a

content-rich user experience. Possibilities for future work include

the creation of an API to programmatically manipulate in-game

objects as well as the development of other languages and

performing a differential analysis as to which language is the most

effective as a covert channel within the GMCC.

VII. Acknowledgements

 We would like to give special thanks to a personal friend,

Harry Ethan Chriss. He was instrumental in implementing the

proof-of-concept language discussed in this paper and was always

there to bounce ideas off of.

References

[1] Valve, "Valve Source Engine," [Online]. Available:

http://source.valvesoftware.com/. [Accessed 24 5 2012].

[2] B. W. Lampson, "A Note on the Confinement Problem,"

Communications of the ACM, vol. 16, no. 10, pp. 613-615,

October 1973.

[3] S. Zander, G. Armitage and P. Branch, "Covert Channels in

Multiplayer First Person," in Local Computer Networks,

Montreal, Canada, 2008.

[4] Wiremod Community, "WireMod Wiki," [Online]. Available:

http://wiki.wiremod.com/wiki/Main_Page. [Accessed 24 05

2012].

[5] "Syranide", "Expression2 - WireMod Wiki," WireMod

Community, 5 4 2012. [Online]. Available:

http://wiki.wiremod.com/wiki/Expression_2. [Accessed 24 5

2012].

[6] "LooperNor", "ConOS Wire OS," Youtube, 5 7 2010. [Online].

Available: http://youtu.be/9ET8jqOfIYM. [Accessed 24 5 2012].

[7] M. Deffenbaugh, "Garry's Mod Server Stats," 24 5 2012.

[Online]. Available:

http://file.zeroent.net/mddeff/pub/gmcc/server_stats.xlsx.

[Accessed 24 5 2012].

[8] Valve, "Garry's Mod," [Online]. Available:

http://store.steampowered.com/app/4000/ . [Accessed 24 5

2012].

	A Physical Channel in a Digital World
	Recommended Citation

	tmp.1393782123.pdf.uQ7WF

