
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Presentations and other scholarship Faculty & Staff Scholarship

2012

A Behavior Based Covert Channel within Anti-Virus Updates A Behavior Based Covert Channel within Anti-Virus Updates

D. Anthony

D. Johnson

P. Lutz

B. Yuan

Follow this and additional works at: https://repository.rit.edu/other

Recommended Citation Recommended Citation
Anthony, D.; Johnson, D.; Lutz, P.; and Yuan, B., "A Behavior Based Covert Channel within Anti-Virus
Updates" (2012). Accessed from
https://repository.rit.edu/other/755

This Conference Paper is brought to you for free and open access by the RIT Libraries. For more information,
please contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/other
https://repository.rit.edu/facstaff
https://repository.rit.edu/other?utm_source=repository.rit.edu%2Fother%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/other/755?utm_source=repository.rit.edu%2Fother%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

A Behavior Based Covert Channel within Anti-Virus
Updates

D. Anthony, D. Johnson, P. Lutz and B. Yuan
Department of Networking, Security and Systems Administration, Rochester Institute of Technology,

Rochester, New York, USA

Abstract - This paper presents a new behavior based covert
channel utilizing the database update mechanism of anti-virus
software. It is highly covert due to unattended, frequent,
automatic signature database update operations performed by
the software. The design of the covert channel is described; its
properties are discussed and demonstrated by a reference
implementation. This paper uses these points to strengthen the
inclusion of behavior-based covert channels within standard
covert channel taxonomy.

Keywords: Covert Channels, Security, Data Hiding

1 Introduction
 B.W. Lampson [2] originally defined covert channels as
communication channels not intended for communication at
all. Covert channels are typically categorized into one of two
traditionally accepted definitions. Storage based covert
channels are described as any direct (or otherwise) writing of
information value(s) into a legitimate overt channel by a
sender, and the direct (or otherwise) reading of those
information value(s) by a receiver [3]. Timing based covert
channels are channels in which the message sender relays
information via the modulation of resources such as CPU
usage, or modulating the arrival of information such as
network packets over time which allows a receiver who also
knows the modulation method used to decode the message
[3]. These two definitions adequately describe the vast
majority of covert channels; however this paper aims to
strengthen the argument for the inclusion of a third
classification standard for covert channels.

2 Previous Covert Channels
There have been multiple covert channels designed and

implemented by researchers in the past which fit the standard
Storage or Timing based definitions. Rowland describes how
small messages could be sent during the initial 3-way
handshake of TCP connections[9]. Specifically, the initial
sequence number could be modified to relay data covertly.
The authors in [10] examine 22 potential network storage
covert channels within IPv6 headers. Okamura and Oyama
discovered a scenario in which two distinct and isolated
virtual machines running on the Xen Hypervisor may be able

to transmit covert messages between each other through the
timing modulation of CPU loads [8].

3 Behavior Based Covert Channels
 Behavior based covert channels are a relatively recent
development in the covert channels taxonomy. Johnson, Lutz
and Yuan [4] explain how the purposeful alteration of the
internal states or behavior of an application can allow the
leakage of information between two parties [4]. A game could
be used as a covert channel if two parties agree upon a
handshake initialization as well as protocol for encoding a
message through moves made within the game [4]. The
authors use a game called Magneton to demonstrate the
channel. This behavior based model needs to be recognized as
a completely separate method of classifying a covert channel,
and can be used to uniquely identify the Anti-Virus Covert
Channel (AVCC, a new covert channel presented in this
paper). AVCC contains qualities that could be neither
described as storage based or timing based alone. Instead, it is
the behavior of the anti-virus scanning engine after a database
update has been applied which will allow a covert message to
be transmitted.

4 Signature Based Anti-Virus System
 To understand how an Anti-Virus Covert Channel would
function, Anti-Virus signatures must be discussed. Anti-Virus
signatures typically will take the form of a set of unique
cryptographic hashes or pieces of code which corresponds to
a known malicious file[6]. These signatures will typically
reside within a database that an Anti-Virus application will
use to identify known malware that resides on a system. If a
match is discovered, the Anti-Virus application will alert the
user that a malicious file has been identified and quarantine
the file. These Anti-Virus databases must be kept up-to-date
to ensure virus scans are accurate and effective. There are
many Anti-Virus products on the market and each will have
their own method of updating the signature database.
ClamAV, a popular free and open source Anti-Virus
application, makes use of a tool called Freshclam for this task.
Freshclam is a highly customizable tool which may be run
interactively from a command line shell or alternatively run as
a daemon process on the host machine [7]. Freshclam can also
be configured to automatically check for new updates to the

signature database as many as 50 times per day [5]. ClamAV
provides additional security metrics such as digital signatures
on all updates to be distributed. Updates to the any signature
database would be considered normal network traffic and not
arouse suspicion from security administrators. New malware
is discovered daily and generates constant pressure for AV
Companies to identify the latest threats. Database updates
occur on a regular basis and may contain a large amount of
information depending on the specific Anti-Virus application.
For these reasons, the updating of an Anti-Virus database may
be seen as an ideal method for transmitting a covert message.

5 A New Covert Channel
 The Anti-Virus Covert Channel (AVCC) can be
classified as an exemplary layer 7 or application layer
behavior-based covert channel which can be used to subvert
the existing security policy of an organization. ClamAV was
chosen as the example software to demonstrate this new
covert channel due to its open source, cross-platform nature
combined with its user friendly signature database. It should
be noted however, the design of this covert channel is not
specific to a certain brand of Anti-Virus, and the ideas
presented could theoretically be applied to any AV
implementation.

 The Prisoner's Problem mentioned in [1] is used to
describe the method in which this covert channel may be
applied. One node on the internet will be sending data to a
second node while attempting to prevent this communication
from detection by a third party. The sender will have access to
either an official anti-virus signature distribution point or own
a location that can be used for updates. The sender will then
encode specially crafted signatures into updates which will
later be used to relay a message to the receiver. Each
signature added into the update will be representative of a
binary “1” within the covert message. At designated intervals
the receiver will update his/her anti-virus signatures which
will force the retrieval of the database update crafted by the
original sender node. The receiver will then scan a unique
directory of files with his/her updated anti-virus application.
The results of the directory scan will be used to decode the
covert message. It is this behavior of the anti-virus program
during the scan, not solely the signatures within the update
which relay the covert message. This flow of data transfer is
pictured in Figure 1. A proof-of- concept implementation will
be discussed later in this paper.

Figure 1. Data Transfer

5.1 Covertness
The transferred covert message is never fully contained

within the updates which precludes classification as a strictly
storage based covert channel. Only binary “1's” from the
message are transferred through the update mechanism- not
“0's”. Even if a third party was able to capture the network
traffic and knew how the channel operated, the covert
message would be unable to be revealed from physical
inspection. Additionally, this covert channel is not based upon
the modulation of timed events which implies that it is not a
timing based covert channel. If a third party is able to observe
the timing of all network events, no irregularity can be
detected as AV signature updates are a normal regular
network event and in some cases may be required by an
organization's security policy.

5.2 Data Rate
Anti-virus database updates vary in size depending upon

the specific application being discussed. These updates are
often based upon the discovery of new pieces of malware
which varies and can have an impact on the amount of data
contained within an update. Some days may have more
information stored within an update than others. There is no
theoretical limit to the size of a signature database. In
practice, each specific anti-virus product will have an average
update size. The data rate of the AVCC will be closely tied to
the specific anti-virus application which is chosen for covert
channel use. Covert messages transferred using the AVCC
will also have different data rates depending upon the type of
data being sent. According to channel design, instances of a
binary “1” within a message will require a signature being
added to a database update. To remain covert, the modified
database updates must remain similar in size to normal
updates. It may arouse suspicion if certain updates are
exceedingly large. Since each binary “1” within a covert
message correlates to a new signature being created, the data
rate of the AVCC may be measured by the number of
signatures that can be added while limiting the size
characteristic to remain within the confines of a normal
database update. Once this limit has been determined, a node

is only limited to sending messages containing binary “1's”
which fall below that threshold.

5.3 Robustness
If packets do not arrive in a specific order or network

timing is disrupted, the integrity of a timing based covert
channel can suffer; many storage based covert channels do not
survive packet regeneration performed by proxies or routers.
The AVCC design does not succumb to these types of
obstacles. Update mechanisms of application layer software
will typically make use of the Transmission Control Protocol
(TCP) to insure reliable data delivery. Two ways in which a
covert message could be modified or tampered with is the
complete prevention of data transfer or removal of a sender's
specially crafted signatures before the transmission. If the data
sent in an update maintains integrity and reaches the receiver,
the message will be relayed. This gives the AVCC a high
score in the robustness category.

5.4 Limitations
The primary concern of the AVCC design is the issue of

a sender controlling a database update location. It may not be
ideal or feasible in certain situations for a user to be an
operator or have access to locations in which database updates
can be distributed. In cases regarding proprietary software this
access becomes even more difficult. Another limitation that
should be noted is that the type of data being transferred will
make a significant impact on the data rate. As each binary “1”
in a message corresponds to a virus signature that must be
added, data made up of many “1s” will increase the size of
updates to a greater degree. Staying inconspicuous requires
staying beneath an update size threshold, thus will have an
impact on the data throughput of the covert channel. A minor
area of concern could be the simplex style of communication
signature updates provide, however this same characteristic
also makes AVCC a good choice for the infiltration of
messages or data into an organization.

6 Assumptions
 Before a Proof of Concept was created and tested, the
following assumptions are applied. The model assumed in this
paper precludes a third party from physical tampering with the
machines involved in the covert message sending/receiving,
including modification of information during transit. This
covert channel does not currently offer the security
characteristic of authentication or data integrity- simply
transfer of covert messages. It is also assumed that persons
wishing to use the AVCC will be able to access the
distribution site for ClamAV or another anti-virus and be able
to direct their host AV software to receive updates from this
same location. This will also attempt to accurately represent
the use of this covert channel in the real world where network
defense/defenders would not initially be aware of AVCC's
existence.

7 Proof of Concept
7.1 Software Design

The AVCC has been created and implemented in Python
as a proof of concept. The implementation script (avcc.py) is
a “wrapper” to the tools and binaries that ClamAV provides
with a default installation. The creation of signatures is
managed with sigtool which is the custom signature and
database management tool that accompanies ClamAV. Sigtool
will allow senders to easily create and add signatures which
avcc.py uses to automatically encode/decode the covert
message. Alice and Bob have a shared secret which takes the
form of a directory of files which will henceforth be referred
to as keyfiles. They each share the exact same number, order,
and md5sum property for the directory of keyfiles. These
keyfiles are what will be scanned with ClamAV when the
update has been retrieved. This proof of concept makes use of
ASCII encoded messages for all covert communication. The
avcc.py script contains methods for the encoding of a
message, decoding of a message, and the creation of unique
keyfiles based upon a single unique executable.

7.2 Example Signatures
The avcc.py implementation of AVCC works by

creating signatures for specific files in the keyfiles directory.
ClamAV updates can make use of many different types of
databases, however this proof of concept will specifically
make use of the .hdb database which defines MD5 based
signatures. All signatures in this database refer to an
executable file.

This database contains the most basic form of an Anti-
Virus signature that ClamAV implements and is perfect for
the proof-of-concept due to simplicity and ease of creation.
Figure 2 displays example signatures that have been added to
the database by the avcc.py script.

Figure 2. Example Signatures

These virus signatures are made up of three colon
delimited fields. The first field is the MD5 sum of the
contents of a file. The second and third sections are the size of
the file and its name (given by sigtool) respectively. As it may
not be practical to have an identical directory of unique
executable files on both ends of transmission, the proof-of-
concept is able to generate a keyfiles directory. Keyfile
creation with avcc.py is based upon the modification of a
single shared executable file. This allows the sender and
receiver to produce the same set of keyfiles from one original

executable file. This also prevents the need to send a shared
directory of keyfiles beforehand and potentially arouse
suspicion. In real world scenarios, sender and receiver could
arbitrarily choose an executable to generate the keyfiles from.
They may even decide to use a commonly shared file on their
machines and prevent the need of transferring a file at all.
During keyfile generation avcc.py modifies the contents of the
base executable slightly to ensure uniqueness between
keyfiles. The example keyfile directory shown in Figure 2
contains files named in the fashion keyfile.number.

7.3 Encoding
Encoding of the message can be demonstrated by the

following pseudo code example:

- Populate a keyfile array with keyfile names
- Accept User Input (string of chars)
- Translate input into binary array
- Iterate through binary array
- If (current value == 0)

- Do nothing
- If (current value == 1)

- Create signature for the keyfile in the
corresponding element of keyfile array
- Distribute created signatures

Avcc.py has been created to accept user input in the
form of an ASCII string. The string will then be converted
into a binary array. The keyfiles directory will be examined
and an array will be created. Each entry within the keyfile
array contains the name of a keyfile. The binary array will be
examined and encoding takes place based upon this array. If
the current entry in the binary array is a 0, that means that no
signature will be created for the file in the keyfile array. If the
current entry is a 1, then a signature is required to be added to
the database update. This encoding method will create 1
signature to be added to the .hdb database file contained
within a ClamAV update for every binary “1” of the data
being transferred.

7.4 Decoding
Decoding is the reverse of the encoding process. When

the receiver has updated his database of signatures from the
sender, a virus scan is run upon receiver's directory of
keyfiles. The decoding can be explained via the following
pseudo code example:

- Download database update
- Create empty array
- Create keyfile array from names of keyfiles
- Iterate through keyfile array
- Scan current element
- If (Virus Detected)

- Push “1” onto empty array
- If (No Virus Detected)

- Push “0” onto empty array

- Convert binary array into real binary data
representation
- Print binary data representation as string
- Message is revealed

Avcc.py has been created to automatically reveal the
hidden message within a signature database update. The
receiver's directory of keyfiles will be scanned in order with
ClamAV. Every keyfile that triggers a virus-alert will be
represented as a binary “1” and keyfiles with no detection are
represented as a “0”. This sequence of 1s and 0s is
representative of the binary data being transferred. Avcc.py
will keep track ClamAV behavior and this order-specific
sequence of bits and reveal the hidden message to the
receiver.

7.5 Performance
A quantitative analysis of avcc.py performance was done

with the assistance of Nathaniel Morefield using the Minitab
statistics software. Avcc.py uses ASCII encoded strings for
each covert communication. Representations of ASCII
characters contain an average of 3.5 binary “1s”. Over the
course of 5 weeks, 37 ClamAV database updates were
collected from which conclusions about update size were
drawn. The mean size of the .hdb file contained within a
ClamAV update was 30,229 bytes and contained a mean of
503 unique signatures. In order to keep the additions to the
update inconspicuous, total update size including the message
should be no more than two standard deviations from the
mean. The standard deviation of this set of data was 5,950
bytes. This allows for an additional 11,900 bytes of data
added to an average update using the assumptions above. A
regression test was performed to determine the average size of
a single virus signature. The test was restricted so that the best
fit line passed through the origin, since an update with no
virus signatures would have a size of zero bytes.

Figure 3. Regression Analysis

Figure 3 shows the scatter plot and regression line
associated with the sample data. From this test it has been
determined that the average virus signature requires 60.1
bytes of data. Each ASCII character is represented with an

average of 3.5 binary “1s”; it will require 210.35 bytes to
encode one ASCII character. In order to stay within the two
standard deviation size limit of 11,900 bytes, approximately
57 ASCII characters can be effectively hidden within the
covert channel.

7.6 Environment
The environment that avcc.py has been tested on is

Ubuntu 10.04 x86 Server Edition. This platform provided an
environment that was stable and easy to work with.

7.7 Limitations of Implementation
The implementation avcc.py is a proof of concept of

how an anti-virus database update could be used as a covert
channel. A fully-functional implementation would require a
server that both digitally signs and packs many different types
of anti-virus signatures into one file for distribution. This
proof of concept strictly details how one may encode covert
data within a .hdb. The .hdb file is just one of many specific
types of databases that are packed together and digitally
signed for a ClamAV signature update. The implementation
could be extended to any of the other types of databases,
however this proof of concept is not that ambitious. If the
methods described in this paper were applied to a fully
functional anti-virus signature database distribution point, this
covert channel should operate flawlessly.

7.8 Detection and Prevention
The implementation of avcc.py is used with unofficial

signatures for testing purposes. The files that are used for the
creation of signatures are recognized as unofficial signatures
by the ClamAV scanning product. The finding of many
unofficial signatures could be one way in which anything
suspicious could be noted outside of a complete audit of every
signature contained within update. Auditing each file in a
regular update would be theoretically possible although
unfeasible in practice, so this covert channel would be very
difficult to detect. A method of prevention could be to audit
the locations that a user is updating their signature database
from. Restricting update location to approved locations would
be one way in which this covert channel could be prevented
altogether. This prevention method would be futile if a sender
was able to gain access to an official update location. Another
method that a sender could use to thwart detection would be
to submit new legitimate virus signatures to the official
website, which would inevitably be added to the next official
update. These “real” signatures could also then be used to
transfer a covert message.

8 Conclusions
 In the future, we would like to explore new possibilities
of sending covert communication relating to software updates
and further the support for behavior based covert channels
being included in standard taxonomy. Anti-Virus software
tends to fly under the radar of security programs that monitor

for malicious activity. Anti-Virus products are some of the
most popular types of applications in use today, and if this
technology can be harnessed for use as a covert channel it
may prove to be a rich area of further research.

9 References
[1] Simmons, G. J. “The Prisoner's Problem and the
Subliminal Channel”, Advances in Cryptology: Proceedings
of CRYPTO '83, Plenum Press, 1984, pp. 51-67.

[2] B. W. Lampson. “A note on the confinement
problem”.Communications of the ACM, 16(10) pp. 613-615,
1973.

[3] Zander, S., Armitage, G. and Branch, P, “A survey of
covert channels and countermeasures in computer network
protocols”, IEEE Communications Surveys & Tutorials, 9(3)
pp. 44-57, 2007.

[4] Johnson, D. and Lutz, P. and Yuan, B. “Behavior-based
covert channel in cyberspace”, in: Vanhoof, et al (eds),
Intelligent Decision Making Systems, World Scientific, 2009,
pp. 311-318.

[5] Kojm, Tomasz. “Freshclam(1) – Linux man page”.
Internet:http://linux.die.net/man/1/freshcla m , Jan. 23, 2012.

[6] Landesman, Mary. “What is a Virus Signature?”.
Internet:http://antivirus.about.com/od/whatisavirus/a/virussign
ature.htm, November 29, 2011

[7] Kojm, Tomasz. “Clam AntiVirus 0.97.4 User Manual”.
Internet:http://www.clamav.net/doc/latest/clamdoc.pdf , 2007-
2011. Jan 17, 2012

[8] Okamura, Keisuke and Yoshihiro Oyama. "Load-based
Covert Channels between Xen Virtual Machines." In
Proceedings of the 2010 ACM Symposium on Applied
Computing. Pp 173-180. 2010.

[9] C. H. Rowland, “Covert channels in the TCP/IP protocol
suite.” First Monday,vol. 2,no. 5, 1997

[10] Lucena, N., Lewandowski, G., and Chapin, S. “Covert
Channels in IPv6”, Lecture Notes in Computer Science
(2006). Vol. 3856, Springer, Pages 147-166

http://linux.die.net/man/1/freshclam
http://www.clamav.net/doc/latest/clamdoc.pdf
http://antivirus.about.com/od/whatisavirus/a/virussignature.htm
http://antivirus.about.com/od/whatisavirus/a/virussignature.htm

	A Behavior Based Covert Channel within Anti-Virus Updates
	Recommended Citation

	1 Introduction
	2 Previous Covert Channels
	3 Behavior Based Covert Channels
	4 Signature Based Anti-Virus System
	5 A New Covert Channel
	5.1 Covertness
	5.2 Data Rate
	5.3 Robustness
	5.4 Limitations

	6 Assumptions
	7 Proof of Concept
	7.1 Software Design
	7.2 Example Signatures
	7.3 Encoding
	7.4 Decoding
	7.5 Performance
	7.6 Environment
	7.7 Limitations of Implementation
	7.8 Detection and Prevention

	8 Conclusions
	9 References

