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A Behavior Based Covert Channel within Anti-Virus 
Updates

D. Anthony, D. Johnson, P. Lutz and B. Yuan
Department of Networking, Security and Systems Administration, Rochester Institute of Technology, 

Rochester, New York, USA

Abstract - This paper presents a new behavior based covert  
channel utilizing the database update mechanism of anti-virus  
software.  It  is  highly  covert  due  to  unattended,  frequent,  
automatic signature database update operations performed by  
the software. The design of the covert channel is described; its  
properties  are  discussed  and  demonstrated  by  a  reference  
implementation. This paper uses these points to strengthen the  
inclusion of behavior-based covert channels within standard  
covert channel taxonomy. 
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1 Introduction
 B.W. Lampson [2] originally defined covert channels as 
communication channels not intended for communication at 
all. Covert channels are typically categorized into one of two 
traditionally  accepted  definitions.  Storage  based  covert 
channels are described as any direct (or otherwise) writing of 
information  value(s)  into  a  legitimate  overt  channel  by  a 
sender,  and  the  direct  (or  otherwise)  reading  of  those 
information value(s) by a receiver [3]. Timing based covert 
channels  are  channels  in  which  the  message  sender  relays 
information  via  the  modulation  of  resources  such  as  CPU 
usage,  or  modulating  the  arrival  of  information  such  as 
network packets over time which allows a receiver who also 
knows the modulation method used to  decode the message 
[3].  These  two  definitions  adequately  describe  the  vast 
majority  of  covert  channels;  however  this  paper  aims  to 
strengthen  the  argument  for  the  inclusion  of  a  third 
classification standard for covert channels.  

2 Previous Covert Channels
There have been multiple covert channels designed and 

implemented by researchers in the past which fit the standard 
Storage or Timing based definitions. Rowland describes how 
small  messages  could  be  sent  during  the  initial  3-way 
handshake  of  TCP  connections[9].  Specifically,  the  initial 
sequence  number could be modified to relay data covertly. 
The  authors  in  [10]  examine  22  potential  network  storage 
covert  channels  within IPv6  headers.  Okamura  and  Oyama 
discovered  a  scenario  in  which  two  distinct  and  isolated 
virtual machines running on the Xen Hypervisor may be able 

to transmit covert messages between each other through the 
timing modulation of CPU loads [8].

3 Behavior Based Covert Channels
 Behavior  based covert  channels are a relatively recent 
development in the covert channels taxonomy. Johnson, Lutz 
and  Yuan [4]  explain  how the  purposeful  alteration  of  the 
internal  states  or  behavior  of  an  application  can  allow the 
leakage of information between two parties [4]. A game could 
be  used  as  a  covert  channel  if  two  parties  agree  upon  a 
handshake initialization as  well  as  protocol  for  encoding a 
message  through  moves  made  within  the  game  [4].  The 
authors  use  a  game  called  Magneton  to  demonstrate  the 
channel. This behavior based model needs to be recognized as 
a completely separate method of classifying a covert channel, 
and can be used to uniquely identify the Anti-Virus Covert 
Channel  (AVCC,  a  new  covert  channel  presented  in  this 
paper).  AVCC  contains  qualities  that  could  be  neither 
described as storage based or timing based alone. Instead, it is 
the behavior of the anti-virus scanning engine after a database 
update has been applied which will allow a covert message to 
be transmitted.

4 Signature Based Anti-Virus System
 To understand how an Anti-Virus Covert Channel would 
function, Anti-Virus signatures must be discussed. Anti-Virus 
signatures  typically  will  take  the  form  of  a  set  of  unique 
cryptographic hashes or pieces of code which corresponds to 
a  known  malicious  file[6].  These  signatures  will  typically 
reside within a database that  an Anti-Virus application will 
use to identify known malware that resides on a system. If a 
match is discovered, the Anti-Virus application will alert the 
user that a malicious file has been identified and quarantine 
the file. These Anti-Virus databases must be kept up-to-date 
to ensure  virus scans are accurate and effective.  There are 
many Anti-Virus products on the market and each will have 
their  own  method  of  updating  the  signature  database. 
ClamAV,  a  popular  free  and  open  source  Anti-Virus 
application, makes use of a tool called Freshclam for this task. 
Freshclam is a  highly customizable tool  which may be  run 
interactively from a command line shell or alternatively run as 
a daemon process on the host machine [7]. Freshclam can also 
be configured to automatically check for new updates to the 



signature database as many as 50 times per day [5]. ClamAV 
provides additional security metrics such as digital signatures 
on all updates to be distributed. Updates to the any signature 
database would be  considered normal network traffic and not 
arouse suspicion from security administrators. New malware 
is  discovered  daily and generates  constant  pressure for  AV 
Companies  to  identify  the  latest  threats.  Database  updates 
occur on a regular basis and may contain a large amount of 
information depending on the specific Anti-Virus application. 
For these reasons, the updating of an Anti-Virus database may 
be seen as an ideal method for transmitting a covert message.

5 A New Covert Channel
     The  Anti-Virus  Covert  Channel  (AVCC)  can  be 
classified  as  an  exemplary  layer  7  or  application  layer 
behavior-based covert channel which can be used to subvert 
the existing security policy of an organization. ClamAV was 
chosen  as  the  example  software  to  demonstrate  this  new 
covert channel due to its open source, cross-platform nature 
combined with its user friendly signature database. It should 
be noted however,  the design of this covert channel is not 
specific  to  a  certain  brand  of  Anti-Virus,  and  the  ideas 
presented  could  theoretically  be  applied  to  any  AV 
implementation. 

     The Prisoner's Problem mentioned in [1] is used to 
describe  the  method  in  which  this  covert  channel  may be 
applied. One node on the internet will be sending data to a 
second node while attempting to prevent this communication 
from detection by a third party. The sender will have access to 
either an official anti-virus signature distribution point or own 
a location that can be used for updates. The sender will then 
encode  specially crafted  signatures  into  updates  which will 
later  be  used  to  relay  a  message  to  the  receiver.  Each 
signature  added  into the update  will be  representative  of  a 
binary “1” within the covert message. At designated intervals 
the  receiver  will  update  his/her  anti-virus  signatures  which 
will force the  retrieval of the database update crafted by the 
original  sender  node.  The receiver  will then scan a  unique 
directory of files with his/her updated anti-virus application. 
The results of the directory scan will be used to decode the 
covert message. It is this  behavior of the anti-virus program 
during the scan, not solely the signatures within the update 
which relay the covert message. This flow of data transfer is 
pictured in Figure 1. A proof-of- concept implementation will 
be discussed later in this paper.

Figure 1. Data Transfer

5.1 Covertness
The transferred covert message is never fully contained 

within the updates which precludes classification as a strictly 
storage  based  covert  channel.  Only  binary  “1's”  from  the 
message are transferred through the update mechanism- not 
“0's”. Even if a third party was able to capture the network 
traffic  and  knew  how  the  channel  operated,  the  covert 
message  would  be  unable  to  be  revealed  from  physical 
inspection. Additionally, this covert channel is not based upon 
the modulation of timed events which implies that it is not a 
timing based covert channel. If a third party is able to observe 
the  timing  of  all  network  events,  no  irregularity  can  be 
detected  as  AV  signature  updates  are  a  normal  regular 
network  event  and  in  some  cases  may be  required  by  an 
organization's security policy.

5.2 Data Rate
Anti-virus database updates vary in size depending upon 

the  specific  application  being discussed.  These  updates  are 
often  based  upon the  discovery of  new pieces  of  malware 
which varies and can have an impact on the amount of data 
contained  within  an  update.  Some  days  may  have  more 
information stored within an update than others. There is no 
theoretical  limit  to  the  size  of  a  signature  database.  In 
practice, each specific anti-virus product will have an average 
update size. The data rate of the AVCC will be closely tied to 
the specific anti-virus application which is chosen for covert 
channel  use.  Covert  messages  transferred  using the  AVCC 
will also have different data rates depending upon the type of 
data being sent. According to channel design, instances of a 
binary “1”  within a message will  require  a  signature  being 
added to a database update. To remain covert, the modified 
database  updates  must  remain  similar  in  size  to  normal 
updates.  It  may  arouse  suspicion  if  certain  updates  are 
exceedingly  large.  Since  each   binary  “1”  within  a  covert 
message correlates to a new signature being created, the data 
rate  of  the  AVCC  may  be  measured  by  the  number  of 
signatures  that  can  be  added  while  limiting  the  size 
characteristic  to  remain  within  the  confines  of  a  normal 
database update. Once this limit has been determined, a node 



is only limited to sending messages containing binary “1's” 
which fall below that threshold.

5.3 Robustness
If packets do not arrive in a specific order or network 

timing is  disrupted,  the  integrity  of  a  timing  based  covert 
channel can suffer; many storage based covert channels do not 
survive packet regeneration performed by proxies or routers. 
The  AVCC  design  does  not  succumb  to  these  types  of 
obstacles.  Update mechanisms of application layer  software 
will typically make use of the Transmission Control Protocol 
(TCP) to insure reliable data delivery. Two ways in which a 
covert  message  could  be  modified  or  tampered  with is  the 
complete prevention of data transfer or removal of a sender's 
specially crafted signatures before the transmission. If the data 
sent in an update maintains integrity and reaches the receiver, 
the  message will  be  relayed.  This  gives  the AVCC a  high 
score in the robustness category.

5.4 Limitations
The primary concern of the AVCC design is the issue of 

a sender controlling a database update location. It may not be 
ideal  or  feasible  in  certain  situations  for  a  user  to  be  an 
operator or have access to locations in which database updates 
can be distributed. In cases regarding proprietary software this 
access becomes even more difficult.  Another limitation that 
should be noted is that the type of data being transferred will 
make a significant impact on the data rate. As each binary “1” 
in a  message corresponds to a virus signature that  must be 
added, data made up of many “1s” will increase the size of 
updates to a  greater  degree.  Staying inconspicuous requires 
staying beneath an update size threshold,  thus will have an 
impact on the data throughput of the covert channel. A minor 
area of concern could be the simplex style of communication 
signature  updates  provide,  however  this same characteristic 
also  makes  AVCC  a  good  choice  for  the  infiltration  of 
messages or data into an organization.

6 Assumptions
 Before a Proof of Concept was created and tested, the 
following assumptions are applied. The model assumed in this 
paper precludes a third party from physical tampering with the 
machines involved in the covert  message sending/receiving, 
including  modification  of  information  during  transit.  This 
covert  channel  does  not  currently  offer  the  security 
characteristic  of  authentication  or  data  integrity-  simply 
transfer of covert  messages. It  is also assumed that persons 
wishing  to  use  the  AVCC  will  be  able  to  access  the 
distribution site for ClamAV or another anti-virus and be able 
to direct their host AV software to receive updates from this 
same location. This will also attempt to accurately represent 
the use of this covert channel in the real world where network 
defense/defenders  would  not  initially  be  aware  of  AVCC's 
existence.

7 Proof of Concept
7.1 Software Design

The AVCC has been created and implemented in Python 
as a proof of concept. The implementation script (avcc.py) is 
a “wrapper” to the tools and binaries that ClamAV provides 
with  a  default  installation.  The  creation  of  signatures  is 
managed  with  sigtool  which  is  the  custom  signature  and 
database management tool that accompanies ClamAV. Sigtool 
will allow senders to easily create and add signatures which 
avcc.py  uses  to  automatically  encode/decode  the  covert 
message. Alice and Bob have a shared secret which takes the 
form of a directory of files which will henceforth be referred 
to as keyfiles. They each share the exact same number, order, 
and  md5sum property  for  the  directory  of  keyfiles.  These 
keyfiles  are  what  will  be  scanned  with ClamAV when the 
update has been retrieved. This proof of concept makes use of 
ASCII encoded messages for all covert communication. The 
avcc.py  script  contains  methods  for  the  encoding  of  a 
message, decoding of a message, and the creation of unique 
keyfiles based upon a single unique executable.

7.2 Example Signatures
The  avcc.py  implementation  of  AVCC  works  by 

creating signatures for specific files in the keyfiles directory. 
ClamAV updates  can make use of  many different  types  of 
databases,  however  this  proof  of  concept  will  specifically 
make  use  of  the  .hdb  database  which  defines  MD5  based 
signatures.  All  signatures  in  this  database  refer  to  an 
executable file.

This database contains the most basic form of an Anti-
Virus signature that ClamAV implements and is perfect  for 
the proof-of-concept due to simplicity and ease of creation. 
Figure 2 displays example signatures that have been added to 
the database by the avcc.py script.

Figure 2. Example Signatures

These  virus  signatures  are  made  up  of  three  colon 
delimited  fields.  The  first  field  is  the  MD5  sum  of  the 
contents of a file. The second and third sections are the size of 
the file and its name (given by sigtool) respectively. As it may 
not  be  practical  to  have  an  identical  directory  of  unique 
executable files on both ends of transmission, the proof-of-
concept  is  able  to  generate  a  keyfiles  directory.  Keyfile 
creation  with avcc.py  is  based  upon  the  modification  of  a 
single  shared  executable  file.  This  allows  the  sender  and 
receiver to produce the same set of keyfiles from one original 



executable file. This also prevents the need to send a shared 
directory  of  keyfiles  beforehand  and  potentially  arouse 
suspicion. In real world scenarios, sender and receiver could 
arbitrarily choose an executable to generate the keyfiles from. 
They may even decide to use a commonly shared file on their 
machines and prevent the need of  transferring a file at  all. 
During keyfile generation avcc.py modifies the contents of the 
base  executable  slightly  to  ensure  uniqueness  between 
keyfiles.  The  example  keyfile  directory shown in Figure  2 
contains files named in the fashion keyfile.number.

7.3 Encoding
Encoding of  the message  can be  demonstrated  by the 

following pseudo code example:

- Populate a keyfile array with keyfile names
- Accept User Input (string of chars)
- Translate input into binary array
- Iterate through binary array
- If ( current value == 0 )

- Do nothing
- If ( current value == 1)

- Create signature for the keyfile in the 
corresponding element of keyfile array
- Distribute created signatures

Avcc.py has  been  created  to  accept  user  input  in  the 
form of an ASCII string. The string will then be converted 
into a binary array. The keyfiles directory will be examined 
and an array will be created.  Each entry within the keyfile 
array contains the name of a keyfile. The binary array will be 
examined and encoding takes place based upon this array. If 
the current entry in the binary array is a 0, that means that no 
signature will be created for the file in the keyfile array. If the 
current entry is a 1, then a signature is required to be added to 
the  database  update.  This  encoding  method  will  create  1 
signature  to  be  added  to  the  .hdb  database  file  contained 
within a  ClamAV update  for  every binary “1”  of  the  data 
being transferred.

7.4 Decoding
Decoding is the reverse of the encoding process. When 

the receiver has updated his database of signatures from the 
sender,  a  virus  scan  is  run  upon  receiver's  directory  of 
keyfiles.  The  decoding  can  be  explained  via  the  following 
pseudo code example:

- Download database update
- Create empty array
- Create keyfile array from names of keyfiles
- Iterate through keyfile array
- Scan current element
- If ( Virus Detected )

- Push “1” onto empty array
- If ( No Virus Detected )

- Push “0” onto empty array

- Convert binary array into real binary data 
representation
- Print binary data representation as string
- Message is revealed

Avcc.py  has  been  created  to  automatically  reveal  the 
hidden  message  within  a  signature  database  update.  The 
receiver's directory of keyfiles will be scanned in order with 
ClamAV.  Every  keyfile  that  triggers  a  virus-alert  will  be 
represented as a binary “1” and keyfiles with no detection are 
represented  as  a  “0”.  This  sequence  of  1s  and  0s  is 
representative of the binary data being transferred.  Avcc.py 
will  keep  track  ClamAV  behavior  and  this  order-specific 
sequence  of  bits  and  reveal  the  hidden  message  to  the 
receiver.

7.5 Performance
A quantitative analysis of avcc.py performance was done 

with the assistance of Nathaniel Morefield using the Minitab 
statistics  software.  Avcc.py uses ASCII  encoded strings for 
each  covert  communication.  Representations  of  ASCII 
characters  contain an average  of  3.5  binary “1s”.  Over  the 
course  of  5  weeks,  37  ClamAV  database  updates  were 
collected  from  which  conclusions  about  update  size  were 
drawn.  The  mean size  of  the  .hdb  file  contained  within  a 
ClamAV update was 30,229 bytes and contained a mean of 
503 unique signatures. In order to keep the additions to the 
update inconspicuous, total update size including the message  
should  be  no  more  than  two standard  deviations  from the 
mean. The standard deviation of this set  of data was 5,950 
bytes.  This  allows  for  an  additional  11,900  bytes  of  data 
added to an average update using the assumptions above. A 
regression test was performed to determine the average size of 
a single virus signature. The test was restricted so that the best 
fit  line passed through the origin,  since  an update  with no 
virus signatures would have a size of zero bytes. 

Figure 3. Regression Analysis

Figure  3  shows  the  scatter  plot  and  regression  line 
associated with the sample data.  From this test  it  has  been 
determined  that  the  average  virus  signature  requires  60.1 
bytes  of data.  Each ASCII character  is represented with an 



average  of  3.5  binary “1s”;  it  will  require  210.35  bytes  to 
encode one ASCII character. In order to stay within the two 
standard deviation size limit of 11,900 bytes, approximately 
57  ASCII  characters  can  be  effectively  hidden  within  the 
covert channel.

7.6 Environment
The  environment  that  avcc.py  has  been  tested  on  is 

Ubuntu 10.04 x86 Server Edition. This platform provided an 
environment that was stable and easy to work with.

7.7 Limitations of Implementation
The  implementation  avcc.py  is  a  proof  of  concept  of 

how an anti-virus database update could be used as a covert 
channel.  A fully-functional  implementation would require  a 
server that both digitally signs and packs many different types 
of  anti-virus  signatures  into  one  file  for  distribution.  This 
proof of concept strictly details how one may encode covert 
data within a .hdb. The .hdb file is just one of many specific 
types  of  databases  that  are  packed  together  and  digitally 
signed for a ClamAV signature update.  The implementation 
could  be  extended  to  any of  the  other  types  of  databases, 
however  this proof of  concept  is  not  that  ambitious.  If  the 
methods  described  in  this  paper  were  applied  to  a  fully 
functional anti-virus signature database distribution point, this 
covert channel should operate flawlessly.

7.8 Detection and Prevention
The implementation of avcc.py is used with unofficial 

signatures for testing purposes. The files that are used for the 
creation of signatures are recognized as unofficial signatures 
by  the  ClamAV  scanning  product.  The  finding  of  many 
unofficial  signatures  could  be  one  way in  which  anything 
suspicious could be noted outside of a complete audit of every 
signature  contained  within  update.  Auditing  each  file  in  a 
regular  update  would  be  theoretically  possible  although 
unfeasible in practice, so this covert channel would be very 
difficult to detect. A method of prevention could be to audit 
the locations that a user is updating their signature database 
from. Restricting update location to approved locations would 
be one way in which this covert channel could be prevented 
altogether. This prevention method would be futile if a sender 
was able to gain access to an official update location. Another 
method that a sender could use to thwart detection would be 
to  submit  new  legitimate  virus  signatures  to  the  official 
website, which would inevitably be added to the next official 
update.  These  “real”  signatures  could  also  then be  used  to 
transfer a covert message.

8 Conclusions
 In the future, we would like to explore new possibilities 
of sending covert communication relating to software updates 
and further  the support  for  behavior  based  covert  channels 
being  included  in  standard  taxonomy.  Anti-Virus  software 
tends to fly under the radar of security programs that monitor 

for  malicious activity.  Anti-Virus products  are  some of  the 
most popular types of applications in use today,  and if this 
technology can be harnessed for  use as a covert  channel it 
may prove to be a rich area of further research.
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