
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Presentations and other scholarship Faculty & Staff Scholarship 

2012 

UPnp Port Manipulation as a Covert Channel UPnp Port Manipulation as a Covert Channel 

Steven Monette 

Daryl Johnson 

Peter Lutz 

Bo Yuan 

Follow this and additional works at: https://repository.rit.edu/other 

Recommended Citation Recommended Citation 
Monette, Steven; Johnson, Daryl; Lutz, Peter; and Yuan, Bo, "UPnp Port Manipulation as a Covert Channel" 
(2012). Accessed from 
https://repository.rit.edu/other/754 

This Conference Paper is brought to you for free and open access by the RIT Libraries. For more information, 
please contact repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/other
https://repository.rit.edu/facstaff
https://repository.rit.edu/other?utm_source=repository.rit.edu%2Fother%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/other/754?utm_source=repository.rit.edu%2Fother%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


UPnP Port Manipulation as a Covert Channel

Steven Monette, Daryl Johnson, Peter Lutz, and Bo Yuan
B. Thomas Golisano College of Computing & Information Sciences

Rochester Institute of Technology, Rochester, NY, United States

Abstract— Port knocking traditionally has been a technique
used from external connections to convey information to or
request services from an internal private network [1]. UPnP
as a standard allows for devices and services to open ports
on network devices in order to enable functionality [2].
By combining these two techniques it is possible to port
knock internally, opening ports for an intended viewer on
an external network device. This paper proposes a covert
channel using this technique to exfiltrate data or broadcast
messages from a system behind a UPnP device to any Internet
connected system.

1. Introduction
Port knocking has primarily been a technique used to send

a signal to a machine that exists within a private network or
behind a firewall [1]. This has been used for many different
applications such as requesting services or signaling internal
machines. With the advent of technologies such as UPnP
there is now a reliable method for an internal machine to
signal or obtain a connection to an outside system discretely.
UPnP allows for systems to request external routers to open
ports for use with software and services that require open
ports in order to function. This protocol however has no
method for authentication, which makes it ideal for use as a
covert channel. A machine can request ports to be opened in
certain sequences/combinations that would appear innocuous
to other systems on the LAN and invisible to systems on
the Internet. Using a SYN scan the intended receiver can
monitor for these ports opening and closing and interpret the
message. SYN scans on external routers are common on the
Internet and would not appear out of the ordinary [3]. Not
only does this mask the receiver but UPnP traffic itself is
innocuous and is used by many different services to open
ephemeral ports on external routers.

2. Terms
The following abbreviations will be utilized throughout the

paper:
UPnP

A network extension of the concept of Plug & Play.
Regulated by the UPnP Forum it seeks to deliver a
set of robust network protocols to allow for dynamic
configuration and setup of connected devices.

IGD
Internet Gateway Devices are a sub scheme within

the UPnP protocol. This category is restricted to
network devices such as routers/NAT boxes em-
ploying the UPnP protocol [4]. Devices within this
scheme support operations such as remote port
mapping and remote configuration.

CTR
For this channel the Clear to Read will be defined
as a pre-determined port, between the sender and
receiver, on the target UPnP IGD. This port when
opened signals to the receiver that a message has
been placed successfully.

Wait Timer
The period of time before the sender/receiver will
place a message/initiate a SYN scan. This allows for
proper syncing between the sender and receiver.

3. UPnP
UPnP is a network configuration technology designed to

allow devices to auto-configure or communicate without prior
configuration. To discover other services on the network a
device will multicast a SSDP (Simple Service Discovery
Protocol) packet requesting any UPnP enabled devices to
respond with a list of their services. SSDP utilizes HTTPU
(HTTP over UDP) to transmit this request which resembles
a standard HTTP request. Once this request is received
each device will send a packet back describing which UPnP
service it has available for use. If a device has multiple
services available it will send back one packet per service in
order to advertise them to the requesting device. This packet
provides a URL to the XML schema for a particular service
containing information on what commands can be issued and
more detailed information about the service. Once a service
has been discovered the two devices can communicate via
SOAP using the XML URLs returned during the discovery
process.

The different types of devices defined under the UPnP pro-
tocol allows for a wide range of applications. Media servers
can populate network attached media players song/video li-
braries automatically, network devices can configure a router
to enable connectivity, or network devices can pull their own
configuration from a server to enable connectivity.

4. Design of the Covert Channel
This covert channel seeks to exploit a weakness in how

UPnP functions; primarily that it is an un-authenticated proto-
col [5]. By issuing commands to an IGD device we can open



Fig. 1: SSDP Request Packet

up forwarded ports on the external side of a private network
[6]. Using a large enough port range encoded messages can
be made available to outside observers without making a
direct external connection. Observers would scan the external
NAT wall of the network within a pre-determined range
and record which ports are open or closed. This sequence
of open and closed ports would be a binary representation
of some encoded message; for the purposes of this paper
we will be using an ASCII string but 8-bit binary data is
accommodated. The sender and receiver will use the CTR
port number as the start of the port range for encoding the
message. Next, following the CTR port will be three ports for
a packet pre-amble, followed by nine ports for the encoded
data and checksum, and ending with a three port post-amble
to complete the packet. The packet will be a binary string
which the sender will use to open the appropriate ports on
the external side of the NAT. For each 1 in the string a
port will be opened while a 0 indicates a port should not
be opened. The receiver will scan this port range using a
SYN port scan [7] and record the open and closed sequence.
Using this information the binary string can be validated and
the original message decoded. In addition to the CTR the
sender and receiver must agree on a wait timer. This timer
allows for the client and server to sync correctly and ensure
transmission of the message.

4.1 Message Encoding
The message will be encoded in a packet format prior to

being placed on the IGD. As ports can be interfered with
during transmission this allows for error checking on the
client side when decoding.

CTR
1 bit in length and is toggled last during packet
transmission.

Pre-amble
3 bits in length it is very similar to the Ethernet
frame pre-amble [8] as it alternates 1/0’s meaning
it should always be defined as 101.

Data
The payload of any packet in the channel will be
8 bits in length representing an ASCII formatted
character.

Checksum
The checksum will be an odd bit parity check
against the payload of the packet.

Post-amble

Identical to the pre-amble encoding this will always
be 101 to signify the end of the packet.

4.2 Operation
The server sending the message operates in the following

order:
1) Close the CTR port on the IGD and wait

WAIT_TIMER
2) Encode the Packet

• Assemble pre-amble
• Encode payload
• Create checksum
• Assemble post-amble
• Combine into packet

3) Process the Packet
• Clear all ports needed for transmission from the

IGD
• Open the ports necessary for transmission
• Set CTR and wait WAIT_TIMER

4) Wait the predetermined amount of time before resum-
ing

5) Repeat for the next of the message
This method allows a client (the receiver) time to jump into

the broadcast during the process and sync with the server.
Since there is no communication between the sender and
receiver the sender may wish to broadcast the message more
than once in order to give the receiver a larger window of
opportunity. The receiver at any point can begin scanning for
the intended message. During the wait period is where the
client will be able to sync up with the sender. The receiver
samples the CTR port and waits for a transition from open
to closed ignoring the rest of the ports until the transition.
This will ensure that the parties are in sync and reading
does not take place during the write phase. The necessary
processing order for the client begins as follows waiting for
a transmission from closed to open on the CTR port:

1) Scan CTR port on the IGD
• If closed go to step 1
• If open proceed to step 2

2) Process the remaining ports into a binary string
3) Check if the pre-amble and post-amble are intact

• If not discard packet and return to 1
4) Validate Checksum

• If invalid discard packet and return to 1
5) Process payload and convert back into an ASCII char-

acter
6) Return to step 1
Having the receiver wait for the CTR to transition from

open to closed and then back to open allows reliable syn-
chronization of the parties. Should the sender or receiver
become delayed or interrupted resynchronization will occur
at the next available opportunity. Some data loss may occur



Fig. 2: Diagram of the testing environment

and would have to be detected and compensated for at the
message level.

4.3 Testing
The testing environment for this covert channel was a

simple NAT based environment using a Linksys WRT54-G
as the IGD. The UPnP sender and receiver were coded using
Perl, miniupnpc for port mapping, and nmap for scanning the
IGD. The network layout used is diagrammed in figure 2.

Prior to communicating the sender and receiver agreed
upon a CTR of 9000 and a wait timer of 20 seconds. The
client’s internal timer was set to 5 seconds. Using these values
the initial test of the channel was:

1) Sender places the packet and enters the wait period
2) Client is initiated and scans for the packet
3) Repeat
This resulted with the intended message being received by

the client. Following that the client was tested against the
sender in various different states to ensure proper syncing
would occur. In all of these instances the client was able to
sync properly and received the message intact. In addition a
scenario in which the client was first initiated and the server
started some time later was tested. This also resulted in a
successful message being transmitted to the receiver.

5. Properties of the Channel
5.1 Covertness

The channel if used in small bursts transmits packets
on the network briefly, leaving only a small window for
the traffic to be spotted. That being said it is possible to
trace who the sender and receiver are when transmitting the
message. The trace is limited though to the message sender
and not the receiver. The sender would still be linked to the
scans however and the possibility exists that someone could
figure out the encoding scheme given enough time. With the
frequency and persistence of port scans from a multitude of
attackers and compromised host all around the world, if the

receiver includes scans of the other ports it will appear little
different than the rest of the background noise of the Internet.

5.2 Data Rate
The initial results conclude that our implementation of the

channel could not reliably function under a 20 second wait
timer between processing the message. The time it takes to
process and place the message accounts for roughly 1 to 2
seconds. To scan the packet and display its contents also takes
about 1 second. However these times vary depending on the
amount of ports open, more so on the senders side than the
receiver’s. Given this the data rate is roughly 15 bits per 22
seconds or 5+ characters/minute.

5.3 Robustness
When implemented with a 20 second timer we did not

see any errors generated during normal operating conditions.
However there were instances in which the IGD took longer
than average to process the UPnP requests sent to it. This
resulted in longer send times than usual however these slow-
downs did not occur consistently. Including these problems
the client did not display incorrect data and was able to sync
up again when the slowdown concluded. When dropping the
timer down below 20 seconds some errors were generated.
The most common error was a displaying of incorrect charac-
ters by the receiver. Other than that malformed and duplicate
packets were dropped as designed. The dropping of duplicate
packets based on the channels implementation may result in
data loss if resynchronization needs to occur between the
sender and receiver.

6. Applications
The channel’s low bandwidth, while not suitable for long

messages, can make it ideal for broadcasting short phrases.
One example would be to control a bot-net using the IGD
as a centralized control point. The attacker would, using
the channel above, broadcast the command on the IGD
where an infected bot would be able to find it. An infected
machine using the same scanning technique demonstrated
above would look for the instructions and execute them. As
the implementation makes use of broadcasting the message
over and over, as long as any machine listened long enough,
it would receive the command in its entirety. This means
that each machine does not have to begin listening at the
same time for the message. Each bot scanning at different
times reduces the footprint created preventing abnormally
high spikes in traffic to a single machine (the AP).

There are many benefits to using this design. The first
being that a single update to the controller would be heard
by all. Infected machines do not have to be tracked in order
to update them, they will do so automatically when they scan
the target IGD. The attacker does not have to communicate
directly with an infected machine, eliminating what would be
a direct association with an infected bot. Any such connection



could alert a user or administrator to the attack in progress.
Last at no point in time are the commands being issued
encoded in the traffic generated during the scan. A single
packet contains no portion of the command which could give
the attack away. Additionally no group of packets could be
assembled to decode the command being issued.

7. Conclusions & Future Work
Our conclusion is that UPnP using ports for ex-filtration

of data is a viable channel for communication. Our imple-
mentation was able to clearly send a message to a receiver
and do so using existing protocols on the network. Unless
someone was explicitly looking for an encoded message on
the device no one would be aware of our communications.
Future work that can be done to improve the channel would
be to increase the speed at which the channel operates.
Currently our implementation uses Perl and two external
programs in order to place and check for the message. It
is possible to encode these natively eliminating some of
the overhead associated with the external calls. This would
improve the functionality of the channel greatly.

References
[1] E. Y. Vasserman, N. Hopper, and J. Tyra, “SilentKnock: practical, prov-

ably undetectable authentication,” International Journal of Information
Security, vol. 8, no. 2, pp. 121–135, Nov. 2008. [Online]. Available:
http://www.springerlink.com/index/10.1007/s10207-008-0070-1

[2] S. Son, B. Allcock, and M. Livny, “Codo: Firewall traversal by coopera-
tive on-demand opening,” in High Performance Distributed Computing,
2005. HPDC-14. Proceedings. 14th IEEE International Symposium on,
2005, p. 233âĂŞ242.

[3] C. B. Lee, C. Roedel, and E. Silenok, “Detection and characterization
of port scan attacks,” Univeristy of California, Department of Computer
Science and Engineering, 2003.

[4] U. Forum, “InternetGatewayDevice:1 device template version 1.01,”
Nov. 2001. [Online]. Available: http://upnp.org/specs/gw/UPnP-gw-
InternetGatewayDevice-v1-Device.pdf

[5] C. Heffner and D. Yap, Security Vulnerabilities in SOHO Routers.
Retrieved September, 2009.

[6] T. Maki, “Explicit Mechanisms for Controlling NAT/Firewall Systems
Dynamically.”

[7] M. De Vivo, E. Carrasco, G. Isern, and G. O. de Vivo, “A review of
port scanning techniques,” ACM SIGCOMM Computer Communication
Review, vol. 29, no. 2, p. 41âĂŞ48, 1999.

[8] IEEE, “Part 3: Carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer specifications,” 2008.
[Online]. Available: \url{http://standards.ieee.org/getieee802/download/
802.3-2008_section3.pdf}


	UPnp Port Manipulation as a Covert Channel
	Recommended Citation

	tmp.1393782123.pdf.eZaLw

