
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Presentations and other scholarship Faculty & Staff Scholarship

2012

NAT Denial of Service: An Analysis of Translation Table Behavior NAT Denial of Service: An Analysis of Translation Table Behavior

on Multiple Platforms on Multiple Platforms

Nathan Winemiller

Bruce Hartpence

Daryl Johnson

Sumita Mishra

Follow this and additional works at: https://repository.rit.edu/other

Recommended Citation Recommended Citation
Winemiller, Nathan; Hartpence, Bruce; Johnson, Daryl; and Mishra, Sumita, "NAT Denial of Service: An
Analysis of Translation Table Behavior on Multiple Platforms" (2012). Accessed from
https://repository.rit.edu/other/753

This Conference Paper is brought to you for free and open access by the RIT Libraries. For more information,
please contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/other
https://repository.rit.edu/facstaff
https://repository.rit.edu/other?utm_source=repository.rit.edu%2Fother%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/other/753?utm_source=repository.rit.edu%2Fother%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

NAT Denial of Service: An Analysis of Translation Table

Behavior on Multiple Platforms

Nathan Winemiller, Bruce Hartpence, Daryl Johnson, and Sumita Mishra

Networking and Systems Administration Department

Golisano College of Computing and Information Sciences

Rochester Institute of Technology

1 Lomb Memorial Drive

Rochester, NY, USA

Abstract - Network Address Translation or NAT, is a

technology that is used to translate internal addresses to

globally routable addresses on the internet. NAT continues to

be used extensively in almost every network due to the current

lack of IPv4 addresses. Despite being exceptionally

commonplace, this networking technique is not without its

weaknesses, and can be disabled with a fairly straightforward

attack. By overpopulating the translation table, the primary

mechanism used to translate the internal to external

addresses, an attacker can effectively deny all internal users

access to the external network. This paper takes an in-depth

look at how five different vendors: Cisco, Extreme, Linksys,

VMWare, and Vyatta, implement the translation table during

active NAT sessions and how they are affected by TCP, UDP,

and ICMP variations of the DOS attack.

Keywords: Computer Network Security, Denial of Service,

Network Address Translation, NAT

Track: Network Security Engineering

1 Introduction

 Network Address Translation is a technology that is

so widely deployed, it can be found in almost every home and

in every company that has an enterprise network. With the

scarcity of public IPv4 addresses, NAT with port translation

has become a necessity when organizations need to provide

Internet access to multiple users on the inside of their

network. Devices that do the translations keep track of these

connections in the NAT translation table. This table maps

inside and outside ports and IP addresses so that internal hosts

can have multiple concurrent conversations with the outside

world. However, this creates a single point of failure in the

network. If the translation table becomes too full or non-

functional, the internal network could suffer connectivity

issues when trying to reach the global network. This makes

translation tables a prime candidate for denial of service

attacks by a malicious user.

 Therefore, it is important to understand how different

vendors handle translation table behavior, especially in an

enterprise environment which contains devices from multiple

vendors. This paper will analyze how several different

vendors handle NAT translation table size and how the

devices react once the tables have been filled to capacity.

Additionally, this paper will determine whether or not a small

number of devices on the inside network can easily and

effectively deny service to other users on the network by

targeting the translation table on these NAT devices.

2 Background and Problem Statement

 NAT is a networking function that is widely

deployed in networks today. The IETF defines NAT as a

"method by which IP address are mapped from one realm to

another, in an attempt to provide transparent routing to hosts"

[3]. NAT with Port Translation or NAPT is the most

common and widely deployed version of NAT. The main

function of NAPT is the conservation of global IP addresses

by mapping a large number of private internal host addresses

to a single external host address [1]. Essentially, NAPT

provides a way for an intermediate device to map and

translate internal IP addresses and ports to an external IP

address on a different port.

 One of the most important and complicated portions

of NAPT has to deal with keeping track of the sessions that

are in use. RFC 2663 identifies TCP and UDP sessions by

keeping track of the:

 Source IP address

 Source TCP/UDP port

 Target IP address

 Target TCP/UDP port

 ICMP tracking is similar except that the NAPT

device keeps track of the ICMP query ID instead of TCP/UDP

ports [3]. These properties create unique entries in the

translation table and can be used to create a virtually limitless

number of permutations for use in translation.

2.1 The Problem

 In order to segment networks from the internet and

preserve IP addresses, businesses and households around the

world use NAT with Port Translation to map multiple internal

hosts to a small number of globally routable public IPs [3].

As far as internal users are concerned, this process is

supposed to be transparent, however if this process were to be

disrupted, multiple if not all users on the internal network

would be affected. The translation table which maps internal

ports to external ports for active connections serves as a single

point of failure and could be targeted in order to deny service

to a large number of users.

 Because every conversation that is going from the

internal network to the external network has to be mapped and

tracked, NAPT is an incredibly processor intensive task when

compared to many other services a router could provide. In

addition, every packet that goes through the NAT translation

has to be rewritten; checksums need to be recalculated, along

with many other changes [1]. Consequently, the more

translations that occur, the more processor time is consumed

to perform the NAT operations.

 This can lead to performance degradation for all

functions on the router if the NAT process consumes the

available processing resources. As a result, if an attacker

could create a situation where the NAT has so much work to

do that it consumes all of the resources, they could cause

failures not only for the NAT process, but also other functions

that the router is supposed to handle (access lists, routing

protocols, DHCP leases, etc.).

 While there are many specifications on how NAT

with Port Translation should operate, many of the

implementation choices are not explicitly defined. Important

details such as table entry timeouts for the different protocols,

maximum translation table size, and entry tracking are left up

to the vendors [3]. If the implementation discrepancies

between vendors are significant enough, they could result in

significant impact to network performance and application

functionality. The next sections will provide scenarios that

will demonstrate these issues and will provide data we can use

to determine the differences in how each vendor implements

NAPT.

3 Experimental Design

 For all tests involving physical devices, the topology

in figure 1 was constructed.

Figure 1: Physical Device Topology

NAT
Device

Cisco
2950

F0/1
F0/2

F0/3

F0/24

Windows XP SP2
User: Administrator

192.168.1.2
255.255.255.0

Internal Address:
192.168.1.1

255.255.255.0

External Address:
74.74.74.1

255.255.255.0

Windows XP SP2
User: Administrator

74.74.74.2
255.255.255.0

TCP Service: FTP
UDP Service: TFTP

Windows XP SP2
User: Administrator

192.168.1.3
255.255.255.0

Attacker
Ubuntu 10.04
192.168.1.5

255.255.255.0

 In this diagram there are two networks, one internal

and one external. There are two normal hosts on the internal

network and an attacker that will launch an attack against the

NAT device in the middle. The outside host is there to

receive traffic and to provide an end point to determine if a

loss of connectivity occurs. The main questions here are: can

a single attacker device overwhelm the NAT device with

translations thereby blocking legitimate traffic from exiting?

What happens when the translation table on the NAT device

becomes full?

 For all tests involving the VMWare Virtual NAT

Process, the topology in figure 2 was constructed.

Figure 2: Virtual Topology

Windows XP SP2
User: Administrator

192.168.40.128
255.255.255.0

Internal Address:
192.168.40.2

255.255.255.0

External Address:
74.74.74.1

255.255.255.0

Windows XP SP2
User: Administrator

74.74.74.2
255.255.255.0

TCP Service: FTP
UDP Service: TFTP

Cent OS 5
Attacker

192.168.140.129
255.255.255.0

Windows XP SP2
User: Administrator

Running VMWare
Workstation

Doing Virtual NAT in
VMWare

Switch

 Like the physical topology there is an internal and an

external network that the attacker will attempt to disrupt.

Our hypothesis is that the attacker will be able to deny access

to the external network by targeting the translation device. By

creating a large number of translations, the attacker would be

able to deny access to the outside by either filling the

translation table or by consuming all of the available

resources on the translating device.

3.1 Default Device Timers

 Since the RFC documents regarding NAT only give

recommendations on what the expiration timers should be for

TCP, UDP, and ICMP entries, the individual vendors have

their own default settings for each of these entries. These

values are important because they determine the amount of

time an attacker has to fill the table before the entries start

expiring.

 TCP Syn Fin/RST UDP ICMP

Cisco 24 60 60 secs 5 mins 60

hours secs secs

Extreme 2 mins 60

secs

60 secs 2 mins 3 secs

Linksys N/A N/A N/A N/A N/A

Vyatta 12

hours

N/A N/A 30

secs

30

secs

VMWare N/A N/A N/A 30

secs

N/A

Notes:

1. TCP Default refers to all translated TCP ports that are not

specified in the Cisco IOS (DNS and a few other services

have their own special timeouts).

2. Timers on the Linksys device are not configurable by the

user.

3. The vmnetnat.conf configuration file for the VMWare

NAT process does not have a configurable field for TCP

timeout. Additionally, there is no way to view the translation

table for diagnostic testing to find out the default timeout.

4. Timers on the Vyatta device are not configurable by the

user.

3.2 Attack Types

 In order to determine the effects of the different

protocols on multiple platforms, we had to create a number of

scenarios. We tested attacks using TCP, UDP, and ICMP

entries into the table. Each of these three tests were done

against the five different vendors: Cisco, Extreme, Vyatta,

Linksys, and VMWare.

 If the attacker proves unsuccessful in filling the

translation table for a device using the default timers, the

experiments will be repeated for that device using unlimited

timeout periods for each protocol. This will allow us to

determine the effects of the attack on the device if it were to

be successful.

3.3 Attack Scripts

 The scripts used to execute the attacks were simple

bash scripts that called several concurrent sessions of NMAP.

These NMAP scans would attempt to reach various addresses

on the outside on a variety of different ports. This allows the

attacker to generate numerous translation table entries in a

very short period of time. The scripts were very similar, with

the main difference being in the –s options that changed the

protocol being used by NMAP.

Table 1: TCP Attack Script

#!/bin/bash

for ((i=0; i<300; i++))

do

 sudo nmap -sS 74.74.74.3-254 1>/dev/null

2/dev/null &

done

Table 2: UDP Attack Script

#!/bin/bash

for ((i=0; i<300; i++))

do

 sudo nmap -sU 74.74.74.3-254 1>/dev/null

2/dev/null &

done

 There was one alteration that had to be made during

the UDP experiment. The Cisco device would not register the

UDP entries in the translation table unless it received some

sort of reply from the outside on those ports. Therefore, the

UDP Attack Script in the Cisco scenario pointed to the outside

host instead of a range of non-existent hosts.

Table 3: Cisco UDP Attack Script

#!/bin/bash

for ((i=0; i<300; i++))

do

 sudo nmap -sU 74.74.74.2 1>/dev/null

2/dev/null &

done

Table 4: ICMP Attack Script

#!/bin/bash

for ((i=0; i<300; i++))

do

 sudo nmap -sP 74.74.74.3-254 1>/dev/null

2/dev/null &

done

4 Methodology

 The topology for each test was set up as shown in the

figures above with three PCs connected to a switch behind a

NAT device which then connected to an external host on the

external network. The only exception was the VMWare test

where the topology consisted of two VMs on the internal

virtual network and one physical host on the external network.

The external host was hosting an FTP server and a TFTP

server which had access one large movie file to transfer. Only

one NAT device from one vendor would be tested every time.

Each vendor device would run through the test 5 times to

ensure the validity of the data.

 Before the attack began, all of the hosts issued pings

to each other to verify connectivity. This also allowed for

verification that the NAT translations were occurring

correctly between the inside network and the external

network. After initial connectivity and translation

functionality were established, an internal host tested TCP and

UDP functionality by using FTP and TFTP between the inside

and outside. After full functionality was determined, a

unidirectional JPerf test was run between an inside host and

the outside host. This ensured that the NAT device could not

be brought down by a full load of traffic from a single device.

After all of the testing had finished, commands would be

issued to the NAT device to clear the translation table and

reset the NAT statistics when applicable.

 After the verification process, the attacker would

kick off the script and a timer (on a stopwatch) would be

started. Each attack period would last for 5 minutes and then

the NMAP processes would be killed. Every minute during

the attack, internal hosts would attempt to ping the internal

gateway, the external gateway, and the outside host.

Additionally, every minute, the internal hosts would attempt

to establish an FTP and a TFTP session and attempt to

transfer a file. Also, every minute the relevant commands

would be issued to the NAT device (when applicable) to

determine the number of translations and to verify that the

correct translations were being put into the translation table.

 After the attack had completed, internal hosts would

then attempt to ping each other, the internal gateway, the

external gateway, and the external host. Additionally, internal

hosts would then attempt to establish FTP and TFTP sessions

with the external hosts in order to transfer the movie file.

This process would be repeated until all attempts were

successful or until 15 minutes elapsed.

 These tests would be run initially using the default

timers on the devices. However if the attacker could not fill

the translation table for a particular device with any of the

attacks, then tests would be run on that specific device using

unlimited timers. This would allow us to observe the

consequences of filling the translation table on that device.

4.1 Problems Encountered

 During the course of our experiments, we did run

into a few issues during the testing. Unfortunately some of

the devices had very little or no visibility into what was

happening during the translation process. The Linksys device

was the worst for this since it did not have any relevant means

of logging NAT Translations. This problem was exacerbated

by the fact that all management for the Linksys device was in-

band, which became unreachable during the attack. The

VMWare NAT process also had no means to debug the

translations while they were occurring. This meant that all we

had to go on were the results of the experiments to determine

what was actually going on during the attack.

 Another issue was the processing limitations of the

devices used to execute the attacks. In most cases it was a

netbook that had very little processing power, which limited

the number of translations we could do within a certain period

of time. In the other cases it was a virtual machine with very

limited resources (in the VMWare tests). We originally wrote

the scripts to loop 1000 times to maximize the number of

IMAP instances running, but ultimately had to scale it down

to 300 concurrent sessions to keep the attacking machines

from locking up.

4.2 Metrics

 In order to determine whether connectivity was

affected or not, every minute of the attack we would run:

ICMP echo requests to the outside, a TFTP transfer to the

outside, and an FTP transfer to the outside. We would also

look at the current size of the translation table along with the

CPU utilization on the device in question. The final thing we

would watch for was whether or not the packets the outside

device was receiving were being translated (by looking at the

source address of the traffic).

5 Results and Discussion

 The results of this experiment show that a small

number of compromised nodes with the right software can

severely impact enterprise grade equipment in a short period

of time. While almost all platforms tested were negatively

impacted by the TCP and UDP attacks, the effectiveness of

certain protocols for filling the translation tables varied from

vendor to vendor. Additionally, filling the translation tables

also had varied effects on the devices performing the NAT

translations depending on what vendor created the device.

 On the Cisco device, the translations filled the

available memory on the device which not only prevented

new entries from being entered into the table (and therefore

being translated) it also caused memory allocation errors

which negatively impacted other processes that the router was

performing. The Cisco device fared better against the TCP

attacks due to its session tracking capability and the

aggressive timeouts on the SYN packets. The UDP attack on

the other hand was able to fill the table on this device and

deny translation capabilities to all other devices on the

network.

 The Extreme device on the other hand, limited the

number of NAT translations allowed on one address instead

of letting it consume all of the other memory. This allowed

for smaller number of total entries, but preserved the integrity

of the device when the table was filled. The Extreme device

fared very well against both TCP and UDP attacks due to its

very aggressive default timers. However, these timers are a

double edged sword and by defying best practices and

standards laid down in the RFCs, could cause problems on a

network with higher latency times. For example, in the case

of the Extreme device, the two minute default TCP timer

could cause certain TCP applications to fail because it expires

so quickly. TCP logical connections can last for a very long

time even if connectivity is temporarily disrupted or there isn't

any traffic to send for a period of time. By expiring these

TCP entries, the internal host will have to establish a new

session to the outside and most likely start the conversation

over.

The Linksys device by far fared the worst of all the devices

that were tested. It was unable to handle the processing load

of translating such a large amount of requests and therefore

became completely unreachable during the attack. TCP and

UDP attacks were equally effective against this device.

Unfortunately, the lack of accessibility during the attack (in-

band management only) and limited logging made any more

insight into the operation of this device all but impossible.

 While the VMWare device fared well against the

UDP attack (unlike the Cisco device) it was severely impacted

by the TCP attack. Service was denied during the attack and

unlike the rest of the devices tested, TCP and UDP

connections could no longer be established even after the

attack had ended. The only way to restore full connectivity

was to restart the VMWare NAT service. This would pose a

significant problem to network administrators since outside

connectivity would appear to be restored (ICMP echo requests

would work), but any service related applications would cease

to function. Unfortunately, the VMWare NAT process has

limited configuration and debug capabilities so determining

the exact cause of this disruption is also next to impossible.

 The Vyatta device fared extremely well during these

tests. These attacks didn't appear to have any impact despite

having several thousand translations entered into the table.

Due to the resources at my disposal, the only device to test

this platform was markedly more powerful than the other

devices tested in this series of experiments. Interestingly

enough, Vyatta also defies RFC recommendations by not

allowing for the administrator to adjust any of the timers that

are used in the translation process. Additionally, while I was

unable to do so in my experiments, the default TCP timer is

extremely long and the Vyatta device doesn't appear to do any

session tracking (unlike the Extreme or Cisco devices). This

could possibly be exploited on a device that is less powerful

or being actively utilized on an enterprise network.

 It is interesting to note however, that unlike when the

CAM (Content Addressable Memory) table, which holds the

MAC address / port entries, becomes full on a switch, the

NAT device does not "fail open" and pass all traffic. When

the translation table became full (in all cases where this was

possible), no new translations could occur and the NAT

devices would drop any new traffic not already in the table.

Another point to note is that the NAT devices did not FIFO

any translation entries. While expired entries were FIFO'd

out, if the table became full, the entries remained in the table

until they expired. Therefore, new entries could not be added

until the old entries expired (which could be a significant

amount of time).

 Another interesting conclusion that can be drawn

from these experiments is that the differing implementations

of NAT between the vendors (especially in the case of timers)

could cause interoperability issues if a connection has to

traverse a NAT device on the source end and the destination

end. While TCP connections are generally given a duly long

amount of time before expiration, UDP connection timeouts

varied greatly between the vendors. With VMWare and

Vyatta allowing only 30 seconds before the UDP entry times

out, significant application issues could occur over high

latency networks that span long distances.

 The relatively small number of compromised nodes

required to execute the attack paired with the fact that NAT

generally causes a single point of failure for a large number of

users makes this a relatively easy and effective type of denial

of service attack to execute. Furthermore, while it may be

difficult to fill up a translation table on a device with a

significant amount of memory, the effects of the attack on the

processing capabilities of the NAT devices makes this attack

scalable to almost any network size. Therefore, we can

conclude that this attack is viable in an enterprise setting and

against several mainstream vendor devices that are currently

deployed.

5.1 Mitigation

 The main ways that the NAT denial of service attack

takes advantage of the NAT device is to either fill up the

translation table to prevent new entries or to create so many

entries that the processor on the device cannot keep up.

Therefore the most obvious way to mitigate the effects of this

attack is to limit the number of translations that hosts are

allowed to make. Making a rule that limits the number of

overall translations allowed is common, and while this may

solve the issue of high CPU utilization, this technique makes

it easier for the attacker to fill the table and deny service to

legitimate users service. Because of this, limiting the number

of translations must be applicable to individual hosts.

 Cisco has features in place in their IOS to

accomplish this goal relatively well. Most platforms support

rate limiting of some kind, but the Cisco platform supports

rate limiting by either the total number of translations, the

number of translations that can be created by a list (that

includes a number of hosts), and the number of translations a

specific host can make [6]. Obviously limiting the total

number of translations would prove counter-productive, and

while limiting the number of translations a specified host can

use is fine on a smaller network, this mitigation technique

cannot scale to a large network.

 The Extreme device on the other hand supports what

the vendor calls "Auto-constraining," which limits the amount

of ports a single internal host can use at one time [7]. This

works by evenly distributing the amount of port space

between each internal user evenly [7]. While this is easy to

configure and can be effective in smaller networks, this

feature could end up preventing legitimate users from making

new connections in a scenario where there are a large number

of internal users and a very small number of external

addresses to map to.

 Unfortunately, the Linksys, VMWare, and Vyatta

platforms don't appear to support any of these types of

features at all which makes stopping this type of attack much

more difficult when using these platforms.

 Another feature that is built into most NAT platforms

is the ability to control the amount of time that passes before

an entry in the table expires. This is best evidenced by the

table on the Extreme device that couldn't be filled in this

experiment using the normal timers. Unfortunately the Vyatta

and Linksys platforms do not allow the administrator to

configure these timers, which makes them less able to prevent

the NAT DOS attack. However, administrators need to be

careful when setting these timers since they could time out

legitimate sessions prematurely and cause applications to

malfunction, especially in higher latency networks with a high

traffic volume.

6 Conclusions

 The purpose of this paper is to closely examine

infrastructure security risks when using NAT with Port

Translation. Additionally, this paper analyzes the default

behavior of NAPT devices from different vendors. The

results of these experiments show that a single device on the

internal network is capable of overwhelming the translation

table. These experiments also show that the default behavior

when implementing NAPT varies significantly between

vendors. Default timers, entry behavior, and configurable

settings are all vendor specific. We believe that the almost

universal use of NAPT justifies further investigation and

standardization of its use. The reality is that most consumers

utilize NAPT and do not consider that the very mechanisms

that allow it to work can be taken advantage of to the

detriment of all internal hosts. As the various experiments

outlined in the paper show, many vendors use default

behaviors that leave their devices open to exploitation when

implementing NAPT. Furthermore, some vendors do not

even offer the ability to change crucial settings that could be

used to mitigate this type of attack.

7 References

[1] Smith, M.; Hunt, R.; , "Network security using NAT and

NAPT," Networks, 2002. ICON 2002. 10th IEEE

International Conference on , vol., no., pp. 355- 360, 2002

doi: 10.1109/ICON.2002.1033337. Retrieved from

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10

33337&isnumber=22194

[2] Hartpence, B.; Johnson, D.;, “A Re-examination of

Network Address Translation Security,” RIT Network

Security and System Administration. SAM 2010.

[3] Srisuresh, P, & Holdrege, M. (1999, August). Rfc: 2663

ip network address translator terminology and considerations.

Retrieved from http://tools.ietf.org/html/rfc2663

[4] Hain, T. (2000, November). Rfc 2993: architectural

implications of nat. Retrieved from

http://www.ietf.org/rfc/rfc2993.txt

[5] Srisuresh, P, & Egevang, K. (2001, January). RFC 3022:

traditional nat. Retrieved from

http://www.ietf.org/rfc/rfc3022.txt

[6] Cisco Systems Incorporated. (2003). Rate Limiting NAT

Translation. Retrieved from

http://www.cisco.com/en/US/docs/ios/12_3t/12_3t4/feature/g

uide/gt_natrl.html

[7] Extreme Networks Incorporated. (2003, June). Summit

200 Series Switch Installation and User Guide. Retrieved

from http://www.extremenetworks.com

[8] Lebovitz, G.; Thaler, D.; Zhang, L. (2010, July). RFC

5902: IAB Thoughts on IPv6 Network Address

Translation. Retrieved from

http://tools.ietf.org/html/rfc5902#section-1

http://tools.ietf.org/html/rfc5902#section-1

	NAT Denial of Service: An Analysis of Translation Table Behavior on Multiple Platforms
	Recommended Citation

	tmp.1393782123.pdf.Y7dr8

