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Introduction

We are given a training set D = {(xi, yi), i = 1, · · · , n : xi ∈ X ⊂ IRp, yi ∈ IR} where yi are

realizations of Yi = f∗(xi) + ǫi, and ǫi is the noise term. For simplicity and without loss of generality,

we shall assume throughout this paper that the data are standardized. We assume that the true

function f∗ can be approximated by

n

(1) fn(x) =
∑

wjφ(‖x − xj‖),
j=1

where φ : IR+ → IR is the basis function, and the norm ‖ · ‖ is the ordinary Euclidean norm on IRp.

We further assume that the basis function φ is a fixed radially symmetric function with respect to

the norm, so that it has all the symmetries of the unit ball in IRp, ∀u ∈ X , Φ(u) = φ(‖u‖). With

all that, the function fn as defined in Eq. (1) is called a radial basis function (RBF) with weights

w1, w2, · · · , wn and centers x1,x2, · · · ,xn. In this paper, we use the most popular radial basis func-
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tion namely the so called Gaussian radial basis function kernel corresponding to φ(u) = exp(−ru2),

where r represents a function of the bandwidth. This approach to regression really became popular in

the machine learning and statistics communities after the publication by [5] of the Relevance Vector

Machine (RVM). One of the most important aspects of radial basis function regression - besides the

crucial issue of the choice of the kernel - is the search for a sparse representation. Indeed, sparsity

was the professed motivation of [5], and later of [1]. In fact, for most situations and indeed most ker-

nels, the statistical estimation of the weights wj ’s by traditional error minimization (least squares) or

density maximization (MLE) methods turns out to be an illposed problem, for which there is no hope

of a decent solution without some form of regularization or constraints to help stabilize the solution.

Regularization in and of itself does not necessarily yield a sparse solution. Indeed, the form of the
regularizer and/or appropriate subsequent refinements performed on the regularized solution are the

keys to obtaining the desired level of sparsity. We later argue in this paper, in the spirit of [3] and [1]

that sparsity in the end is analogous to traditional model selection and can therefore be arrived at us-

ing search techniques. In fact, we argue with an even greater emphasis that our technique goes a step

further by making the search straightforward, computationally efficient, interpretable and predictively

optimal. [6] adds credence to our claim with his theoretical study of the consistency of Silverman’s

g-Prior in kernel regression. The rest of this paper is organized as follows: Section 2 presents our

proposed algorithm and provides details of its properties. Section 3 shows some computational results

along with important comparisons. Section 4 concludes and gives a few pointers for extensions and

improvements on the present work.
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Naturally Efficient Sparsity Tuner

We make the usual assumption that the noise terms are independent zero-mean Gaussian random
iid

variables with the same variance σ2, i.e. ǫi ∼ N (0, σ2). As a result, the likelihood is

(2) p( | , σ2 2y w ) = N n(y |Kw, σ In),

where y = (y1, y2, · · · , yn)T, w = (w1, w2, · · · , wn)T, ǫ = (ǫ1, ǫ2, · · · , ǫn)T and K = (Kij) where Kij =

φ(‖xi − xj‖), i, j = 1, · · · , n. We specify a Gaussian prior for the weights, namely w ∼ N n(0,Q),

where the prior variance matrix Q is allowed to take a variety of forms. Finally, we adopt the maximum

a posteriori (MAP) approach as our initial estimation technique. The resulting posterior is therefore

conveniently Gaussian, namely, p(w|y,Q,K, σ2) = N n(w|µw, Σw), with the mean and the variance
−1 −1

matrix given respectively by µ = σ−2
[

σ−2KTK + Q−1
]

KTy and Σ =
[

σ−2KTK + Q−1
w w

]

.

Crucially, the posterior information matrix

(3) M = σ−2KTK + −1Q

is central to our work, as we ultimately seek to select those atoms that maximize the size of M.

Thanks to Gaussianity, our MAP estimator of w is therefore the above µw, or more explicitly

(4) ŵ = σ−2
[

σ−2KTK + −1Q
]−1

KT −y = σ 2 −1M KT
MAP y.

The Naturally Efficient Sparsity Tuner (NEST) technique consists in selecting the most relevant basis

functions for equation (1) by first forming the MAP estimator of w, then sorting the w2
j in decreasing
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order. Now, starting from an empty set, expand the set with the next index that does not decrease

the size of the posterior information matrix, skipping those that cause negligible changes.

Let γ = (γ1, γ2, · · · , γn)⊤ ∈ {0, 1}n denote the vector of indicator variables such that

γj =

{

1 basis function j is part of the best model

0 otherwise

Let dγ = |γ| =
∑n

j=1 γj denote the number of active atoms in the current model. We will use

Kγ ∈ IRn×dγ to denote the n × dγ matrix made up of the dγ currently active atoms acting on the

whole training set. Also, we will use Kγγ ∈ IRdγ×dγ to denote the dγ × dγ design matrix restricted

to the dγ currently active atoms. Finally, we use Mγγ to denote dγ × dγ submatrix of M associated

with the dγ currently active atoms.
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NEST: Naturally Efficient Sparsity Tuner

1. σ−2M−1KTCompute ŵ = y, where M = σ−2KTK + Q−1.

2. 2 2 2 2Rank ŵ ≤ ŵ ≤ · · · ≤ ŵ ≤ ŵ(1) (2) (n−1) (n)
3. Repeat

2(a) Let i := i + 1 and set j = index(ŵ )(i)

(b) Compute Ei = log det (Mγγ)

(c) if |Ei − Ei−1| > ǫ then activate γj = 1 and update γ

(d) stop = (Ei < Ei−1)

4. Until stop = TRUE

5. Find optimal k
{ }

k∗ = arg max E1, · · · , En .
i∈1,··· ,n

6. Extract dominant points

{

∗ 2
γ = γ : γj = 1, ∀j = index(ŵ ) : i =(i) 1, · · · , k∗

}

7. σ−2M−1Refine ŵγ∗ =
γ∗γ∗K

T
γ∗y.
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Conjecture 1 Assume that the variance matrix is well conditioned. Then there exist g > 0 and

η > 0 such that the solution yielded by NEST coincides with

(5)

[

∗
γ = arg max log det (Mγγ)

γ∈{0,1}p

2subje ‖ −ct to σ −1 ⊤M
γγ

K
γ
y‖2

2 < η.

The concavity of the objective function turns out to be of paramount importance with regard to com-

putational efficiency, as one does not need to traverse the entirety of the basis functions in order to

determine the most relevant ones. It suffices to stop when the value of the objective function decreases.

Numerical explorations

For a simple illustration of the merit of our proposed method, we consider recovering the univariate

sinc function from noisy observations. Specifically, we have f∗(x) = sin 10x ,1 x
, x ∈ [−1 +1]. We0

generate n = 199 points with noise variance σ2 = 0.22. We also find the bandwidth for the Gaussian

kernel to be 0.25. Note that by standardizing, we simply mean using ỹ = y−v1n in the derivations in

place of y, which in practice corresponds to using y− ȳ1n in the computations. We find it convenient

to set g = 1/(cn) to reflect the inherent relationship between g and model complexity, which in this

case is p = n. With that our tuning parameter is now c which is found to be a positive number.

We consider the simplest of regularization schemes, namely the ridge regularizer, which corresponds

to using isotropic prior variance matrix Q = g−1In for some g > 0. Until [3], it was strongly held

that the contours of the gaussian distribution make it impossible for ridge regularizer to be sparse.

[3] essentially demonstrated the equivalence between the LASSO and an adaptive ridge approach.

S
TC

P
M

s
S

es
si

on
s



Whereas [3] was based on traditional linear regression models for which LASSO is mostly used, [1]

demonstrated that one can obtain very sparse solution with a ridge regularizer in the kernel regression

context via posterior simulation.
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Figure 1: (left) The fit is excellent with only 8 relevant points out of n = 199 (center) the size of

the information matrix is convex and seen here peaking around 8 (right) This box plot shows the

estimated predictive root mean squared error over 25 replications. The median in is just under 0.21,

for a data set with noise standard deviation of 0.2, revealing the excellent performance of NEST.

Conclusion

We have proposed a novel technique for finding sparse representations in radial basis function regres-

sion. It is somewhat surprising that sparsity can be achieved with an inherently non-sparsity inducing
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prior distribution like the isotropic Gaussian. Our take on this is that sparsity at its core is really

basis selection, which in turn might well depend more on the selection algorithm than the shape of

the penalty. We claim, at the least in the radial basis function regression setting, that our proposed

technique, by virtue of the fact that it is based on a suitably chosen convex objective function, is com-

putationally more efficient than its our predecessors when it comes to finding sparse solutions. Besides,

our technique has a very solid theoretical foundation inherited from the theory of D-optimality. A

more thorough and comprehensive description of NEST can be found in [2] where the technique is

explored from a variety of aspects like the effect of sample size, the effect of the prior variance matrix

- Zellner’s g-prior [4], and Silverman’s g-prior [6] - just to name a few.
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