
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

2007 

Performance evaluation of eXtended sparse linearization in GF(2) Performance evaluation of eXtended sparse linearization in GF(2) 

and GF(28) and GF(28) 

Tigin Kaptanoglu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Kaptanoglu, Tigin, "Performance evaluation of eXtended sparse linearization in GF(2) and GF(28)" (2007). 
Thesis. Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F664&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/664?utm_source=repository.rit.edu%2Ftheses%2F664&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


M.S. Thesis Report

Performance Evaluation of eXtended Sparse

Linearization in GF(2) and GF(28)
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Abstract

XSL (eXtended Sparse Linearization) is a recent algebraic attack
aimed at the Advanced Encryption Standard. In order to shed some
light into the behavior of the algorithm, which is largely unknown,
we have studied XSL on equation systems with variables interpreted
either as bits or bytes. The algorithm solves byte-systems much faster
than it does bit-systems, which promts us to suggest that if a more
compact representation of equation systems can be found, such as one
where the variables are 8-byte blocks, or even a more generalized form
of 8n-byte blocks, it may be possible to increase the speed of XSL
dramatically.
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1 Motivation

The pattern of advances in cryptography resembles a prey-predator coevo-
lutionary cycle; a cipher is developed, it takes a while for the attacks to
evolve, take shape and damage the cipher, which forces the birth of a new
cipher, which in turn causes the attacks to adapt and improve, and so ad
infinitum. Currently, Rijndael, chosen in 2001 as the official Advanced En-
cryption Standard after a process that spanned two rounds and four years,
is the big cipher, the last link in the chain of evolution, the new predator
that is inapproachable and resistant to all known forms of attack This alone
is enough to seduce a mathematician into doing some research on Rijndael.
Some experts considering it as the risky choice among the final round con-
tenders for the Advanced Encryption Standard process, coupled with the fact
that there are some attacks out there aimed at Rijndael whose behaviors are
not very clear, has lured us into analyzing one such attack and trying to
identify how it behaves under certain circumstances.

The eXtended Sparse Linearization (XSL) attack is relatively new, and
seems to be the only predator who at least claims to be able to bite Rijn-
dael, if not totally hunt it down. Developed in 2002 by N. Courtois and J.
Pieprzyk, it is inspired by Patarin’s cryptanalysis [20] of the Matsumoto-Imai
public key scheme [15] with the linearization technique and more recently by
A. Kipnis and A. Shamir’s cryptanalysis of HFE with relinearization [12],
and claims that Rijndael (and Serpent) can be cryptanalyzed in a similar
fashion. However, some parts in the algorithm are vague, and since no full-
size implementation exists, not much is known about the behavior of the
algorithm.

Picking up from this state of affairs, we have tried to analyze the XSL
algorithm; to be more specific, we have implemented the algorithm and con-
ducted experiments on XSL by giving it an equation system in bytes, then
the equivalent system as expressed in bits, and compared the performance
of the algorithm for both cases in an attempt to see which expression of the
same system it favors. This involved the derivation of formulae for perform-
ing the transformation of one system to the other. In addition to the bit-byte
comparison, it was also possible to observe the impact of parameters such as
the number of equations, the number of variables and sparsity on the speed,
memory requirements and the actual functionality of the algorithm. Finally,
we have also measured XSL’s performance against an XSL variant which
was designed with the sole purpose of changing the priority of the algorithm
from speed and memory economy to being able to solve a greater number of
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equation systems.

Our experiments demonstrated that the main limiting factor was the ex-
cessive usage of memory by the XSL algorithm due to its extension process. It
was further observed that the algorithm behaves much faster when presented
with a more compact expression of an equation system (bytes as opposed to
bits). This has prompted us to suggest that a general conversion from bits to
8n bits could be formulated and the algorithm could be applied to the most
compact representation of the equation system, which could be expected to
solve MQ systems even faster. We have left the application of this suggestion
to later studies.

2 Overview

2.1 Background

Ever since its introduction to the cryptography scene as the official standard,
the security of Rijndael has been open to debate, with the cipher consistently
getting the better of its attackers and currently looking unbreakable. How-
ever, while it has been proven to be safe and secure against traditional forms
of cryptanalysis (such as differential and linear cryptanalysis), its highly al-
gebraic structure has been an attractive prospect for cryptologists to try to
make use of this structure and develop methods to recover the secret key
efficiently. One new genre of cryptographic attacks that aim to exploit this
structure are called by a variety of names such as ”algebraic attacks”, ”lin-
earization attacks” and ”MQ (multivariate quadratic) attacks”. This form
of cryptanalysis suggests that the encryption process of Rijndael, which is
a bijective function that maps the plaintext to a ciphertext for a given key,
can be expressed as a system of multivariate quadratic equations; thus, find-
ing a practical way of solving these equations would yield a weakness in the
cipher. However, solving such equation systems is an already-known NP-
complete problem, called MQ. It was known by the designers of the cipher
that the encryption process could be expressed as an MQ problem and, ob-
viously, that expression alone is not sufficient to suggest a weakness in the
cipher. What may do so, however, is an observation that the MQ systems
generated by the encryption of Rijndael are in fact sparse and overdefined.
This is an indication that the instances of the MQ problem that are derived
out of Rijndael reside in a certain area within the problem space such that the
observed characteristics may be exploited to devise a general, practical solu-
tion to this certain subset of the problem. These claims have so far remained
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merely as theoretical suggestions, as of yet no full-scale implementation of
these attacks is known to exist and their actual complexities and behaviors
are unknown.

2.2 History of Block Ciphers and Attacks

It is possible to trace the block cipher standards back to Lucifer [9], a block
cipher that was designed in the early 1970s by Horst Feistel of IBM. Lucifer
never became an official encryption standard but can be said to have directly
inspired the Data Enrcyption Standard (DES) [11]. It encrypted 128-bit data
blocks with 128-bit keys and had operations much like those used by DES.
It also defined the term ”Feistel cipher”, which briefly meant a block cipher
that uses P-Boxes and S-Boxes to achieve the diffusion of bits.

In 1974, the National Institute of Standards and Technology (NIST or, as
it was called then National Bureau of Standards (NBS)) announced a contest
to select an official encryption standard to be used by the U.S. government.
The winner of the competition was a cipher developed by a team from IBM.
It was a Feistel cipher, a direct heir of Lucifer in fact. It encrypted data in
blocks of 64 bits with 56-bit keys.

From 1976 to 1998 DES served as the official standard, during which
period controversy always followed it; some suggested that the designers as
well as the NSA already knew how to crack it as early as the 1970s when
it was first designed. However, it wasn’t until 1990 when a security opening
was seriously suggested publicly when a paper on differential cryptanalysis
was published by cryptologists Eli Biham and Adi Shamir [1]. However, this
attack required 247 known plaintexts in order to break DES and it was prac-
tically unusable. This raised questions as to whether this attack was already
known to the developers of DES when it was first designed.

With the amount of research growing in parallel to public interest in
cryptography and especially block ciphers, attacks directed at DES started
to come thick and fast in the 1990s, with gradually more voices being raised
against the use of DES for securing sensitive data. In 1994, Mitsuru Matsui
published his work on linear cryptanalysis [14]; it needed 243 known plain-
texts in order to break DES. Although it was deemed impractical, it was an
improvement in the cryptanalysis of DES and eventually a step closer to its
dethronement.

Later in the 1990s the speed at which new attacks were produced in-
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creased dramatically, and so did the security implications they imposed on
DES. By the time when DES was broken in 1998 with a brute-force search,
NIST had already announced a competition to select its successor.

After a process that saw two rounds and almost four years of debate,
the number of contestants were reduced to 15, then 5, and finally Rijndael,
developed by Joan Daemen and Vincent Rijmen, was announced as the Ad-
vanced Encryption Standard. It was, obviously, resistant to both differential
and linear cryptanalysis, as well as to brute-force search because of its large
key size (128 to 256 bits).

In the years that followed the standardization process, the cryptography
world did not waste any time in attacking the new cipher with full intent. So
far, Rijndael has stood firm against all known forms of attack. It has been
suggested, and widely rejected but not disproven, that it may be possible
to exploit its highly algebraic structure. These suggestions, formulated as
algorithms and called algebraic attacks, form the basis of our work.

3 The Cipher Rijndael

In order to analyze the attack, it is first necessary to take a look at the prey.

Rijndael [7] is a block cipher with a block size of 128 bits. The recom-
mended number of rounds depends on the level of security desired: 10 to 14
rounds of encryption may be used, with keys of length 128 + 32 ∗ n, n being
the extra number of rounds beyond 10. One round of encryption is made up
of 4 components, which are explained in the subsections that follow.

3.1 AddRoundKey

The bits of the input byte are XORed with the bits of the round key. The
derivation of the round key via the key scheduling algorithm will be discussed
further in this section.

3.2 SubBytes

SubBytes is a bijective function that maps each input byte to a unique out-
put byte. The S-Box can be represented either as a look-up table with 256
entries, or as a combination of two functions. The first of these functions
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is the calculation of the inverse of the input byte in GF(28). The result is
processed through the linear function to produce the outcome of this com-
ponent. The linear function is the multiplication of the byte (expressed as a
bit vector) with a fixed 8-by-8 matrix and the addition of a fixed byte to the
outcome.

Example with one byte of output:
Assume the input byte in hexadecimal representation is 53 (01010011 in
binary and x6 + x4 + x + 1 in polynomial representation). The multiplicative
inverse of the input polynomial is calculated (mod x8 + x4 + x3 + x + 1),
which is the irreducible polynomial used by Rijndael, in GF(28). The inverse
is x7 + x6 + x3 + x since:

(x6 + x4 + x + 1) ∗ (x7 + x6 + x3 + x) ≡ 1 (mod x8 + x4 + x3 + x + 1)

The inverse of 53 (01010011) is CA (11001010). The next step is to put this
inverse byte through the following calculation:

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





0
1
0
1
0
0
1
1


+



1
1
0
0
0
1
1
0


=



1
0
1
1
0
1
1
1


The output is ED (11101101), which is the value that 53 is mapped onto by
the S-Box.

3.3 ShiftRows

The state, which is a 16-byte data block, is expressed as a 4-by-4 matrix and
the rows are shifted cyclically: the nth row is shifted n positions to the right.

Example:


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 →


a00 a01 a02 a03

a13 a10 a11 a12

a22 a23 a20 a21

a31 a32 a33 a30
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3.4 MixColumns

Columns of the 4-by-4 byte-matrix (the state) are multiplied (mod x4 + 1)
by the polynomial 3∗x3+x2+x+2 over GF(28) and the polynomial products
form the new state matrix. The ShiftRows and MixColumns phases provide
linear diffusion.

FA 55 02 27
CF A0 9B 31
49 84 91 D7
A3 28 64 99

 →


4F FD 47 53
07 B1 E3 BE
59 9E 0C 13
CE 8B C4 A6


3.5 Key Scheduling

The key scheduling algorithm derives the first round key from the original key,
and the consecutive round keys from the previous round key. The original
k-bit key is expanded into (n+ 1)∗k bits (n is the number of rounds), where
every block of k bits is the round key for the corresponding round. The
expansion process consists of a byte substitution by the use of the S-Box and
a bit-by-bit XOR with the round constant.

4 Mathematical Preliminaries

Before going on to describe the attacks, it is essential to describe the finite
fields we will be operating in.

4.1 Finite Fields

4.1.1 GF(2)

The arithmetic in Galois Field(2) is trivial. Addition of two bits is a simple
XOR:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

Multiplication of two bits is a simple XAND:

0 ∗ 0 = 0
0 ∗ 1 = 0
1 ∗ 0 = 0
1 ∗ 1 = 1

A bit’s additive inverse is itself. The same is true for a multiplicative inverse.
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4.1.2 GF(28)

Galois Field (256) arithmetic is more complicated than GF(2) arithmetic.
Addition of two bytes is defined as a bit-by-bit XOR operation. Multipli-
cation of two bytes is defined as follows: The two bytes are expressed as
polynomials. For byte A, a binary representation of

a7a6a5a4a3a2a1a0

is equivalent to a polynomial representation of

a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0x
0

The polynomial representations of the two bytes are then multiplied
(mod x8 + x4 + x3 + x + 1), which is an irreducible polynomial of degree 8 in
GF(28).

The additive inverse of a byte, from the definition of XOR, is the byte
itself. In other words, A + A = 0. The multiplicative inverse A−1 of byte A
is defined by

A ∗ A−1 ≡ 1 (mod x8 + x4 + x3 + x + 1)

Example of Multiplication:
Let us consider multiplying bytes 45 and C1. The polynomial representations
are

45 = x5 + x2 + 1
C1 = x7 + x6 + 1

These polynomials are multiplied and the residue is calculated:

x12 + x11 + x9 + x8 + x7 + x6 + x5 + x2 + 1 ≡ x7 + x4 + x + 1 (mod x8 + x4 + x3 + x + 1)

Thus, the result of the multiplication is found to be 93, which is repre-
sented by the polynomial x7 + x4 + x + 1.

4.2 Linear Elimination

Linear elimination is a general title for a set of techniques that may be used to
evaluate linear equation systems. The system is expressed as a matrix, whose
elements consist of the coefficients of the system, and several computations
are applied to the matrix to yield the solution.
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4.2.1 Gaussian Elimination

Gaussian elimination, found by German mathematician Carl Friedrich Gauss,
is a linear elimination technique for solving linear equation systems. Rows of
the coefficient matrix for the equation system are used for eliminating other
rows, transforming the original matrix to a linearly equivalent state such that
at least one row of the final state represents a univariate equation, provided
that there are a sufficient number of linearly independent equations in the
original equation system to yield such a univariate equation, and that equa-
tion can be evaluated to reveal the value of one variable. That value can then
be substituted into all other equations that contain a non-zero coefficient for
it, thus reducing the other rows and producing at least one more univariate
equation at each backward iteration. This elimination and evaluation pro-
cess is repeated until all the variables have been evaluated and the solution
of the equation system is found.

An example in GF(28):

 0A 15 30 3F
05 0C 3A 09
21 BF 68 48

 →

 0A 15 30 3F
00 8B 22 9B
00 83 90 0C

 →

 0A 15 30 3F
00 8B 22 9B
00 00 50 7C



→

 0A 15 30 3F
00 8B 22 9B
00 00 01 15

 →

 0A 15 00 E2
00 8B 00 DE
00 00 01 15



→

 0A 15 00 E2
00 01 00 52
00 00 01 15

 →

 0A 00 00 B4
00 01 00 52
00 00 01 15



→

 01 00 00 12
00 10 00 52
00 00 01 15


4.2.2 Gauss-Jordan Elimination

Gauss-Jordan Elimination is a variation of the Gaussian elimination. It is
used to the same purpose. The difference between the two techniques is
that Gauss-Jordan does the forward and backward iterations simultaneously,
while Gaussian elimination first completes the forward iterations and then
moves onto the backwards iterations. With the Gauss-Jordan technique, the
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pivot element is used for eliminating all rows in the system, not only those
that are below it.
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An example in GF(28):

 0A 15 30 3F
05 0C 3A 09
21 BF 68 48

 →

 0A 15 30 3F
00 8B 22 9B
00 83 90 0C

 →

 0A 00 49 34
00 8B 22 9B
00 00 50 7C



→

 0A 00 00 B4
00 8B 00 27
00 00 50 7C

 →

 01 00 00 12
00 01 00 52
00 00 01 15


We have decided to use the Gauss-Jordan technique for our implementa-

tion of XSL. The reason for this was that, unlikely as it is, Gaussian elim-
ination might have produced only one univariate equation on the extended
system which is actually multivariate on the original system.

4.3 Multivariate Quadratic Problem

MQ is a known NP-complete problem. The problem is to solve a finite set
of equations of degree 2, containing multiple variables. It has several appli-
cations in both public and private key cryptography today.

Christopher Wolf has made an extensive study on applications of the MQ
problem and its applications in public key cryptography [23]. Understanding
the problem as related to public key cryptography is important, since that
is where linearization-based attacks originated from, several years before the
first linearization attack was proposed against Rijndael. Wolf’s study illus-
trates the first instances of MQ-attacks as well as the NP-completeness of
the problem.

The attack that partly inspired the XSL algorithm is the breaking of the
Hidden Field Equations (HFE) algorithm in 1999 by Avaid Kipnis and Adi
Shamir [19]. Although it was admitted that sufficiently large keys would
make it impractical, the attack reduced the complexity of breaking HFE
to polynomial, which was the optimistic claim for both XL and XSL when
they were first designed. Breaking the cipher was shown to be equivalent to
solving an MQ problem, but a representation was found for the MQ instances
derived from the cipher such that n equations with n variables in one finite
field could be represented as 1 equation with 1 variable in another finite
field. The transformation made it possible to treat the system as a univariate
equation, hence polynomial complexity.
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4.4 Linearization

Linearization is a term used for techniques proposed for solving multivariate
non-linear equation systems. It is a simple method which has inspired nu-
merous cryptographic attacks on a wide range of ciphers in the short space of
time since its conception. The gist of the idea, developed by their cryptanal-
ysis of HFE as described in the previous section, is to find a representation
of an MQ instance such that it can be treated as a pseudo-univariate or -
linear equation system. Once it has been expressed as a linear system, known
linear techniques such as Gaussian, Gauss-Jordan or any other elimination
technique, can be applied to solve the system. The trick is to make the re-
expression phase practical.

The first attempt at applying this technique came with XL [5] which is
described in detail in Section 7. The algorithm aimed to form a pseudo-linear
equation system with a sufficient number of linearly independent equations
so that it could be solved with linear equation-solving techniques. The idea
was to rename all monomials, linear and quadratic alike, with new variable
names and to treat them all as linear variables. The problem was that,
as the equations initially appeared, this method would create an equation
system with far too many variable names compared to the number of equa-
tions. In fact, in an initially 2-equation and 2-variable MQ system, this idea
would yield a 2-equation and 5-or-less-variable linear system. Assuming that
3 different monomials actually exist in the system, it is still not solvable by
linearization alone. The obvious solution, then, was to generate more equa-
tions. This was done by multiplying every equation in the system with all
possible monomials of degree 2. This would create an extended system of 8
equations and 8 variables, which is now solvable by linearizing and applying
Gaussian elimination. Although a valid method when applied to MQ systems
of certain structure, the downside of this method is that the extension pro-
cess creates such a large system that the attack easily becomes impractical.
The XL attack has been studied, analyzed and is today considered to be an
impractical method to attack Rijndael.

XSL follows XL by two years. The new idea that it brings to the XL
algorithm is to multiply the equations in the system not by every monomial,
but a ”carefully selected” set of monomials. This ambiguous phrase is open
to interpretation and has made several variants possible. In this study, we
have followed the suggestion in the initial XSL paper that only monomials
that appear in other equations would be used for multiplication with a given
equation.
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5 Derivation of the Equations

5.1 The Ferguson-Schroeppel-Whiting Equations

The first significant attempt to express Rijndael’s encryption process was
published in [10] in 2001 by Niels Ferguson, Richard Schroeppel and Doug
Whiting. Their MQ expression of the cipher is considered today to be imprac-
tical for all purposes, but it is a pioneering work which eventually inspired
the XSL attack directly.

The analysis of the encryption process of Rijndael was used to show how
to derive the equations; the equations were derived up to 5 rounds, and it was
stated that following the same procedure, similar equations can be produced
up to any number of rounds. The following derivation and all equations in-
volved are taken from [10]:

In order to express one round of the cipher as a system of equations,
they start from the S-Box. The S-Box transformation of Rijndael yields the
following equations by definition:

S(x) = Σ7
d=0wdx

−2d

where x is the input byte, S(x) is the S-box transformation, and wd are
constants. Defining the state of the data block at any point as a, and the
byte at position (i, j) at round r as a

(r)
i,j , the S-Box transformation at round

r for state a(r) can be written as

S(a
(r)
i,j ) = Σ7

dr=0wdr(a
(r)
i,j )−2d

The ShiftRow stage is defined as the cyclic shifting of rows by the row
number, so the combination of ShiftRow and SubBytes can be expressed as

t
(r)
i,j = s

(r)
i,i+j = Σ7

dr=0wdr(a
(r)
i,i+j)

−2dr

The MixColumn phase can be viewed as a simple matrix multiplication,
so the combination of all 3 phases gives us:

m
(r)
i,j = Σ3

er=0vi,ert
(r)
er,j

= Σ3
er=0vi,erΣ7

dr=0wdr(a
(r)
i,i+j)

−2d

= Σ3
er=0Σ

7
dr=0wi,er,dr(a(r)

er,er+j
)−2dr
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Combining this with the AddRoundKey is trivial:

a
(r)
i,j = k

(r)
i,j + Σ3

er=0Σ
7
dr=0wi,er,dr(a(r)

er,er+j
)−2dr

= k
(r)
i,j + Σd,e

wi,er,dr

(a
(r)
er,er+j

)2dr

Repeating this process and combining the derived equations at each step,
the 5-round equation is formulated as

a
(6)
i,j = K + Σe5,d5

C
K∗+Σe4,d4

C

K∗+Σe3,d3
C

K∗+Σe2,d2
C

K∗+Σe1,d1
C

K∗+p∗∗

where K and K∗ are round keys and C are constants. Extensions can be
made to arbitrary n round equations following the same pattern of compu-
tations.

Although the Ferguson-Schroeppel-Whiting derivation is acknowledged
in almost every research paper in the area afterwards, the fact that there
are around 250 terms in equation system defining the 10-round Rijndael-128
makes it intractable. In the following years, several more concise expressions
of the cipher have been found, making this expression more or less obselete.

5.2 The Cid-Murphy-Robshaw Equations

The derivation of equations by Sean Murphy and Matthew Robshaw [18] in
2002, followed up by their paper along with Carlos Cid in 2004 [4], is the
most recent work in the area and acts more or less as an unofficial standard
for research on algebraic attacks on Rijndael. They set out to resolve the
conflict caused by Rijndael operating in two differend finite fields (GF(2)
and GF(28)) and to make it easier to cryptanalyze the cipher by defining a
more general cipher almost identical to Rijndael. The cipher they develop
is called the Big Encryption Standard (BES). They simply iterate through
the encryption process and express each step as a system of equations. In
describing the derivation, we list, step by step, the procedure as presented in
their paper.

First, the round function of BES is described, which is virtually identical
to that of Rijndael:

b → Mb ∗ b−1 + (kB)i
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where b is the input byte, Mb is a matrix to represent the linear diffusion
phase (ShiftRows and MixColumns) and (kB)i is the round key.

Using this, the full encryption process for the 10-round BES cipher is
simply described as:

w0 = p + k0

xi = w−1
i 0 ≤ i ≤ 9

wi = MB ∗ xi−1 + ki 0 ≤ i ≤ 9
c = M∗

B ∗ x9 + k10

where p is the plaintext, c is the ciphertext, ki is the round key for the ith
round, wi is the state before the ith round and xi is the state after the ith
round (0 ≤ i ≤ 9). M∗

B is a modified linear diffusion matrix for the last
round, as the last round differs from the other rounds by not using the Mix-
Columns phase.

When the equation system above is rearranged, the entire encryption
process can be expressed as a set of multivariate quadratic equations. The
(8 ∗ j + m)th bit of the bit vectors ki, wi and xi are expressed as ki,(j,m),
wi,(j,m) and xi,(j,m) respectively (0 ≤ j ≤ 15 and 0 ≤ m ≤ 7) and the
constant diffusion matrices MB and M∗

B are represented by α and β :

0 = w0,(j,m) + pj,m + k0,(j,m)

0 = xi,(j,m) ∗ wi,(j,m) + 1 0 ≤ i ≤ 9
0 = wi,(j,m) + Σ(j′,m′)α(j,m),(j′,m′)xi−1,(m′,j′) 0 ≤ i ≤ 9
0 = c(j,m) + k10,(j,m) + Σ(j′,m′)β(j,m),(j′,m′)x9,(m′,j′)

Written out, this clear and simple equation set is observed to be an MQ
system of 5248 equations and 7808 terms. 3840 of these equations are ex-
tremely sparse quadratic equations, while the remaining 1408 are linear. The
terms in the system consist of 2560 state variables and 1408 key variables.

5.3 The Biryukov-De Canniere Comparison of Equa-
tions

In 2002, Alex Biryukov and Christophe De Canniere included Rijndael along
with 5 others in their comparison of MQ representations of block ciphers [2].
Their main objective was to compare these representations for each cipher
rather than focus on one cipher alone. They have emphasized the need to
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express the systems as simply as possible. This meant minimizing the num-
ber of equations and variables.

In constructing the MQ system that fully defines the Rijndael encryption
process, they have cited the Murphy-Robshaw derivation rather than making
original contribution. The comparison of the 128-bit Rijndael MQ with the
other 128-bit ciphers is interesting:

Khazad Mistyl Kasumi Camellia Rijndael Serpent
Variables 9600 6832 7952 8880 9800 11960

Total monomials 17264 10688 12216 15104 16096 29640
Equations 7664 3856 4264 6224 6296 17680

Table 1: MQ sizes of the ciphers

Judging only by the numbers, whereas it would be impossible to make a
strong statement about the vulnerability of any cipher against algebraic at-
tacks, it is apparent that Rijndael can be represented as a much smaller,
sparser and more overdefined system than its AES-rival, Serpent. These ad-
jectives are indeed the characteristics that were emphasized in the XSL cipher
and are shown by our experiments that make the attack more practical.

6 Field Transformation

In order to compare the performance of the XSL algorithm for two different
representations of the same equation system, it is necessary that the transfor-
mation from a byte-system to a bit-system be defined. The transformation
formulae are derived from the definition of multiplication operation as defined
in GF(28). There are three types of terms that need to be transformed:

• Transforming the constants is trivial. The 8 bits of the constant term
in the original equation are written as the constant terms of the trans-
formed equation system in bits.

• The linear terms take a bit more calculation than the constants. One
linear term is spread into 8 equations and each term defines 8 new
variables in the transformed system, each new variable being one bit
in the original byte. The coefficients of the new terms are expressed as
a certain linear combination of the bits of the original byte-coefficient.
The formulae are provided in the next section.
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• Transforming the quadratic terms is done by repeating the process of
transforming the linear terms; each new term is quadratic in the new
system, and the coefficients are again certain linear combinations of the
original byte-coefficient. The formulae for quadratic term transforma-
tion follow the linear term transformation term formulae.

6.1 Univariate Linear Field Transformation

The simple, univariate, linear byte-equation

z = a ∗ x

where a is the coefficient and x is the variable, translates to the following 8
bit-equations:

z7 = x7 ∗ a7 +
∑7

i=5 xi ∗ a12−i +
∑7

i=4 xi ∗ a11−i +
∑7

i=0 xi ∗ a7−i

z6 =
∑7

i=6 xi ∗ a13−i +
∑7

i=4 xi ∗ a11−i +
∑7

i=3 xi ∗ a10−i +
∑6

i=0 xi ∗ a6−i

z5 =
∑7

i=5 xi ∗ a12−i +
∑7

i=3 xi ∗ a10−i +
∑7

i=2 xi ∗ a9−i +
∑5

i=0 xi ∗ a5−i

z4 = x7 ∗ a7 +
∑7

i=4 xi ∗ a11−i +
∑7

i=2 xi ∗ a9−i +
∑7

i=1 xi ∗ a8−i

+
∑4

i=0 xi ∗ a4−i

z3 = x7 ∗ a7 +
∑7

i=6 xi ∗ a13−i +
∑7

i=5 xi ∗ a12−i +
∑7

i=4 xi ∗ a11−i

+
∑7

i=3 xi ∗ a10−i +
∑7

i=1 xi ∗ a8−i +
∑3

i=0 xi ∗ a3−i

z2 =
∑7

i=6 xi ∗ a13−i +
∑7

i=3 xi ∗ a10−i +
∑7

i=2 xi ∗ a9−i +
∑2

i=0 xi ∗ a2−i

z1 = x7 ∗ y7 +
∑7

i=5 xi ∗ a12−i +
∑7

i=2 xi ∗ a9−i +
∑7

i=1 xi ∗ a8−i

+
∑1

i=0 xi ∗ a1−i

z0 =
∑7

i=6 xi ∗ a13−i +
∑7

i=5 xi ∗ a12−i +
∑7

i=1 xi ∗ a8−i + x0 ∗ a0

6.2 Multivariate Quadratic Field Transformation

The simple, multivariate, quadratic byte-equation

z = a ∗ x ∗ y

where a is the coefficient and x and y are the variables, translates to the
following 8 bit-equations:
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z7 = (a7)(x0y0) + (a6)(x1y0) + (a5)(x2y0) + (a4)(x3y0) + (a7 + a3)(x4y0)
+(a7 + a6 + a2)(x5y0) + (a6 + a5 + a1)(x6y0) + (a7 + a5 + a4 + a0)(x7y0)
+(a6)(x0y1) + (a5)(x1y1) + (a4)(x2y1) + (a7 + a3)(x3y1) + (a7 + a6 + a2)(x4y1)
+(a6 + a5 + a1)(x5y1) + (a7 + a5 + a4 + a0)(x6y1) + (a6 + a4 + a3)(x7y1)
+(a5)(x0y2) + (a4)(x1y2) + (a7 + a3)(x2y2) + (a7 + a6 + a2)(x3y2)
+(a6 + a5 + a1)(x4y2) + (a7 + a5 + a4 + a0)(x5y2) + (a6 + a4 + a3)(x6y2)
+(a5 + a3 + a2)(x7y2) + (a4)(x0y3) + (a7 + a3)(x1y3) + (a7 + a6 + a2)(x2y3)
+(a6 + a5 + a1)(x3y3) + (a7 + a5 + a4 + a0)(x4y3) + (a6 + a4 + a3)(x5y3)
+(a5 + a3 + a2)(x6y3) + (a7 + a4 + a2 + a1)(x7y3) + (a7 + a3)(x0y4)
+(a7 + a6 + a2)(x1y4) + (a6 + a5 + a1)(x2y4) + (a7 + a5 + a4 + a0)(x3y4)
+(a6 + a4 + a3)(x4y4) + (a5 + a3 + a2)(x5y4) + (a7 + a4 + a2 + a1)(x6y4)
+(a6 + a3 + a1 + a0)(x7y4) + (a7 + a6 + a2)(x0y5)
+(a6 + a5 + a1)(x1y5) + (a7 + a5 + a4 + a0)(x2y5) + (a6 + a4 + a3)(x3y5)
+(a5 + a3 + a2)(x4y5) + (a7 + a4 + a2 + a1)(x5y5) + (a6 + a3 + a1 + a0)(x6y5)
+(a7 + a5 + a2 + a0)(x7y5) + (a6 + a5 + a1)(x0y6) + (a7 + a5 + a4 + a0)(x1y6)
+(a6 + a4 + a3)(x2y6) + (a5 + a3 + a2)(x3y6) + (a7 + a4 + a2 + a1)(x4y6)
+(a6 + a3 + a1 + a0)(x5y6) + (a7 + a5 + a2 + a0)(x6y6) + (a7 + a6 + a4 + a1)(x7y6)
+(a7 + a5 + a4 + a0)(x0y7) + (a6 + a4 + a3)(x1y7) + (a5 + a3 + a2)(x2y7)
+(a7 + a4 + a2 + a1)(x3y7) + (a6 + a3 + a1 + a0)(x4y7) + (a7 + a5 + a2 + a0)(x5y7)
+(a7 + a6 + a4 + a1)(x6y7) + (a6 + a5 + a3 + a0)(x7y7)

z6 = (a6)(x0y0) + (a5)(x1y0) + (a4)(x2y0) + (a7 + a3)(x3y0)
+(a7 + a6 + a2)(x4y0) + (a6 + a5 + a1)(x5y0) + (a7 + a5 + a4 + a0)(x6y0)
+(a6 + a4 + a3)(x7y0) + (a5)(x0y1) + (a4)(x1y1) + (a7 + a3)(x2y1)
+(a7 + a6 + a2)(x3y1) + (a6 + a5 + a1)(x4y1) + (a7 + a5 + a4 + a0)(x5y1)
+(a6 + a4 + a3)(x6y1) + (a5 + a3 + a2)(x7y1) + (a4)(x0y2)
+(a7 + a3)(x1y2) + (a7 + a6 + a2)(x2y2) + (a6 + a5 + a1)(x3y2)
+(a7 + a5 + a4 + a0)(x4y2) + (a6 + a4 + a3)(x5y2) + (a5 + a3 + a2)(x6y2)
+(a7 + a4 + a2 + a1)(x7y2) + (a7 + a3)(x0y3) + (a7 + a6 + a2)(x1y3)
+(a6 + a5 + a1)(x2y3) + (a7 + a5 + a4 + a0)(x3y3) + (a6 + a4 + a3)(x4y3)
+(a5 + a3 + a2)(x5y3) + (a7 + a4 + a2 + a1)(x6y3) + (a6 + a3 + a1 + a0)(x7y3)
+(a7 + a6 + a2)(x0y4) + (a6 + a5 + a1)(x1y4) + (a7 + a5 + a4 + a0)(x2y4)
+(a6 + a4 + a3)(x3y4) + (a5 + a3 + a2)(x4y4) + (a7 + a4 + a2 + a1)(x5y4)
+(a6 + a3 + a1 + a0)(x6y4) + (a7 + a5 + a2 + a0)(x7y4) + (a6 + a5 + a1)(x0y5)
+(a7 + a5 + a4 + a0)(x1y5) + (a6 + a4 + a3)(x2y5) + (a5 + a3 + a2)(x3y5)
+(a7 + a4 + a2 + a1)(x4y5) + (a6 + a3 + a1 + a0)(x5y5) + (a7 + a5 + a2 + a0)(x6y5)
+(a7 + a6 + a4 + a1)(x7y5) + (a7 + a5 + a4 + a0)(x0y6) + (a6 + a4 + a3)(x1y6)
+(a5 + a3 + a2)(x2y6) + (a7 + a4 + a2 + a1)(x3y6) + (a6 + a3 + a1 + a0)(x4y6)
+(a7 + a5 + a2 + a0)(x5y6) + (a7 + a6 + a4 + a1)(x6y6) + (a6 + a5 + a3 + a0)(x7y6)
+(a6 + a4 + a3)(x0y7) + (a5 + a3 + a2)(x1y7) + (a7 + a4 + a2 + a1)(x2y7)
+(a6 + a3 + a1 + a0)(x3y7) + (a7 + a5 + a2 + a0)(x4y7) + (a7 + a6 + a4 + a1)(x5y7)
+(a6 + a5 + a3 + a0)(x6y7) + (a5 + a4 + a2)(x7y7)
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z5 = (a5)(x0y0) + (a4)(x1y0) + (a7 + a3)(x2y0) + (a7 + a6 + a2)(x3y0)
+(a6 + a5 + a1)(x4y0) + (a7 + a5 + a4 + a0)(x5y0) + (a6 + a4 + a3)(x6y0)
+(a5 + a3 + a2)(x7y0) + (a4)(x0y1) + (a7 + a3)(x1y1) + (a7 + a6 + a2)(x2y1)
+(a6 + a5 + a1)(x3y1) + (a7 + a5 + a4 + a0)(x4y1) + (a6 + a4 + a3)(x5y1)
+(a5 + a3 + a2)(x6y1) + (a7 + a4 + a2 + a1)(x7y1) + (a7 + a3)(x0y2)
+(a7 + a6 + a2)(x1y2) + (a6 + a5 + a1)(x2y2) + (a7 + a5 + a4 + a0)(x3y2)
+(a6 + a4 + a3)(x4y2) + (a5 + a3 + a2)(x5y2) + (a7 + a4 + a2 + a1)(x6y2)
+(a6 + a3 + a1 + a0)(x7y2) + (a7 + a6 + a2)(x0y3) + (a6 + a5 + a1)(x1y3)
+(a7 + a5 + a4 + a0)(x2y3) + (a6 + a4 + a3)(x3y3) + (a5 + a3 + a2)(x4y3)
+(a7 + a4 + a2 + a1)(x5y3) + (a6 + a3 + a1 + a0)(x6y3) + (a7 + a5 + a2 + a0)(x7y3)
+(a6 + a5 + a1)(x0y4) + (a7 + a5 + a4 + a0)(x1y4) + (a6 + a4 + a3)(x2y4)
+(a5 + a3 + a2)(x3y4) + (a7 + a4 + a2 + a1)(x4y4) + (a6 + a3 + a1 + a0)(x5y4)
+(a7 + a5 + a2 + a0)(x6y4) + (a7 + a6 + a4 + a1)(x7y4) + (a7 + a5 + a4 + a0)(x0y5)
+(a6 + a4 + a3)(x1y5) + (a5 + a3 + a2)(x2y5) + (a7 + a4 + a2 + a1)(x3y5)
+(a6 + a3 + a1 + a0)(x4y5) + (a7 + a5 + a2 + a0)(x5y5) + (a7 + a6 + a4 + a1)(x6y5)
+(a6 + a5 + a3 + a0)(x7y5) + (a6 + a4 + a3)(x0y6) + (a5 + a3 + a2)(x1y6)
+(a7 + a4 + a2 + a1)(x2y6) + (a6 + a3 + a1 + a0)(x3y6) + (a7 + a5 + a2 + a0)(x4y6)
+(a7 + a6 + a4 + a1)(x5y6) + (a6 + a5 + a3 + a0)(x6y6) + (a5 + a4 + a2)(x7y7)
+(a5 + a3 + a2)(x0y7) + (a7 + a4 + a2 + a1)(x1y7) + (a6 + a3 + a1 + a0)(x2y7)
+(a7 + a5 + a2 + a0)(x3y7) + (a7 + a6 + a4 + a1)(x4y7) + (a6 + a5 + a3 + a0)(x5y7)
+(a5 + a4 + a2)(x6y7) + (a7 + a4 + a3 + a1)(x7y7)

z4 = (a4)(x0y0) + (a7 + a3)(x1y0) + (a7 + a6 + a2)(x2y0) + (a6 + a5 + a1)(x3y0)
+(a7 + a5 + a4 + a0)(x4y0) + (a6 + a4 + a3)(x5y0) + (a5 + a3 + a2)(x6y0)
+(a7 + a4 + a2 + a1)(x7y0) + (a7 + a3)(x0y1) + (a7 + a6 + a2)(x1y1)
+(a6 + a5 + a1)(x2y1) + (a7 + a5 + a4 + a0)(x3y1) + (a6 + a4 + a3)(x4y1)
+(a5 + a3 + a2)(x5y1) + (a7 + a4 + a2 + a1)(x6y1) + (a6 + a3 + a1 + a0)(x7y1)
+(a7 + a6 + a2)(x0y2) + (a6 + a5 + a1)(x1y2) + (a7 + a5 + a4 + a0)(x2y2)
+(a6 + a4 + a3)(x3y2) + (a5 + a3 + a2)(x4y2) + (a7 + a4 + a2 + a1)(x5y2)
+(a6 + a3 + a1 + a0)(x6y2) + (a7 + a5 + a2 + a0)(x7y2) + (a6 + a5 + a1)(x0y3)
+(a7 + a5 + a4 + a0)(x1y3) + (a6 + a4 + a3)(x2y3) + (a5 + a3 + a2)(x3y3)
+(a7 + a4 + a2 + a1)(x4y3) + (a6 + a3 + a1 + a0)(x5y3) + (a7 + a5 + a2 + a0)(x6y3)
+(a7 + a6 + a4 + a1)(x7y3) + (a7 + a5 + a4 + a0)(x0y4) + (a6 + a4 + a3)(x1y4)
+(a5 + a3 + a2)(x2y4) + (a7 + a4 + a2 + a1)(x3y4) + (a6 + a3 + a1 + a0)(x4y4)
+(a7 + a5 + a2 + a0)(x5y4) + (a7 + a6 + a4 + a1)(x6y4) + (a6 + a5 + a3 + a0)(x7y4)
+(a6 + a4 + a3)(x0y5) + (a5 + a3 + a2)(x1y5) + (a7 + a4 + a2 + a1)(x2y5)
+(a6 + a3 + a1 + a0)(x3y5) + (a7 + a5 + a2 + a0)(x4y5) + (a7 + a6 + a4 + a1)(x5y5)
+(a6 + a5 + a3 + a0)(x6y5) + (a5 + a4 + a2)(x7y5) + (a5 + a3 + a2)(x0y6)
+(a7 + a4 + a2 + a1)(x1y6) + (a6 + a3 + a1 + a0)(x2y6) + (a7 + a5 + a2 + a0)(x3y6)
+(a7 + a6 + a4 + a1)(x4y6) + (a6 + a5 + a3 + a0)(x5y6) + (a5 + a4 + a2)(x6y6)
+(a7 + a4 + a3 + a1)(x7y6) + (a7 + a4 + a2 + a1)(x0y7) + (a6 + a3 + a1 + a0)(x1y7)
+(a7 + a5 + a2 + a0)(x2y7) + (a7 + a6 + a4 + a1)(x3y7) + (a6 + a5 + a3 + a0)(x4y7)
+(a5 + a4 + a2)(x5y7) + (a7 + a4 + a3 + a1)(x6y7) + (a7 + a6 + a3 + a2 + a0)(x7y7)
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z3 = (a3)(x0y0) + (a7 + a2)(x1y0) + (a6 + a1)(x2y0) + (a7 + a5 + a0)(x3y0)
+(a7 + a6 + a4)(x4y0) + (a7 + a6 + a5 + a3)(x5y0)
+(a7 + a6 + a5 + a4 + a2)(x6y0) + (a7 + a6 + a5 + a4 + a3 + a1)(x7y0)
+(a7 + a2)(x0y1) + (a6 + a1)(x1y1) + (a7 + a5 + a0)(x2y1)
+(a7 + a6 + a4)(x3y1) + (a7 + a6 + a5 + a3)(x4y1)
+(a7 + a6 + a5 + a4 + a2)(x5y1) + (a7 + a6 + a5 + a4 + a3 + a1)(x6y1)
+(a7 + a6 + a5 + a4 + a3 + a2 + a0)(x7y1) + (a6 + a1)(x0y2)
+(a7 + a5 + a0)(x1y2) + (a7 + a6 + a4)(x2y2) + (a7 + a6 + a5 + a3)(x3y2)
+(a7 + a6 + a5 + a4 + a2)(x4y2) + (a7 + a6 + a5 + a4 + a3 + a1)(x5y2)
+(a7 + a6 + a5 + a4 + a3 + a2 + a0)(x6y2)
+(a7 + a6 + a5 + a4 + a3 + a2 + a1)(x7y2) + (a7 + a5 + a0)(x0y3)
+(a7 + a6 + a4)(x1y3) + (a7 + a6 + a5 + a3)(x2y3)
+(a7 + a6 + a5 + a4 + a2)(x3y3) + (a7 + a6 + a5 + a4 + a3 + a1)(x4y3)
+(a7 + a6 + a5 + a4 + a3 + a2 + a0)(x5y3)
+(a7 + a6 + a5 + a4 + a3 + a2 + a1)(x6y3)
+(a7 + a6 + a5 + a4 + a3 + a2 + a1 + a0)(x7y3) + (a7 + a6 + a4)(x0y4)
+(a7 + a6 + a5 + a3)(x1y4) + (a7 + a6 + a5 + a4 + a2)(x2y4)
+(a7 + a6 + a5 + a4 + a3 + a1)(x3y4)
+(a7 + a6 + a5 + a4 + a3 + a2 + a0)(x4y4)
+(a7 + a6 + a5 + a4 + a3 + a2 + a1)(x5y4)
+(a7 + a6 + a5 + a4 + a3 + a2 + a1 + a0)(x6y4)
+(a6 + a5 + a4 + a3 + a2 + a1 + a0)(x7y4) + (a7 + a6 + a5 + a3)(x0y5)
+(a7 + a6 + a5 + a4 + a2)(x1y5) + (a7 + a6 + a5 + a4 + a3 + a1)(x2y5)
+(a7 + a6 + a5 + a4 + a3 + a2 + a0)(x3y5)
+(a7 + a6 + a5 + a4 + a3 + a2 + a1)(x4y5)
+(a7 + a6 + a5 + a4 + a3 + a2 + a1 + a0)(x5y5)
+(a6 + a5 + a4 + a3 + a2 + a1 + a0)(x6y5)
+(a5 + a4 + a3 + a2 + a1 + a0)(x7y5) + (a7 + a6 + a5 + a4 + a2)(x0y6)
+(a7 + a6 + a5 + a4 + a3 + a1)(x1y6)
+(a7 + a6 + a5 + a4 + a3 + a2 + a0)(x2y6)
+(a7 + a6 + a5 + a4 + a3 + a2 + a1)(x3y6)
+(a7 + a6 + a5 + a4 + a3 + a2 + a1 + a0)(x4y6)
+(a6 + a5 + a4 + a3 + a2 + a1 + a0)(x5y6)
+(a5 + a4 + a3 + a2 + a1 + a0)(x6y6) + (a4 + a3 + a2 + a1 + a0)(x7y6)
+(a7 + a6 + a5 + a4 + a3 + a1)(x0y7)
+(a7 + a6 + a5 + a4 + a3 + a2 + a0)(x1y7)
+(a7 + a6 + a5 + a4 + a3 + a2 + a1)(x2y7)
+(a7 + a6 + a5 + a4 + a3 + a2 + a1 + a0)(x3y7)
+(a6 + a5 + a4 + a3 + a2 + a1 + a0)(x4y7)
+(a5 + a4 + a3 + a2 + a1 + a0)(x5y7)
+(a4 + a3 + a2 + a1 + a0)(x6y7) + (a3 + a2 + a1 + a0)(x7y7)
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z2 = (a2)(x0y0) + (a1)(x1y0) + (a7 + a0)(x2y0) + (a7 + a6)(x3y0) + (a6 + a5)(x4y0)
+(a5 + a4)(x5y0) + (a7 + a4 + a3)(x6y0) + (a6 + a3 + a2)(x7y0)
+(a1)(x0y1) + (a7 + a0)(x1y1) + (a7 + a6)(x2y1) + (a6 + a5)(x3y1)
+(a5 + a4)(x4y1) + (a7 + a4 + a3)(x5y1) + (a6 + a3 + a2)(x6y1)
+(a7 + a5 + a2 + a1)(x7y1) + (a7 + a0)(x0y2) + (a7 + a6)(x1y2)
+(a6 + a5)(x2y2) + (a5 + a4)(x3y2) + (a7 + a4 + a3)(x4y2)
+(a6 + a3 + a2)(x5y2) + (a7 + a5 + a2 + a1)(x6y2)
+(a7 + a6 + a4 + a1 + a0)(x7y2) + (a7 + a6)(x0y3) + (a6 + a5)(x1y3)
+(a5 + a4)(x2y3) + (a7 + a4 + a3)(x3y3) + (a6 + a3 + a2)(x4y3)
+(a7 + a5 + a2 + a1)(x5y3) + (a7 + a6 + a4 + a1 + a0)(x6y3)
+(a7 + a6 + a5 + a3 + a0)(x7y3) + (a6 + a5)(x0y4) + (a5 + a4)(x1y4)
+(a7 + a4 + a3)(x2y4) + (a6 + a3 + a2)(x3y4) + (a7 + a5 + a2 + a1)(x4y4)
+(a7 + a6 + a4 + a1 + a0)(x5y4) + (a7 + a6 + a5 + a3 + a0)(x6y4)
+(a6 + a5 + a4 + a2)(x7y4) + (a5 + a4)(x0y5) + (a7 + a4 + a3)(x1y5)
+(a6 + a3 + a2)(x2y5) + (a7 + a5 + a2 + a1)(x3y5)
+(a7 + a6 + a4 + a1 + a0)(x4y5) + (a7 + a6 + a5 + a3 + a0)(x5y5)
+(a6 + a5 + a4 + a2)(x6y5) + (a7 + a5 + a4 + a3 + a1)(x7y5)
+(a7 + a4 + a3)(x0y6) + (a6 + a3 + a2)(x1y6) + (a7 + a5 + a2 + a1)(x2y6)
+(a7 + a6 + a4 + a1 + a0)(x3y6) + (a7 + a6 + a5 + a3 + a0)(x4y6)
+(a6 + a5 + a4 + a2)(x5y6) + (a7 + a5 + a4 + a3 + a1)(x6y6)
+(a7 + a6 + a4 + a3 + a2 + a0)(x7y6) + (a6 + a3 + a2)(x0y7)
+(a7 + a5 + a2 + a1)(x1y7) + (a7 + a6 + a4 + a1 + a0)(x2y7)
+(a7 + a6 + a5 + a3 + a0)(x3y7) + (a6 + a5 + a4 + a2)(x4y7)
+(a7 + a5 + a4 + a3 + a1)(x5y7) + (a7 + a6 + a4 + a3 + a2 + a0)(x6y7)
+(a7 + a6 + a5 + a3 + a2 + a1)(x7y7)

z1 = (a1)(x0y0) + (a7 + a0)(x1y0) + (a7 + a6)(x2y0) + (a6 + a5)(x3y0)
+(a5 + a4)(x4y0) + (a7 + a4 + a3)(x5y0) + (a6 + a3 + a2)(x6y0)
+(a7 + a5 + a2 + a1)(x7y0) + (a7 + a0)(x0y1) + (a7 + a6)(x1y1)
+(a6 + a5)(x2y1) + (a5 + a4)(x3y1) + (a7 + a4 + a3)(x4y1)
+(a6 + a3 + a2)(x5y1) + (a7 + a5 + a2 + a1)(x6y1)
+(a7 + a6 + a4 + a1 + a0)(x7y1) + (a7 + a6)(x0y2) + (a6 + a5)(x1y2)
+(a5 + a4)(x2y2) + (a7 + a4 + a3)(x3y2) + (a6 + a3 + a2)(x4y2)
+(a7 + a5 + a2 + a1)(x5y2) + (a7 + a6 + a4 + a1 + a0)(x6y2)
+(a7 + a6 + a5 + a3 + a0)(x7y2) + (a6 + a5)(x0y3) + (a5 + a4)(x1y3)
+(a7 + a4 + a3)(x2y3) + (a6 + a3 + a2)(x3y3) + (a7 + a5 + a2 + a1)(x4y3)
+(a7 + a6 + a4 + a1 + a0)(x5y3) + (a7 + a6 + a5 + a3 + a0)(x6y3)
+(a6 + a5 + a4 + a2)(x7y3) + (a5 + a4)(x0y4) + (a7 + a4 + a3)(x1y4)
+(a6 + a3 + a2)(x2y4) + (a7 + a5 + a2 + a1)(x3y4)
+(a7 + a6 + a4 + a1 + a0)(x4y4) + (a7 + a6 + a5 + a3 + a0)(x5y4)
+(a6 + a5 + a4 + a2)(x6y4) + (a7 + a5 + a4 + a3 + a1)(x7y4)
+(a7 + a4 + a3)(x0y5) + (a6 + a3 + a2)(x1y5) + (a7 + a5 + a2 + a1)(x2y5)
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+(a7 + a6 + a4 + a1 + a0)(x3y5) + (a7 + a6 + a5 + a3 + a0)(x4y5)
+(a6 + a5 + a4 + a2)(x5y5) + (a7 + a5 + a4 + a3 + a1)(x6y5)
+(a7 + a6 + a4 + a3 + a2 + a0)(x7y5) + (a6 + a3 + a2)(x0y6)
+(a7 + a5 + a2 + a1)(x1y6) + (a7 + a6 + a4 + a1 + a0)(x2y6)
+(a7 + a6 + a5 + a3 + a0)(x3y6) + (a6 + a5 + a4 + a2)(x4y6)
+(a7 + a5 + a4 + a3 + a1)(x5y6) + (a7 + a6 + a4 + a3 + a2 + a0)(x6y6)
+(a7 + a6 + a5 + a3 + a2 + a1)(x7y6) + (a7 + a5 + a2 + a1)(x0y7)
+(a7 + a6 + a4 + a1 + a0)(x1y7) + (a7 + a6 + a5 + a3 + a0)(x2y7)
+(a6 + a5 + a4 + a2)(x3y7) + (a7 + a5 + a4 + a3 + a1)(x4y7)
+(a7 + a6 + a4 + a3 + a2 + a0)(x5y7) + (a7 + a6 + a5 + a3 + a2 + a1)(x6y7)
+(a6 + a5 + a4 + a2 + a1 + a0)(x7y7)

z0 = (a0)(x0y0) + (a7)(x1y0) + (a6)(x2y0) + (a5)(x3y0) + (a4)(x4y0)
+(a7 + a3)(x5y0) + (a7 + a6 + a2)(x6y0) + (a6 + a5 + a1)(x7y0)
+(a7)(x0y1) + (a6)(x1y1) + (a5)(x2y1) + (a4)(x3y1) + (a7 + a3)(x4y1)
+(a7 + a6 + a2)(x5y1) + (a6 + a5 + a1)(x6y1) + (a5 + a5 + a4 + a0)(x7y1)
+(a6)(x0y2) + (a5)(x1y2) + (a4)(x2y2) + (a7 + a3)(x3y2)
+(a7 + a6 + a2)(x4y2) + (a6 + a5 + a1)(x5y2) + (a5 + a5 + a4 + a0)(x6y2)
+(a6 + a4 + a3)(x7y2) + (a5)(x0y3) + (a4)(x1y3) + (a7 + a3)(x2y3)
+(a7 + a6 + a2)(x3y3) + (a6 + a5 + a1)(x4y3) + (a5 + a5 + a4 + a0)(x5y3)
+(a6 + a4 + a3)(x6y3) + (a5 + a3 + a2)(x7y3) + (a4)(x0y4)
+(a7 + a3)(x1y4) + (a7 + a6 + a2)(x2y4) + (a6 + a5 + a1)(x3y4)
+(a5 + a5 + a4 + a0)(x4y4) + (a6 + a4 + a3)(x5y4) + (a5 + a3 + a2)(x6y4)
+(a7 + a4 + a2 + a1)(x7y4) + (a7 + a3)(x0y5) + (a7 + a6 + a2)(x1y5)
+(a6 + a5 + a1)(x2y5) + (a5 + a5 + a4 + a0)(x3y5) + (a6 + a4 + a3)(x4y5)
+(a5 + a3 + a2)(x5y5) + (a7 + a4 + a2 + a1)(x6y5) + (a6 + a3 + a1 + a0)(x7y5)
+(a7 + a6 + a2)(x0y6) + (a6 + a5 + a1)(x1y6) + (a5 + a5 + a4 + a0)(x2y6)
+(a6 + a4 + a3)(x3y6) + (a5 + a3 + a2)(x4y6) + (a7 + a4 + a2 + a1)(x5y6)
+(a6 + a3 + a1 + a0)(x6y6) + (a7 + a5 + a2 + a0)(x7y6)
+(a6 + a5 + a1)(x0y7) + (a5 + a5 + a4 + a0)(x1y7) + (a6 + a4 + a3)(x2y7)
+(a5 + a3 + a2)(x3y7) + (a7 + a4 + a2 + a1)(x4y7)
+(a6 + a3 + a1 + a0)(x5y7) + (a7 + a5 + a2 + a0)(x6y7)
+(a7 + a6 + a4 + a1)(x7y7)
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6.3 Fitting the Bit-Equations Together

After deriving the formulae for transforming individual terms in an equation,
the last step is to fit them together to form an equation system which is equiv-
alent to the original byte-system. The indexing must be consistent in order to
allow the solution to be both possible (term-indexing is consistent through-
out the bit-equations) and intelligible (term-indexing is arranged such that,
when the solution bit-vector is written out, every 8-bit block represents an
actual byte of the solution byte-vector of the original system, rather than a
random distribution of solution bits). We have used exponential indexing,
details of which are explained in Section 12.4.

Our indexing system has made this transition rather easily computable:

• The bits of the constant term of the nth equation diffuse to the trans-
formed bit-system as the constant terms of the (8n + i)th equations
(0 ≤ i ≤ 7).

• For linear terms , the index of the byte-variable needs to be known in
addition to the equation number. The bits of a single linear term xk

of equation n diffuse to all equations 8n + i, where they occupy indices
38k+j (0 ≤ i, j ≤ 7).

• Quadratic terms diffuse to a larger area in the bit-system, occupy a
larger number of indices and require many more XOR operations. For
a quadratic term, the indices of both variables need to be known in
addition to the equation number. For the quadratic term consisting of
variables xk and xm in equation n, the bits diffuse to all equations 8n+i
(0 ≤ i ≤ 7). They occupy all 64 indices 38k+j + 38m+l (0 ≤ j, l ≤ 7).

7 XL

7.1 The Algorithm

The eXtended Linearization attack was presented in [5] by Nicolas Courtois,
Alexander Klimov, Jacques Patarin and Adi Shamir at the EuroCrypt 2000
conference. Being the first algebraic attack to be suggested against Rijndael
(even before it became the official standard), it aroused great interest from
the cryptology community.

The idea was based on Jacques Patarin’s Linearization method [20]. Show-
ing that breaking Rijndael was equivalent to solving a multivariate quadratic
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equation system, they set out to develop a method to solve these MQ systems
efficiently. Furthermore, they have observed that the equation systems that
can be used to fully express the encryption process of the cipher were overde-
fined (more equations than unknowns), an observation which they used for
the basis of their suggestion that this characteristic may make it possible to
develop a method to solve these systems faster than a brute-force search.

In order to linearize a quadratic equation system, all one needs to do is
to assign a new variable name to each different monomial in the system and
apply linear techniques to the relinearized system. This, however, presents a
problem. Assigning new variable names to each different monomial is likely
to produce a linearized system with more variables than equations; in short,
not enough linearly independent equations to apply linear techniques.

Let’s assume the following MQ system over GF(2), which, with 2 variables
and 2 equations, is as small as MQ systems get:

0 = x2 + xy
1 = xy + y2

This equation system has 2 variables and sufficient independent equations
as to yield a unique solution (x = 0 and y = 1). However, finding this solution
requires a brute-force search, hence the need to Linearize (the ”L” of ”XL”):

0 = a + b
1 = b + c

Having relinearized the system, now we have a linear equation system.
The problem is that we only have 2 equations for 3 variables and cannot ap-
ply linear techniques to solve it, as it has more than one unique solution. The
reason for this is that we now consider a, b and c as independent variables,
whereas in the original system b was dependent on both a and c.

The solution to overcome this obstacle is to generate new linearly inde-
pendent equations while preserving the correctness of the system and the
uniqueness of the solution set. To achieve this, we need to find a way to
eXtend the system (the ”X” of ”XL”). Courtois et al. have suggested a
general method called D-linearization: an integer D is picked (D > 2), and
all monomials of degree D− 2 are listed. Then, each equation in the system
multiplied by each one of these monomials, each multiplication producing a
new equation which preserves the solution(s) of the system.
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Let’s assume that, for the equation system above, we have picked D = 4.
We list all monomials of degree 2:

x2, xy, y2

Then we multiply both equations by each of these monomials, and while
keeping the original equations, we generate 6 new equations:

0 = x2 + xy
1 = xy + y2

0 = x4 + x3y
0 = x2 + x3y + x2y2

0 = x3y + x2y2

0 = x2y2 + xy3

0 = x2y2 + xy3

1 = xy3 + y4

If we linearize this system now, we obtain

0 = a + b
1 = b + c
0 = d + e
0 = a + e + f
0 = e + f
0 = f + g
0 = f + g
1 = g + h

In its extended and linearized form, the equation system now has 8 linear
equations with 8 independent variables; it is now solvable by linear tech-
niques. However, there is one more problem to overcome. If we use a linear
technique to evaluate all variables in the system, then we would be doing
a lot of extra work to solve for 8 variables whereas we only need to solve
for 2. To avoid this extra work, we only solve the system for one variable,
then substitute its value into the original equation system and work with a
diminished system. We repeat the process until all variables in the original
system are evaluated.

7.2 Analysis of the Algorithm

7.2.1 Moh’s Analysis of XL on TTM

XL is an algorithm for solving MQ equations systems and can be applied
to any problem which can be expressed as such a system. In 2001, Tzuong-
Tsieng Moh made an analysis of XL applied to the Tame Transformation
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Method (TTM) [16], a public key cryptosystem developed by himself and
described in [17]. XL is applied to TTM under three different conditions,
with three different values of D at each case. The three conditions are defined
by setting the n and m variables; m defining the finite field the cipher is
working in, and n defining the dimension of the affine space. The complexities
are calculated by estimating the actual number of operations involved in
multiplication and linear elimination:

n m D complexity D complexity D complexity
64 100 8 2100 13 2142 14 2149

44 80 7 280 9 296 10 2103

40 72 6 269 8 285 10 299

Computations for the chosen values of D indicate that XL is as slow as
or slower than a brute force search on TTM.

7.2.2 Diem’s Analysis of XL

In 2004, Claus Diem has provided a more general analysis of the XL algorithm
when applied to any MQ system over any finite field [8]. The analysis has
produced complexity bounds as to the running time of the algorithm and the
bounds contrast strongly with the initial claims of the developers of XL. The
outcome of Diem’s work was that, for a generic overdefined MQ system with
a unique solution over a finite field, XL was not subexponential, and that the
assumptions made by the developers of XL were too optimistic. The analysis
is based on Moh’s work which was briefly discussed in the previous section.

8 XSL

8.1 The Algorithm

The eXtended Sparse Linearization method [5], introduced in 2002 by Nico-
las Courtois and Josef Pieprzyk, has its roots in the XL algorithm which was
described in the previous section. They have tried to address some short-
comings of XL and to make it a more efficient method that is at least as good
at solving MQ systems as XL is.

An additional observation that was made on the MQ systems of Rijndael,
that they were sparse as well as overdefined, helped them to improve on XL,
which only used the overdefined characteristic of those systems. Multiplying
equations with every possible monomial of a given degree produced so many
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new equations with so many new variables that the equation system became
intractable very quickly. Observing that the equation systems were actu-
ally sparse, Courtois and Pieprzyk suggested that equations are multiplied
only by ”carefully selected monomials”. The idea is to generate a smaller
number of new equations and new variables and still make the extended and
linearized system solvable by linear methods. The phrase ”carefully selected
monomials”, however, is ambiguous, and therefore open to interpretation,
which is why several variants of XSL have sprouted up since the original
paper. We have opted to follow the suggestion in the original paper that
equations are only multiplied by monomials that already appear in other
equations. This decision implicitly restricts the XL method such that the
value D always has to be 4, since the monomials that exist in other equa-
tions are quadratic. Given that the equation system is sparse to start with,
this restriction also assures that the extended system is much smaller, both
in width and in length, than the one produced by XL, which makes it much
easier to solve.

Let us consider the equation system in the previous section:

0 = x2 + xy
1 = xy + y2

Whereas for XL we would have to multiply both equations by all of x2,
xy and y2, for XSL we only need to multiply the first equation by xy and y2,
and the second one by x2 and xy:

0 = x2 + xy
1 = xy + y2

0 = x3y + x2y2

0 = x2y2 + xy3

0 = x2 + x3y + x2y2

0 = xy + x2y2 + xy3

When relinearized, this system is expressed as:

0 = a + b
1 = b + c
0 = d + e
0 = e + f
0 = a + d + e
0 = b + e + f
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The resulting system has 6 linearly independent equations and 6 inde-
pendent variables, thus is solvable by linear methods. The following steps
are the same as they were in XL; one variable is evaluated and substituted
into the original equation system, and the whole process is repeated until all
variables in the system have been evaluated.

Appendix B contains a working example of XSL on a slightly larger sys-
tem. Also, the program EquationWriter can be run for observing the algo-
rithm in action on systems of any desired sizes; it simply runs through the
first round of extending, linearizing, solving and also converting and prints
the output in an intelligible format.

8.2 Analysis of the Algorithm

8.2.1 Analysis of XSL by C. Cid and G. Leurent

At the Asiacrypt conference in 2005, Carlos Cid and Gaetan Leurent pre-
sented their analysis of the XSL algorithm, which is the most recent compre-
hensive study of XSL to date [3]. The conclusion they arrived at was that
XSL ”in its current form... does not provide an efficient method for solving
the AES system of equations.” The fact that they write the word ”algorithm”
in quotation marks when mentioning the ”XSL algorithm” summarizes their
views on XSL; it is not guaranteed to terminate for every MQ system, and
indeed they reach the conclusion that XLS is not an efficient attack against
Rijndael ”in its current form.” Although they do not say it explicitly, that
phrase implies that they cannot say with similar certainty that there is no
way to modify XSL to produce an efficient method to solve MQ systems.

8.2.2 Song-Seberry Paper

Dated 2003, Beomsik Song and Jennifer Seberry of the University of Wollon-
gong conducted a study and compiled a report on the security of Rijndael
based on their observations. They picked up where previous studies, espe-
cially Murphy and Robshaw [18], left off and made further observations on
the implications of what has been suggested of the algebraic structure of the
cipher. They state that although the cipher is built from simple components,
the overall structure of the cipher appears to be more complex than initially
anticipated. Although they declare Rijndael’s well-designed combination of
linear and non-linear layers with the key schedule strong enough to resist
potential algebraic attacks, they also acknowledge XSL as a ”research study
[that] has been making considerable progress in the cryptanalysis of AES-like
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block ciphers.”

8.2.3 Essay by B. Schneier

Bruce Schneier is a cryptography expert, the designer of several ciphers
among which is Twofish (a rival of Rijndael in the AES contest) and publishes
Crypto-Gram, a monthly combination of cryptography-related essays. In the
heyday of XSL, he has published an essay [21], dated September 15, 2002, on
the perceived implications of the XSL attack for which it was claimed that
it could break Rijndael, at least theoretically. This being an informal dis-
cussion rather than a scientific study, Schneier shies away from making any
conclusive statements, and summarizes his views as ”AES may have been
broken. Serpent, too. Or maybe not. In either case, there’s no need to panic.
Yet. But there might be soon. Maybe.”

More than 3 years after the essay, Schneier has expressed similar views at
a lecture at the Rochester Institute of Technology. His answer has confirmed
the vague idea in almost everyone’s mind that although Rijndael looks firm
and secure against the attacks that currently exist, it may indeed be possible
to exploit its algebraic structure. ”Rijndael was the risky choice,” recalls
Schneier, regarding this algebraic structure and reiterates that more research
is required on algebraic attacks to make a firm statement.

8.3 The XSL variant

In an effort to demonstrate the trade-off between the solving probability and
the speed/memory requirements, we have also used an XSL variant in our
experiments. The variant was aimed to make more MQ systems solvable at
the expense of speed due to the increase in equation size during the exten-
sion phase. The difference in speed of the two algorithms was observed to
get more insignificant as the system size grew, and the variant did not prove
to be a stronger solver than XSL.

Whereas XSL multiplies equations only with quadratic terms that appear
in other equations, the XSL variant uses linear terms in addition to quadratic
terms for multiplication. The initial projection was that this would create
few new monomials and a greater number of linearly independent equations,
thus making a portion of the MQ systems solvable. The obvious downside
is that this algorithm now generates extra-large extended systems, which is
not desired when the physical constraints are already so severe.
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9 Similar Research on XSL

9.1 Evaluating Algebraic Attacks on AES

In his work [22], Ralf-Philipp Weinmann focuses on an evaluation of the XL
and XSL algorithms based on equation systems derived from a very much
reduced version of Rijndael, called Mini-Rijndael. The block size of Mini-
Rijndael is 16 bits and uses 1 round of encryption for the experiments with
XSL. This reduction of size required the building blocks of the finite field to
be re-defined; a new irreducible polynomial had to be chosen for multiplica-
tion, a new S-box had to be designed, etc. While this new design essentially
forced the experiments to work with a cipher that is actually different from
Rijndael, it can more or less be viewed as having a similar structure to Rijn-
dael while making the equation systems small enough to conduct experiments
with. We have decided to use random equation systems so that we would
have more control over the structure of the systems and would be able to
operate over a wider range of systems, in addition to the assumption that
using any cipher other than Rijndael, albeit designed as a model of Rijndael,
would be as good as a random equation system as far as acquiring real Rijn-
dael results was concerned; Weinmann’s decision to define a baby cipher in
the likeness of Rijndael, however, enables us to see how the XSL algorithm
work if Rijndael had indeed been a small cipher, and therefore is a valid
model for observing the algorithm. Indeed, it was the existence of his work
that, to a certain extent, made us prefer to use random and more general
equation systems rather than using a Mini-Rijndael and producing a carbon
copy of his analysis.

The equation systems generated are over GF(2) and it is concluded that
XSL on these equations is ”unlikely to succeed.” The problem arose when try-
ing to generate sufficient linearly independent equations; for a 3-bit S-Box
and one round of encryption, the extended system had 4566 equations con-
taining 4627 terms, and was therefore 60 equations short of what is required
in order to have a solution. For two rounds of encryption, the gap between
the number of equations and terms grew further and became 400.

9.2 XL and XSL attacks on Baby Rijndael

Presented in [13], Elizabeth Kleiman undertakes a similar task of construct-
ing a small Rijndael-mode, called the ”baby Rijndael”, and tests the XSL
algorithm on this cipher. The Rijndael model uses a block size of 16 bits and
for the experiments, 1 and 4 rounds of encryption are used by default. The
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S-Box and other components of the cipher need to be re-defined to accom-
modate the reduced block size.

Differently from Weinmann’s work, Kleiman experiments with XL in
addition to XSL. Equations are generated following the standard Murphy-
Robshaw method and they are processed with both methods. For 1 round,
the equation system that has been generated and experimented with con-
tains 150 equations and 24 bit-variables (corresponds approximately to 19
equations with 3 byte-variables in our experiments). 4 rounds of encryption
generates a system with 600 equations and 96 bit-variables (equivalent to a
75-equation system with 12 byte-variables).

The shortcoming of this work is that, even though the derivation of equa-
tions is valid, the equation system is only extended once and not solved. The
conclusions, therefore, are reached by speculating on the implications of the
sizes of the systems that are generated by the extension methods of both
algorithms. The conclusion is that, based on the extended system sizes, XL
seems to work on one round of Baby Rijndael and both XL and XSL work
(with the hopeful assumption that a sufficient number of those equations are
linearly independent, an assumption which is not verified) on four rounds of
Baby Rijndael.

10 Implementation of XSL

10.1 What We Did

There were some initial decisions to be made as to how to proceed with the
XSL algorithm. The reason for the birth of XSL was to cryptanalyze Rijn-
dael and Serpent, and any other block ciphers satisfying certain criteria as
described in [6]. Our starting point for this work was Rijndael. Using equa-
tion systems from the full-sized cipher, as is confirmed by everyone else who
has studied the attack, is impossible, due to the sheer size of the equation
system. One way to go was to still use Rijndael, but make only one round
of encryption to produce the equation systems. Even this was too big to
handle. At this point, we faced a two-way choice: either to reduce the cipher
further (i.e. reduce the block size), or to seek a more general analysis of the
cipher by using random equation systems.

There were a couple of problems about working with a reduced version
of Rijndael. First, it was already done [13] [22]. Second, as far as we were
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concerned, as long as we did not use the real Rijndael, the results we would
gather for any other cipher, even if it was a model of Rijndael, would be no
better than using random equation systems. If we were to analyze XSL’s
behavior on Rijndael, then we had to use the real Rijndael, which was out
of the question. Reducing only the number of rounds would have been ac-
ceptable because we would still be using the same S-box, same finite field
and same arithmetic as the real Rijndael, but even that fell outside the com-
puting resources available to us. Once the cipher was reduced further and
the block size was changed, the very essence of the cipher would have to
change since we would now be working in a new finite field, would need to
design a new, reduced S-box and define our own irreducible polynomial for
doing arithmetic in this field. Going down this path would have enabled
us to answer the question ”How would XSL work if Rijndael was a smaller
cipher?”; however, the question ”How does XSL work on Rijndael?” would
remain unanswered.

Using random equation systems had its own advantages and disadvan-
tages. The main disadvantage is rather obvious: if we use random systems,
we lose contact with our starting point, Rijndael. Although this sounds like a
major deficiency, we believed that it would be overshadowed by the benefits
which otherwise would not have been possible. To start with, we would have
a greater freedom to change certain parameters in equation systems, giving
us the power to observe the behavior of the algorithm in many different sit-
uations. For instance, we have had the opportunity to observe the impact
of the number of variables to the speed of the algorithm, the effect of the
number of variables on its speed as well as functionality, and the result of
modifying the sparsity of the system on the behavior of the algorithm. Had
we used equation systems derived from a certain cipher, we would only have
equation systems of a certain type, a certain combination of the parameters
we have just mentioned. With a more general design, we have had the op-
portunity to observe some claims made by the designers of the algorithm,
such as the algorithm preferring overdefined (this was tested by the ”number
of equations” and ”number of variables” parameters) and sparse (this was
tested by the ”sparsity” parameter) equation systems. While doing that, we
have designed our system such that it was possible to use the algorithm with
manually written equation systems as well. The implication of this is that, if
our program was fed with a real Rijndael-driven equation system, then the
behavior of the algorithm could still be observed. Needless to say, one would
need a considerable amount of memory and processing power to be able to do
this, but it still gives our design the power to perform any kind of test with it.
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Another major obstacle to overcome was, since our primary objective was
to compare the performance of the algorithm in two different finite fields, to
derive the formulae with which to transform an equation system in bytes to
a system in bits. Using random equations for both fields would not do; the
algorithm had to work on two different representation of the same system.
Therefore, once a byte-system was generated (either randomly or by reading
from a file) and XSL was performed on it, it had to be transformed into
its bit-system representation. For deriving the formulae, the definition of
multiplication in Rijndael’s finite field was used. Dealing with constants was
trivial as there was no multiplication, but for linear and especially quadratic
terms, there was a considerable amount of shuffling of bits; deriving these
formulae and verifying their correctness was a rather precarious and time-
consuming process, as every single coefficient in the bit-system had to be
formulated, then verified by a rather large number of examples, as well as
verification by doing the opposite transformation for assured correctness.

Given these design decisions and implementation details, what we have
accomplished can be concisely stated as the comparison of the performance of
the XSL attack on bytes and on bits, comparison of XSL against a brute-force
search, for a wide range of equation systems with numerous combinations of
several parameters.

10.2 What We Left Out

It should be emphasized that we did not set out to break the Rijndael cipher
as that is beyond the scope of this project. Our aim was to test the perfor-
mance of the XSL algorithm, which was in fact developed to break Rijndael
and Serpent, in two different finite fields and hope to shed some light as to its
behavior, and to carry out experiments to get results as realistic as possible
to see which finite field it ”prefers”.

As is the case when dealing with ciphers and algorithms of this size, we
have come across some limitations such as limited memory and processing
power. Due especially to memory constraints, we have decided not to use any
equation systems which are indeed derived from Rijndael or Serpent; instead,
we have used random equation systems. As long as we had several knobs to
modify the combination of parameters and used the same system for bytes
and bits, we deemed this to be sufficient to get reasonable results as to the
behavior of the algorithm. In fact, deriving and using actual equations from
the pre-mentioned ciphers would be an independent project of considerable
size, and could be considered as a viable prospect for any interested scholars.
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11 Design of Software

At the center of everything is the class MainTester. This class includes
the main program which creates a tester object to carry out the required
tasks. For each requested task (XSL on bytes, XSL on bits or Brute-Force
Search), the tester delegates the necessary actions to the EquationSystem

object that it has a reference to. The EquationSystem is simply a collection
of Type objects (the variables) which are stored in HashMaps (the equa-
tions), which are in turn stored in an ArrayList (the equation system). For
XSL on bytes, the byte-system is created and the MainTester object calls
the multiply, linearize, solve and substitute methods on the EquationSystem
until the system is solved. The time for the whole operation is recorded and
printed out. For a brute-force search, a BruteForce object is created by the
MainTester and all work regarding the creation of an initial solution vector
and iteratively advancing it until a valid solution is found is delegated to the
BruteForce object. Again, the time for the whole operation is recorded and
printed out. For XSL on bits, the system first needs to be transformed. A
FieldTransformer object is given a reference to the byte-system; it trans-
forms the system to its equivalent bit-system and returns the bit-system to
the MainTester. The tester than performs the same solving pattern that is
performed on the byte-system. The whole operation of solving the system is
recorded and printed out. The transformation process is not included in the
measured time since it is not a part of the solving process. Figure 1 includes
a class diagram and Figure 2 shows an interaction diagram.
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12 Equations

The equation systems used in this project were generated randomly and
depend on several parameters.

12.1 Number of Equations

A significant parameter for the XSL algorithm is the number of equations
in the system. The algorithm is specifically aimed at overdefined systems;
in fact, while a general solution would require as many linearly independent
equations as the number of variables, this does not always suffice for XSL.

12.2 Number of Variables

The number of variables determines the actual size of the system and has
an especially big impact on the speed and memory requirements of the algo-
rithm considering the number of variables in the extended equation system.
Considering that the equation system is always quadratic to begin with, then
the possible number of terms in a non-sparse equation with n is (n+1)(n+2)

2
.

When extended by multiplication, the degree becomes 4 and the number of
terms is now (n+1)(n+2)(n+3)(n+4)

24
. This is a huge growth (for n = 5, it grows

from 21 to 126), therefore the number of terms is the factor that affects
the speed of the algorithm most, as well as being the number one factor in
creating memory constraints.

12.3 Sparsity Ratio

The XSL algorithm was specifically aimed at systems that were sparse as
well as overdefined so we have decided to keep sparsity as a parameter and
experiment on how big its impact is on the behavior of the algorithm. Ob-
viously, the sparser the system is, the smaller the extended system is, so the
faster the algorithm becomes. However, especially for systems that are not
quite overdefined, sparsity can be a problem. Since there are not many terms
that appear in the equation and the number of equations is not very big, the
extended and relinearized system, formed by adding new equations to the
system which are generated by multiplying existing equations with all other
existing terms, may not contain enough linearly independent equations for
the algorithm to work. The sparsity of a system has a visible negative impact
on the probability of solvability of the system and a positive effect on the
speed of the algorithm provided that it is solvable.
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12.4 Indexing of Variables

The indices of variables in equations were arranged in a particular way in
order to provide ease of calculation. When the index of a term in an n-degree
equation is written (mod n), each digit of this (mod n) expression gives
the exponent of the corresponding variable in the term. For instance, in a
quartic equation with 3 variables, the 22nd term in an equation would be
112 in (mod 4), therefore would contain the coefficient for the term x2x1x

2
0.

For an equation system of n degrees containing m variables, this represen-
tation will allow terms of up to n ∗m degrees; this is not a problem, since
at the time of creation, such terms of higher degrees are given 0 as a default
coefficient and consequently not stored in the system. If such terms were
allowed to exist in the system, the algorithm would still work, but the degree
of the equation would no longer be n.

This indexing system provides ease of calculation for

• extending the system. For multiplying two terms, the index of the
product should be calculated. This is easily done by writing them
(mod n), adding the corresponding exponents and calculating the new
value. For instance, in a quadratic equation with 3 variables, the terms
x2x0 and x2

1 are found at indices 10 and 6 (101 and 020 as written
(mod 3)) respectively. To get the index of the product, all one has
to do is add the indices and find 121. Remember, however, that the
new equation system is a product of a quadratic system with quadratic
terms; therefore, the new degree of the system is now 4 instead of 2,
and the index 121 of the product term is (mod 5), not (mod 3).
Therefore, the index of the product in the HashMap that represents the
equation is 36. The coefficients of the terms x2x0 and x2

1 are multi-
plied and the result is stored at index 36 in the new equation, which
represents the term x2x

2
1x0.

• re-indexing the existing terms in the system. At the extension stage,
in addition to producing additional equations, the original equation
systems are to be preserved as well. However, since the degree of the
equation system changes during the extension, the terms in the original
equation need to be re-indexed. All that needs to be done for this is to
write the original index (mod n) (n being the degree of the original
system), then treat it as a number (mod N) (N being the degree of
the extended system) and re-calculate the index of the term, then move
its coefficient to that index. For instance, for extending the term x2x0

in a quadratic equation system with 3 variables, the index is written
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(mod 3), which is 101. Then this number is considered (mod 5), and
the new index is calculated as 26.

• identifying univariate equations. After the extension comes the linear
elimination, after which the algorithm needs to identify a univariate
equation in the system and solve it. For doing this, one only needs to
make sure that a pseudo-univariate equation (one that looks univariate
in the relinearized system, but may contain more than one term of the
original expression) contains only one original variable. This is simple;
write the index (mod n) and check the number of non-zero digits.
If there is only one non-zero digit, then the equation is univariate and
can be solved.

13 Main Modules

The main test program, MainTester, contains a high-level description of the
XSL algorithm. It conceives an equation system in GF(28) by either random
generation or reading from a file. All of the following steps are optional and
include solving the system with XSL or brute-force search, then transforming
the system into GF(2) and solving it with XSL.

13.1 Equation File Format

The first line of the equation file contains information about the nature and
size of the equation system. The first parameter is the type of the system (0
for bits, 1 for bytes). The second one is the number of equations in the file.
The third one is the number of variables in the system. The fourth and last
parameter is the degree of the system. All equations used in this project are
of degree 2, but the option to use a different degree was provided for flexibility.

All following lines (except for those containing ”//” anywhere in them,
which are interpreted by the file parser as comments) are equations. An
equation starts with the constant, then moves on to the coefficients for vari-
ables. The variables are arranged in increasing order of variable name and
degree.

Example:
In an equation system with two variables, the line

17 124 80 52 10 0 -71 0 0

is interpreted as
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17 = 124x0 + 80x2
0 + 52x1 + 10x0x1 + 0x2

0x1 + 185x2
1 + 0x0x

2
1 + 0x2

0x
2
1

It is clear that the original file contains 0’s for cubic or quartic terms which
will not be used. This representation would be very inefficient if left like this;
therefore, once the equation system is created, all zero-elements are deleted
from the equation system. Not only does this get rid of higher degree terms
which will not be used, but also it may clear entries for variables which don’t
exist in the system due to its sparsity. Saving this space is essential in the
functioning of the algorithm on a machine with memory restrictions.

13.2 Random Equation Generator

The RandomEquationGenerator is fed with a few arguments from the com-
mand line: the name of the file to print the system after generation, the type
of the variables (0 for bits, 1 for bytes), the number of equations, the number
of variables, the degree of the equation system, the probability of a coefficient
being zero (the sparsity ratio) and the actual values of the variables in the
system. Random coefficients are generated for linear and quadratic terms
in the equation system. Based on the values of the variables, the constant
terms are calculated. The equations are then written to file and the program
terminates.

13.3 Main Program

The main program starts by reading a multivariate quadratic equation sys-
tem (in bytes) either from a file whose name is passed as a command line
argument or from a random equation generator. Once the equation system
is created, XSL is performed on it by calling multiply, linearize, solve and
substitute methods of the equation system until all variables have been evalu-
ated. The execution time is recorded. Then brute-force search is applied and
the time is recorded again. Finally, the original equation system is converted
to its bit-representation using the Field Transformation Formulae derived in
Section 6. XSL is performed on the new system, all variables are evaluated
and the execution time is recorded. The execution times for all three meth-
ods are printed on standard output and the program terminates.

All three steps in the main program are optional. The fifth and last
command line argument is used to see if any of these steps are going to be
performed; if it contains

• ’B’, then the byte-system will be solved by XSL;
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• ’X’, then the byte-system will be solved with by a brute-force search;

• ’b’, then the transformation will take place and the bit-system will be
solved by XSL.

13.4 Equation System

The EquationSystem class contains implementations of all algorithms that
are used by XSL to solve the MQ system. The system itself is stored as
an ArrayList of HashMaps, each HashMap representing one equation. Each
HashMap entry represents one term in the equation; the key is the index of the
term in the equation, and the value is the coefficient of the corresponding
term. This design, as opposed to our original design of an ArrayList of
ArrayLists, has allowed us to discard all zeroes from the system and only
keep track of non-zero coefficients through their indices, saving valuable space
to allow experiments with much larger equation systems. This has come in
handy especially when dealing with sparse systems, which are what the XSL
algorithm is mainly designed to operate with. Some functionalities that are
implemented in this class are:

• Extension by multiplication:
One of the major sections of the XSL algorithm is to extend an equation
system. This is done by multiplying each equation by every quadratic
term that appears in every other equation. There are two steps in per-
forming the extension: keeping the original equations and generating
the new ones. Keeping the original equations consists of rearranging
the indices of terms as they appear in the HashMap. This is necessary
because the degree of the equation system increases and each term
should now be represented with a different index. Generating new
equation system involves a bit more work. All equations are iterated
through; then for each equation, every other equation is taken, and ev-
ery quadratic term in that other equation is used for multiplying with
the first equation at hand and thus generating a new equation. The
multiplication consists of multiplying the coefficient values as well as
determining the new index of each variable based on the indices of the
original multiplicants. For instance, let’s consider the multiplication of
terms 40xy and 67y2 in a 2-variable quadratic system. The product
should be 150xy3. The original terms are represented as (4, 40) and
(6, 67) in the original system. The indices 4 and 6 are represented as
11 and 20 in (mod 3) (remember that this is a quadratic equation,
so the exponents of terms are written (mod 3)); therefore, the index
of the product should be the addition of the original indices, which is
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31 as written in (mod 5). This makes the new index 16. The value
at index 16 is calculated by multiplying the original coefficients and is
150. Therefore, the new entry in the new HashMap is (16, 150).

• Gauss-Jordan Elimination:
Linear elimination is provided in the form of Gauss-Jordan elimination,
although it is possible to easily convert it to Gaussian elimination by
commenting in some sections of the code. The elimination takes place
by iterating through every possible index, finding an equation which
contains a term with the index that can be used as a pivot element (i.e.
the equation contains a term with the given index, and contains no
other terms with a lower index except for the constant) and using it to
eliminate all other equations which also contain a term with the same
index. The elimination continues until all terms are iterated through.
The XSL algorithm expects this stage to produce at least one univariate
equation; the equation systems for which this does not happen are said
to be unsolvable by XSL. Remember that the algorithm is aimed at
specific types of quadratic equation systems and is not a general MQ
solving algorithm.

• Identifying and solving univariate equations:
The term ”univariate” is used in a different sense than it would mean
in a usual linear equation system. Since the system is relinearized, a
univariate equation in the modified system may be multivariate in the
original system. For instance, the equation

5 = 6x0x1

would appear to be univariate in the relinearized system since it would
appear as

5 = 6a

but should be discarded by the algorithm as multivariate, since it con-
tains both x0 and x1 when expressed in the original equation. This is
where the indices of terms in the HashMap come in handy, and they are
used in order to identify whether a univariate equation in the modified
system is also univariate in the original system. Once identified, they
can be solved by iterating through every possible byte value until a
solution is found.
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• Substitution:
Once a variable is evaluated, it has to be substituted in the equation
system in order to reduce the system and take one more step towards
acquiring the final solution. In addition to knowing the value of the
variable, also the index needs to be known so that it can be substituted
at the right place. There are three possibilities for the substitution: if a
term is univariate on the evaluated variable, then the resulting term is
a constant; if it does not contain the evaluated variable, then no action
is taken except for recalculating the new index; if it is multivariate and
contains the evaluated variable, then the required multiplications are
made based on the degree of the variable in the term, and a new index
is calculated for the variable. For instance, let’s assume that we have
a 3-variable quadratic equation

55 = 70x0 + 6x1 + 213x2
1x2

and variable x1 is evaluated as 21. The reduced equation should look
like

73 = 70x0 + 67x2

To achieve this reduced form, first the terms that contain x1 should be
identified. They are those terms that have a non-zero second digit in
the (mod 3) representation of the indices:

((000, 55), (001, 70), (010, 6), (120, 213))

The value of these second digits indicate the exponent of x1 in the
equation. The necessary multiplications are then made and the new
indices are calculated by removing the second digits from the indices:

((00, 55), (01, 70), (00, 126), (10, 67))

The terms with the same indices are then combined by simple addition
as defined for the finite field we are working in, and the final represen-
tation of the reduced system is

((0, 73), (1, 70), (3, 67))
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• Clearing redundancies:
Coefficients that are zeroes are not stored in the system in order to save
space. All existing terms are iterated through, and all zero coefficients
are removed. If an equation is formed entirely of zeroes, then that
equation is removed from the system as well. This can happen either at
the creation of the equation system, or after substitution in a univariate
equation.

13.5 Variables

Variables in an equation system are instances of the class Type. The value
contained in the object can either be a byte or a boolean. The class contains
the main algebraic operations over both GF(2) and GF(28). Some function-
alities that are implemented in this class include:

• Addition:
Bit-by-bit addition is performed on the variables.

• Multiplication:
Multiplication as defined in Section 4.1.

• Multiplicative inverse:
The inverse of a variable is used for linear elimination.

• Division:
Defined as multiplication with a variable’s multiplicative inverse, divi-
sion is also used for linear elimination.

• Exponentiation:
Consists of successive multiplications to find powers of variables.

13.6 Brute Force Search

Class BruteForce includes a brute-force search for a solution vector. The
algorithm simply iterates through the solution space and checks every possi-
ble vector of values for being a solution to the system. As soon as a solution
is encountered, or if the solution space is exhausted without finding a solu-
tion, the algorithm terminates. This means that a solution is not checked
for uniqueness. The behavior of the brute-force search is predictable and the
speed of the search increases exponentially with the number of variables.

47



13.7 Field Transformer

Class FieldTransformer contains the lengthy field transformation formulae.
An instance of this class contains a byte-system and derives an equivalent bit-
system from it. The process consists of taking one variable at a time, deciding
whether it is a constant, linear or quadratic term, and doing the necessary
operations as defined by the formulae and setting the necessary bits in the
bit-system. If the term is of a higher degree, then an error message is printed
and the program quits. At the end of the process, the converted system in
bits is returned.

13.8 Exceptions

Several Exception classes were also included in order to identify the exact
causes of problems encountered during the execution of the program:

• NotQuadraticEquationException is an indication that the program
has encountered an equation of degree 3 or higher and will quit. This
may happen if an equation is entered manually or if the
RandomEquationGenerator is malfunctioning. It does not happen af-
ter the extension because, although the equations at that stage are
quartic, that is necessary for the algorithm to be functioning correctly.
Therefore, this check is only performed at initialization.

• WrongFirstLineInFileException only occurs when reading equations
from a file. The file parser expects the first line of the equation system
to be in a certain format and to contain parameters such as the type of
the system (byte or bits), the number of equations and variables, and
the degree of the equation system (must be 2 for this implementation,
but still included as a parameter in order to make it more flexible and
reusable by other programs). If the number of parameters in the first
line is not equal to the expected value of 4, or if one of the parame-
ters is not a valid integer, or the equation type is specified as another
value than 0 (bits) or 1 (bytes), then this exception is thrown and the
program quits.

• WrongNumberOfEquationsException is thrown as a result of a simple
check between the number of equations specified in the first line of the
system and the actual number of equation lines contained in the file.
If the two values do not match, then an instance of this exception is
thrown and the program terminates.
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• WrongNumberOfVariablesInEquationException is thrown as a result
of a simple check between the number of terms specified in each line of
equations and the expected number of terms (which is (d + 1)n where
n is the number of variables and d is the degree of the system). If the
two values do not match, then the equation line is considered invalid,
this exception is thrown and the program terminates.

• WrongLineInFileException only occurs when reading from a file and
it handles all errors in all lines in the file except for the first line,
which are handled by the WrongFirstLineInFileException. This
exception is thrown for any other error encountered in a line in the file.

• WrongVariableValueException is thrown when a value in an equa-
tion line in the file does not fall into the desired ranges of the specified
equation type ([−128, 127] for bytes and [0, 1] for bits). This is con-
sidered illegal, causes this exception to be thrown and the program to
terminate.

13.9 Tools

13.9.1 Add and Mult

Add and Mult are small, algebraic tools that may be used to add and mul-
tiply a variable number of bytes in GF(28). They are helpful in manually
checking the correctness of a solution and for manually creating an equation
system. They can take an arbitrary number of arguments from the command
line, perform the necessary operation and print out the result.

13.9.2 Equation Writer

Class EquationWriter was simply included in order to demonstrate each
component of the XSL algorithm clearly. It creates a very small equation
system (2 variables, 3 equations and 40% sparsity) and prints it out, not
just the coefficients, but the whole equation system in an intelligible format,
using x and y for variable names. The system is then extended, and the new,
extended system is printed out in the same way. The system is linearized
and the new system, with the new variable names from a to t (there are
24 possible non-constant terms in each extended equation) used for each
different monomial in the extended system. Then Gauss-Jordan elimination
is performed, and the eliminated system is printed again. Finally, the original
system is converted into its equivalent bit-system and that is also printed,
with the nth bits of the variables x and y being represented as xn and yn
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respectively. In short, this little tool provides easily understandable examples
of the following procedures of XSL:

• Extension

• Relinearization

• Linear Elimination

• Field Transformation

14 Experimental Results

We have run experiments on random equation systems based on parameters
such as number of equations, number of variables and sparsity ratio. All
equation systems were quadratic. The experiments were run on a machine
with a 2 GHz Intel Pentium processor and 1 GB of RAM.

As for the main objective of our work, which is to compare XSL’s perfor-
mance for byte-systems and their equivalents in bit-systems, the results left
no room for doubt: XSL prefers byte-systems. In fact, after a 2-variable 3-
equation quadratic byte-system is transformed to GF(2), it takes a few hours
just to perform the first step of the linear elimination, whereas it takes less
than 0.001 seconds for the original system in GF(28). The transformation
creates a system of 24 equations with 153 terms; that is before the multipli-
cation and linearization. After the extension, there are 4845 variables in the
system, and although the variables are all bits and the algebra is very sim-
ple, the number of operations is so huge that it already becomes impractical.
Bit-systems become unmanageable much sooner than byte-systems and are
extremely harder to solve. Therefore, what appear in the following subsec-
tions are experiment results that reflect XSL’s performance for byte-systems.

14.1 Charts and Figures

14.1.1 XSL

Below are the results of experiments conducted on the XSL algorithm for
multivariate quadratic equation systems in GF(28). On the left side of each
row are the sparsity ratios, on top of the columns are the size of the equation
systems in terms of the number of equations, and the values in the tables
express the average execution times of the algorithm in seconds. Each table
is for a fixed number of variables. Each value in the table is an average value
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for several executions of the algorithm; from 1000 runs for smaller systems to
10 runs for larger ones. As the system gets larger, experiments yield less and
less extreme values and seem to converge on average values with much lower
deviation than small systems, so 10 runs were deemed sufficient. It is to be
considered that all variables are bytes, so a 4-variable system means solving
a system for 32 bits. A blank entry in the table means that the system for
the specified parameters was unsolvable for XSL because the relinearization
after extension did not produce sufficient linearly independent equations.

5 10 15 20 30 40 50
0.0 0.005 0.007 0.010 0.016 0.034 0.063 0.098
0.2 0.004 0.006 0.008 0.012 0.023 0.042 0.068
0.4 0.003 0.005 0.006 0.0009 0.016 0.028 0.045
0.6 0.004 0.005 0.006 0.009 0.016 0.022
0.8 0.003 0.004 0.005 0.005 0.006 0.008

Table 2: XSL results with 1 variable

5 10 15 20 30 40 50
0.0 0.042 0.176 0.468 1.035 3.537 6.746 16.484
0.2 0.034 0.134 0.314 0.607 2.815 3.762 7.125
0.4 0.021 0.0545 0.109 0.154 0.338 1.104 0.991
0.6 0.012 0.017 0.029 0.044 0.075 0.130
0.8 0.008 0.009 0.013 0.020 0.029 0.056

Table 3: XSL results with 2 variables

5 10 15 20 30 40 50
0.0 1.078 3.406 9.245 16.047 81.578 158.563 309.468
0.2 0.922 2.953 7.102 12.894 70.516 87.985 193.969
0.4 0.828 1.812 5.391 8.462 32.313 40.937 92.453
0.6 0.719 0.850 1.227 2.219 4.881 8.450 18.587
0.8 0.019 0.023 0.031 0.059 0.103 0.134

Table 4: XSL results with 3 variables
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5 10 15 20 30 40 50
0.0 78.672 184.672 459.640 1369.515 3015.234 7291.500
0.2 69.094 178.656 413.843 1113.344 2305.859 3636.515
0.4 53.579 115.547 382.422 1083.953 1589.672 2200.688
0.6 23.984 54.172 120.843 707.125 917.375 1279.329

Table 5: XSL results with 4 variables

14.1.2 XSL Variant

Contrary to our intentions, even less equation systems were solvable in the
variant than XSL, while those that were solvable were expectedly slower to
solve. Therefore, it is impossible to list this as an improvement over XSL.

Below are the results of the experiments on the XSL variant described in
Section 8.3. The formatting of the tables are same as the previous section.

5 10 15 20 30 40 50
0.0 0.0089 0.0339 0.0790 0.1971 0.7744 1.1961 1.895
0.2 0.0074 0.0249 0.0564 0.1646 0.5216 0.8607 1.341
0.4 0.0174 0.0360 0.0739 0.1875 0.4950 0.578
0.6 0.0099 0.0186 0.0349 0.1013 0.1883 0.4451
0.8 0.0115 0.0231 0.0395 0.0954

Table 6: XSL-variant results with 1 variable

5 10 15 20 30 40 50
0.0 0.1064 0.5950 1.3024 4.0018 12.1766 26.4626 92.4859
0.2 0.0775 0.4571 0.9032 2.8692 6.4546 7.2892 38.3812
0.4 0.0455 0.1908 0.5445 1.1207 1.3735 2.3625 2.8235
0.6 0.0592 0.1030 0.1688 0.2844 0.4985 1.2547
0.8 0.0311 0.0607 0.2079 0.4219 0.9143

Table 7: XSL-variant results with 2 variables
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5 10 15 20 30 40 50
0.0 2.3599 11.0589 37.4750 64.9952 178.7157 482.1859 1013.2891
0.2 1.8573 7.1120 26.9514 41.4408 126.3859 277.0579 594.3859
0.4 1.2703 3.5620 14.6126 26.8235 51.2281 148.7342 189.6328
0.6 0.6849 1.4734 2.4891 2.9405 13.9453 24.1124 28.3343
0.8 0.0714 0.0766 0.1251 0.5593 0.6797 1.0719

Table 8: XSL-variant results with 3 variables

5 10 15 20 30 40 50
0.0 986.2442 523.3434 880.7343
0.2 220.6304 400.3073 745.7602 1822.0208
0.4 140.5107 256.3078 505.5987 1376.1460
0.6 91.8565 163.6042 309.1509 710.8437
0.8 0.1770 0.7814 0.9741

Table 9: XSL-variant results with 4 variables

14.1.3 Comparison of XSL and XSL-variant

This section includes a comparison of the two algorithms in terms of speed.
The values in the tables indicate the speed ratio of the two algorithms; in
other words, they show how much faster XSL is than its variant. The chart
format is the same as the previous sections.

5 10 15 20 30 40 50
0.0 1.957 4.940 7.902 12.009 23.062 18.991 19.337
0.2 1.685 5.115 6.942 13.339 22.262 20.487 19.722
0.4 3.480 5.771 8.433 11.428 10.960 12.835
0.6 2.530 3.842 5.883 10.810 11.821 19.437

Table 10: Comparison for 1 variable
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5 10 15 20 30 40 50
0.0 2.512 3.388 2.785 3.866 3.443 3.923 5.611
0.2 2.307 3.373 2.877 4.727 2.293 1.937 5.837
0.4 2.157 3.500 4.982 7.282 4.062 2.939 2.850
0.6 4.400 6.104 5.841 6.452 6.649 9.674

Table 11: Comparison for 2 variables

5 10 15 20 30 40 50
0.0 2.189 3.247 4.053 4.053 2.191 3.041 3.274
0.2 2.014 2.408 3.795 3.214 1.792 3.159 3.064
0.4 1.534 1.966 2.711 3.170 1.585 3.633 2.051
0.6 0.953 1.733 2.029 1.325 2.857 2.853 1.524

Table 12: Comparison for 3 variables

14.2 Interpretation of Results

It is possible to interpret the results in numerous ways. It is possible to keep
any two of the three parameters and analyze the effects of the third parameter
on the behavior of the algorithm, or to fix one parameter and analyze the
combined effect of the other two; it is also noteworthy to compare XSL with
the XSL variant.

14.2.1 Effect of Parameters on XSL’s Performance

• Number of Equations and Number of Variables
The system size affects the speed of the algorithm dramatically for
obvious reasons. The effect is amplified by the extension which depends
directly on the number of equations and variables. Looking at Figures
3-6, one can observe that the effect that the equation system size, both
length- and width-wise, is independent from the sparsity ratio.

• Sparsity Ratio and Number of Variables
Figures 7-10 demonstrates the huge impact of the rise of the number of
variables affects the performance of the algorithm in different sparsity
ratio values. As mentioned before, the number of variables has the
greatest effect on the speed of the algorithm.

• Sparsity Ratio and Number of Equations
Figures 11-13 demonstrate how different sparsity ratios cause the equa-
tion system to behave for different equation sizes. The first observation
is that the speed of the algorithm is affected much more by the size for
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5 10 15 20 30 40 50
0.0 12.536 2.834 1.916
0.2 3.193 2.240 1.802 1.637
0.4 2.622 2.218 1.322 1.270
0.6 3.830 3.020 2.558 1.005

Table 13: Comparison for 4 variables

non-sparse systems. For high sparsity ratios like 80%, the algorithm
is much faster, does not slow down as much for larger systems, but
also becomes wildly unpredictable. Especially for larger systems with
a greater number of variables, the algorithm can behave erratically,
with the maximum value for one execution time measuring up to 1000
times more time as the minimum value.

In addition, Figures 14-17 display the performance of the XSL variant.
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14.2.2 XSL versus Variant

When comparing XSL with the variant, one significant trend is to be ob-
served in the results. Although for small systems the variant runs much
slower than XSL, it is to be noticed that the gap shrinks dramatically as the
equation system gets larger. For instance, comparing non-sparse equation
systems with 20 equations, a 1-variable system takes 12 times longer to solve
with the variant than XSL; on the other hand, a 4-variable system only takes
1.9 times longer.

This convergence is to be expected due to the nature of the algorithms
and the fact that the number of linear terms increases much more slowly
than the number of quadratic terms as the number of variables in the system
increases. Since the difference between the two algorithms is that the variant
additionally uses linear terms in extension, the ratio of the extra extension to
the core extension decreases as the number of variables in the equation sys-
tem increases. This is especially true for larger systems with more equations;
for very small systems, this can work inversely, due to the small number of
equations with which to extend the system.

Figure 18 indicates the gap between the two algorithms as the number of
variables numbers begins to change. The figures only demonstrate systems of
zero sparsity, since as soon as a random non-zero sparsity comes into consid-
eration, it is very difficult to know that the ratio of random zero coefficients
are evenly distributed among linear and quadratic variables, which may skew
the figures towards one algorithm or the other.
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Figure 18: Speed difference between XSL and XSL-variant

15 Room For Improvement

Due to time, space, memory and scope constraints, the objective or size of
this project was deliberately limited. However, the design was made as to
allow easy expansions in several directions.

To beat the space and memory requirements, one may use more sophis-
ticated machines to run the experiments. This would allow results to be
gathered for higher numbers of variables and the experiment graphs to be
extended into more explanatory curves. Although we believe the experi-
ments that we have conducted to provide satisfactory results about the gen-
eral behavioral patterns of the algorithm, experimenting with larger equation
systems would take us a few steps closer to understanding how XSL would
handle Rijndael in a real-life situation and this information would no doubt
be invaluable.

Our software was also designed with the flexibility to accept any equa-
tion system, with the condition that the system satisfies strict formatting
guidelines. The objective in doing so was to allow any interested scholars
and researchers who develop code to produce the MQ equation systems from
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Rijndael to be able to have a system implemented and ready to process their
data, to perform XSL and print out the results.

Additionally, our software uses Java collection classes to store and manip-
ulate equation systems. These collections are not optimized for our purposes
and severely impact the speed of our calculations. While this was a fore-
seeable issue, we believed that it would affect performance of both equation
types on an equal magnitude and thus allow fair comparison. However, if this
project is to be taken further and larger experiments are to be conducted,
overall performance must be improved, starting with using self-developed
and optimized storage classes. Also, it should be noted that the algorithm
is in fact parallel-computable; for further improvement of performance on
multi-processor or multi-machine environments, the code should be altered
to allow parallel execution.

The most significant improvement that can be made, which we would
like to list as a potential subject of future work, is to generate a generic
formulation of field transformation from more variables of more restricted size
to larger ones, making it possible to express the system in even more compact
forms. We expect this to speed up the XSL algorithm, as demonstrated by the
dramatic performance difference for systems in bytes and bits. This would,
however, require us to modify some parts of our software design, especially
the class Type which can only accommodate byte and bit variables in its
current state.

16 Conclusion

The experiments we have conducted have provided rather definitive results
as to our primary question: does XSL prefer MQ systems with byte-variables
where the representation is more compact but the algebra is more complex,
or one with bit-variables where the system is larger but algebra is so much
simpler? The difference in XSL’s performance in both cases is so dramati-
cally different that it does not leave any room for doubt. While the algorithm
can evaluate non-sparse byte-systems of up to 7 bytes and 50 equations with
1 GB memory, evaluating even the bit-equivalent of a 1-variable 1-equation
system proves a task too demanding for the same machine.

This difference in perfomance has led to a new idea: can we do the in-
verse of the byte-to-bit field transformation and, starting from bytes, derive
formulae for representing the system in a more compact manner than byte-
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variables, such as a block of 8-bytes, or indeed generalize the conversion for
blocks of 8n-byte blocks, and increase the performance of the algorithm? This
would pose several major challenges: the formulae would need to be derived
to transform a byte-system to an 8-byte-block-system; indexing of variables
would need to be taken care of; implementation-specific details of the code
would need to be modified and expanded; and finally, if one decides to test
the outcome on a real cipher, then she would need to find a way to represent
the cipher as an MQ system of 8-byte blocks, which has never been done
before. Another matter of concern is that when all calculations are done and
the system has been modified, there is no guarantee that the new representa-
tion will actually be preferred by XSL. Although one can intuitively suggest
that that will be the case, intuition may not always be a reliable guide; if
that were the case, our experiment results would have yielded equal results
for byte- and bit-systems.

We conclude the paper with reiterating that for the very small equation
systems that we have experimented with, XSL prefers byte-systems to bit-
systems. As for the suggestion of using a more compact representation than
byte-variables, we suffice with merely stating this idea as a prospect for future
work and encouraging cryptology enthusiasts to take up our work and move
it further in this direction.
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A Running the Code

The main method is in the MainTester class. It expects 5 command line
arguments, and can be run with the command:

java MainTester <num equations> <num variables> <sparsity>
<repeats> <methods to use>

• num equations defines the number of equations that the random equa-
tion generator to generate.

• num variables is the number of variables that the random equation
system will contain.

• degree , the degree of the equation system, was left to the user to de-
cide; however, since our work is a specific implementation aimed at
solving quadratic equations, there are several sections in the program
that expect the system to be of degree 2, such as the field transfor-
mation. If the user wants only to solve the system in bytes and not
do a field transformation, then other values for degree may be used.
If a higher degree is used and transformation is requested, then only
constant, linear and quadratic terms will be converted and the rest will
be discarded.

• sparsity is the probability that a random coefficient in the system will
be zero.

• repeats defines the number of times the whole process is going to be
repeated.

• methods to use are the techniques to use by which the equation system
will be solved:

– B for solving the equation system in bytes,

– b for converting the system to bits and solving it,

– X for doing a brute force search on the byte system. Brute force
search for bits was not implemented because it is essentially the
same process as the brute force on bytes.

The original equation system is in bytes by default. This is necessary for
operations such as field transformation.
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To run the program for an equation system with 10 equations, 2 variables,
50% sparsity ratio for 20 times, and to use XSL on bytes as well as doing a
brute force search, the command to use would be

java MainTester 10 2 .5 20 BX

The output is the total time that each method has taken:

XSL for 256: (10,2,.5) * 20 = 10.655 seconds.
BFS for 256: (10,2,.5) * 20 = 34.876 seconds.

B XSL on a Byte-System

Let’s assume that we start with the following quadratic equation system,
with 3 equations, 2 variables and .4 sparsity. All coefficients are decimal
representations of bytes.

125 = 96x + 206xy + 141y2

96 = 189y + 152y2

68 = 202x + 159y + 185xy

When multiplications are made, the system expands into

125 = 96x + 206xy + 141y2

96 = 189y + 152y2

68 = 202x + 159y + 185xy
0 = 176y2 + 145xy2 + 232xy3 + 76y4

0 = 27y + 222xy + 155xy2 + 211y3

0 = 244xy + 69x2y + 142x2y2 + 209xy3

0 = 169x + 120x2 + 112x2y + 101xy2

0 = 216y + 170xy + 180xy2 + 194y3

0 = 227xy + 155xy2 + 232xy3

0 = 48y2 + 211y3 + 76y4

0 = 199x + 222xy + 145xy2

0 = 69xy + 126xy2 + 223xy3

0 = 120x + 89xy + 190xy2

0 = 170y + 151y2 + 36y3

0 = 94xy + 112x2y + 180xy2 + 142x2y2

0 = 34y2 + 101xy2 + 194y3 + 209xy3

0 = 232x + 120x2 + 170xy + 69x2y
0 = 65y2 + 190xy2 + 36y3 + 223xy3

0 = 86y + 89xy + 151y2 + 126xy2
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Every monomial in the extended system is then treated as a new, linear
variable:

125 = 96a + 206f + 141j
96 = 189e + 152j
68 = 202a + 159e + 185f
0 = 176j + 145k + 232p + 76t
0 = 27e + 222f + 155k + 211o
0 = 244f + 69g + 142l + 209p
0 = 169a + 120b + 112g + 101k
0 = 216e + 170f + 180k + 194o
0 = 227f + 155k + 232p
0 = 48j + 211o + 76t
0 = 199a + 222f + 145k
0 = 69f + 126k + 223p
0 = 120a + 89f + 190k
0 = 170e + 151j + 36o
0 = 94f + 112g + 180k + 142l
0 = 34j + 101k + 194o + 209p
0 = 232a + 120b + 170f + 69g
0 = 65j + 190k + 36o + 223p
0 = 86e + 89f + 151j + 126k

In this relinearized system, we perform Gauss-Jordan elimination.

175 = 96a + 82t
49 = 189e + 71t

186 = 195f + 115t
158 = 176j + 26t
144 = 96k + 18t
123 = 69g + 225t
181 = 120b + 74t
243 = 245o + 245t
174 = 158p + 236t
241 = 167t
254 = 148l + 106t
111 = 219t
111 = 219t
171 = 202t
90 = 109t
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We need to find a univariate equation in this system, evaluate it, then
substitute the value back into the original equation. However, what seems
like a univariate equation in this system may not be univariate on the system
before relinearization; we must identify an equation that is also univariate
on the first system. Starting from the top, we check each equation for the
number of variables it contains. The equation

241 = 167t

translates to

241 = 167y4

in the original equation system. Remember that a univariate-looking equa-
tion in the relinearized system could well have contained a multivariate term
in the original system, hence the need to convert it back to the original vari-
ables at this point.

Solving this equation, we calculate the value of y to be 127. Now, we
substitute this value into the original equation system:

180 = 161x
0 = 0

185 = 87x

Normally, we would remove the empty equation from the system and
repeat the whole multiply-eliminate-solve-substitute process all over again;
however, since we are left with a univariate equation system, solving it is
trivial. We know that any equation in a univariate equation system (except
for the empty equation) will be univariate; we pick one, solve it, and end up
with the result vector:

x = 23
y = 127

C Transformation: Byte to Bit

Using the transformation formulae derived in Section 6, the following equa-
tion system of bytes

232 = 183x + 15x2 + 17y + 7xy + 99y2

211 = 31x + 146x2 + 42y + 106xy + 75y2
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can be transformed into its equivalent system in bits as follows:

1 = x2+x3+x6+x1y0+x2y0+x6y0+y2
0+y1+x1y1+x5y1+x7y1+y0y1+y2+

x4y2+x6y2+x3y3+x5y3+x2y4+x4y4+x7y4+x1y5+x3y5+x6y5+x7y5+y4y5+
y6 +x2y6 +x5y6 +x6y6 +y3y6 +x1y7 +x4y7 +x5y7 +x7y7 +y2y7 +y6y7 +y2

70 =
x2 + x4 + x7 + y0 + x1y0 + x3y0 + x6y0 + x7y0 + y1 + x2y1 + x5y1 + x6y1 +
x7y1 + y2

1 +x1y2 +x4y2 +x5y2 +x6y2 +x7y2 + y0y2 + y3 +x3y3 +x4y3 +x5y3 +
x6y3 + x2y4 + x3y4 + x4y4 + x5y4 + x7y4 + x1y5 + x2y5 + x3y5 + x4y5 + x6y5 +
y4y5 + y2

5 + y6 + x1y6 + x2y6 + x3y6 + x5y6 + x7y6 + y3y6 + y4y6 + y7 + x1y7 +
x2y7 + x4y7 + x6y7 + x7y7 + y2y7 + y3y7 + y6y7

1 = x3 + x5 + x7 + y0 + x1y0 + x2y0 + x4y0 + x7y0 + y2
0 + y1 + x1y1 + x3y1 +

x6y1 + x7y1 + y2 + x2y2 + x5y2 + x6y2 + x7y2 + y1y2 + x1y3 + x4y3 + x5y3 +
x6y3 + x7y3 + y0y3 + y4 + x3y4 + x4y4 + x5y4 + x6y4 + x2y5 + x3y5 + x4y5 +
x5y5 +x7y5 + y2

5 +x1y6 +x2y6 +x3y6 +x4y6 +x6y6 + y4y6 + y5y6 + y7 +x1y7 +
x2y7 + x3y7 + x5y7 + x7y7 + y3y7 + y4y7 + y2

7

1 = x2+x3+x4+y0+x3y0+x5y0+x6y0+y2
0 +x2y1+x4y1+x5y1+x1y2+x3y2+

x4y2+x7y2+y2
2+y3+x2y3+x3y3+x6y3+x7y3+y1y3+x1y4+x2y4+x5y4+x6y4+

y0y4 +y5 +x1y5 +x4y5 +x5y5 +x7y5 +y4y5 +x3y6 +x4y6 +x6y6 +x7y6 +y0y6 +
y3y6+y5y6+y2

6 +x2y7+x3y7+x5y7+x6y7+x7y7+y2y7+y4y7+y5y7+y6y7+y2
7

1 = x2 + x4 + x5 + x6 + x2y0 + x4y0 + x7y0 + x1y1 + x3y1 + x6y1 + x7y1 + y2 +
x2y2 + x5y2 + x6y2 + x1y3 + x4y3 + x5y3 + x7y3 + y2y3 + y4 + x3y4 + x4y4 +
x6y4 + y1y4 + x2y5 + x3y5 + x5y5 + x7y5 + y0y5 + y4y5 + y2

5 + x1y6 + x2y6 +
x4y6 + x7y6 + y3y6 + y4y6 + y7 + x1y7 + x3y7 + x5y7 + x6y7 + y2y7 + y3y7 + y5y7

1 = x0 + x3 + x5 + x6 + x7 + x3y0 + x5y0 + x2y1 + x4y1 + x7y1 + x1y2 + x3y2 +
x6y2 +x7y2 + y3 +x2y3 +x5y3 +x6y3 + y2

3 +x1y4 +x4y4 +x5y4 +x7y4 + y2y4 +
y5 + x3y5 + x4y5 + x6y5 + y1y5 + y2

5 + x2y6 + x3y6 + x5y6 + x7y6 + y0y6 + y4y6 +
y5y6 + x1y7 + x2y7 + x4y7 + x6y7 + x7y7 + y3y7 + y4y7 + y6y7

1 = x0 + x1 + x4 + x6 + x7 + y0 + x4y0 + x6y0 + x3y1 + x5y1 + x2y2 + x4y2 +
x7y2 + x1y3 + x3y3 + x6y3 + x7y3 + y4 + x2y4 + x5y4 + x6y4 + y3y4 + x1y5 +
x4y5 + x5y5 + x7y5 + y2y5 + y6 + x3y6 + x4y6 + x6y6 + y1y6 + y5y6 + y2

6 + x2y7 +
x3y7 + x5y7 + x7y7 + y0y7 + y4y7 + y5y7 + y2

7

0 = x1 + x2 + x5 + x7 + y0 + x1y0 + x5y0 + x7y0 + y2
0 + y1 + x4y1 + x6y1 +

x3y2 +x5y2 +x2y3 +x4y3 +x7y3 +x1y4 +x3y4 +x6y4 +x7y4 + y2
4 + y5 +x2y5 +

x5y5 +x6y5 + y3y5 +x1y6 +x4y6 +x5y6 +x7y6 + y2y6 + y2
6 + y7 +x3y7 +x4y7 +

x6y7 + x7y7 + y1y7 + y5y7 + y6y7 + y2
7
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0 = y0 + y1 + y0y1 + y2
2 + y3 + y1y3 + y2

3 + y4 + y0y4 + y2y4 + y1y5 + y2
5 + y0y6 +

y4y6 + y2
6 + y7 + y3y7 + y5y7 + y6y7

0 = y0y1 + y2
1 + y2 + y0y2 + y2

2 + y3 + y1y3 + y2y3 + y2
3 + y0y4 + y1y4 + y2y4 +

y3y4 + y5 + y0y5 + y1y5 + y2y5 + y2
5 + y6 + y0y6 + y1y6 + y4y6 + y5y6 + y2

6 + y7 +
y0y7 + y3y7 + y4y7 + y5y7 + y2

7

0 = y0 + y2
1 + y0y2 + y1y2 + y3 + y0y3 + y2y3 + y2

3 + y4 + y1y4 + y2y4 + y3y4 +
y2

4 + y0y5 + y1y5 + y2y5 + y3y5 + y6 + y0y6 + y1y6 + y2y6 + y5y6 + y2
6 + y0y7 +

y1y7 + y4y7 + y5y7 + y6y7

0 = y0 + y2
0 + y0y1 + y1y2 + y3 + y0y3 + y3y4 + y2

4 + y5 + y2y5 + y3y5 + y4y5 +
y2

5 + y0y6 + y1y6 + y2y6 + y3y6 + y4y6 + y0y7 + y1y7 + y2y7 + y3y7 + y2
7

0 = y0 + y2
0 + y2

1 + y0y2 + y3 + y2
3 + y2y4 + y2

4 + y1y5 + y3y5 + y4y5 + y6 + y0y6 +
y2y6 + y3y6 + y5y6 + y2

6 + y7 + y1y7 + y2y7 + y4y7 + y5y7 + y6y7

1 = y0 + y1 + y0y1 + y1y2 + y0y3 + y4 + y3y4 + y2y5 + y4y5 + y2
5 + y1y6 + y3y6 +

y4y6 + y2
6 + y7 + y0y7 + y2y7 + y3y7 + y5y7 + y6y7 + y2

7

1 = y1 + y2
1 + y2 + y0y2 + y2

2 + y1y3 + y0y4 + y2
4 + y5 + y3y5 + y2

5 + y2y6 + y4y6 +
y5y6 + y1y7 + y3y7 + y4y7 + y6y7 + y2

7

0 = y0 + y2
0 + y2 + y1y2 + y3 + y0y3 + y2y3 + y1y4 + y0y5 + y4y5 + y6 + y3y6 +

y5y6 + y2
6 + y2y7 + y4y7 + y5y7 + y2

7

0 = x1 + x2 + y0 + y0 + x1y0 + x3y0 + x4y0 + x6y0 + x7y0 + y1 + y1 + x2y1 +
x3y1 + x5y1 + x6y1 + x1y2 + x2y2 + x4y2 + x5y2 + y3 + x1y3 + x3y3 + x4y3 +
y4 + y4 + x2y4 + x3y4 + x1y5 + x2y5 + y6 + x1y6 + x7y6 + y7 + y7 + x6y7

0 = x0 +x1 +x3 +y0 +x2y0 +x3y0 +x5y0 +x6y0 +x1y1 +x2y1 +x4y1 +x5y1 +
x7y1 +y2 +y2 +x1y2 +x3y2 +x4y2 +x6y2 +y3 +x2y3 +x3y3 +x5y3 +y4 +x1y4 +
x2y4+x4y4+y5+y5+x1y5+x3y5+y6+y6+x2y6+x7y6+y7+x1y7+x6y7+x7y7

1 = x1+x2+x4+y0+x3y0+x4y0+x6y0+x7y0+y1+x2y1+x3y1+x5y1+x6y1+
x1y2+x2y2+x4y2+x5y2+x7y2+y3+y3+x1y3+x3y3+x4y3+x6y3+y4+x2y4+
x3y4 +x5y4 +y5 +x1y5 +x2y5 +x4y5 +y6 +y6 +x1y6 +x3y6 +y7 +x2y7 +x7y7

0 = x0+x1+x3+x5+y0+y0+x1y0+x3y0+x5y0+x6y0+y1+x2y1+x4y1+x5y1+
x7y1+y2+x1y2+x3y2+x4y2+x6y2+y3+x2y3+x3y3+x5y3+x7y3+x1y4+x2y4+
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x4y4+x6y4+y5+x1y5+x3y5+x5y5+y6+x2y6+x4y6+x7y6+x1y7+x3y7+x6y7

0 = x4+x6+y0+y0+x2y0+x3y0+x1y1+x2y1+y2+x1y2+x7y2+y3+y3+x6y3+
y4+x5y4+x7y4+x4y5+x6y5+x3y6+x5y6+x6y6+x7y6+x2y7+x4y7+x6y7+x7y7

0 = x5 +x7 +y0 +x1y0 +x3y0 +x4y0 +y1 +y1 +x2y1 +x3y1 +x1y2 +x2y2 +y3 +
x1y3 +x7y3 +y4 +y4 +x6y4 +y5 +x5y5 +x7y5 +x4y6 +x6y6 +x3y7 +x5y7 +x7y7

1 = x0 + x6 + x1y0 + x2y0 + x4y0 + x5y0 + y1 + x1y1 + x3y1 + x4y1 + y2 + y2 +
x2y2 + x3y2 + x7y2 + x1y3 + x2y3 + y4 + x1y4 + x7y4 + y5 + y5 + x6y5 + y6 +
x5y6 + x7y6 + x4y7 + x6y7

0 = x0 + x1 + x7 + y0 + y0 + x2y0 + x3y0 + x5y0 + x6y0 + x1y1 + x2y1 + x4y1 +
x5y1 + y2 + x1y2 + x3y2 + x4y2 + y3 + y3 + x2y3 + x3y3 + x1y4 + x2y4 + y5 +
x1y5 + x7y5 + y6 + y6 + x6y6 + y7 + x5y7 + x7y7
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