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Is Visual Selective Attention in Deaf Individuals
Enhanced or Deficient? The Case of the Useful Field of
View
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, Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, United States of America, 2 Department of Research and Teacher Education,

National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, New York, United States of America

Abstract

Background: Early deafness leads to enhanced attention in the visual periphery. Yet, whether this enhancement confers
advantages in everyday life remains unknown, as deaf individuals have. been shown to be more distracted by irrelevant
information in the periphery than their hearing peers. Here, we ~how that, in a complex attentional task, a performance
advantage results for deaf individuals.

Methodology/Principal Findings: We employed the Useful Field of View (UFOV) which requires central target identification
concurrent with peripheral target localization in the presence of distraetors - a divided, selective attention task. First, the
comparison of deaf and hearing adults with or without sign language skills establishes that deafness and not sign language
use drives UFOV enhancement. Second, UFOV performance was enhanced in deaf children, but only after 11 years of age.

Conclusions/Significance: This work demonstrates that, following early auditory deprivation, visual attention resources
toward the periphery slowly get augmented to eventually result in a clear behavioral advantage by pre-adolescence on a
selective visual attention task.
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Introduction

Several studies have demonstrated that early auditory depriva
tion (deafness) results in specific, compensatory changes in visual
processing. In particular, deaf individuals exhibit enhanced
performance for tasks performed in the visual periphery.
Accordingly deaf individuals asked to make a key press in response
to stimuli presented in the central or peripheral visual field, exhibit
faster RTs than hearing individuals for peripheral targets but not
for central ones [1-3]. Similarly, when required to indicate the
presence of a point of light moving from the periphery towards
fixation, they respond more accurately than hearing individuals
when the target is further away from fixation [4]. Brain imaging
studies using ERP or fMRI suggest a greater recruitment of
attention-related brain networks under peripheral tasks in deaf as
compared to hearing individuals [5-9].

Whether this enhancement confers advantages when it comes to
more complex visual tasks is, as yet, unknown. We consider here
the possibility that enhanced peripheral attention may result in
better or worse performance depending upon the task demands.
Deaf individuals are more distracted than their hearing peers by
irrelevant information occurring in the visual periphery [10-12].
This effect is not the mark of a deficient focus of attention in deaf
individuals - indeed, hearing individuals are more distracted than
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their deaf peers by irrelevant information occurring in central
vision. Yet, greater distractibility from peripheral events can be
disruptive when focusing centrally is required [13]. Accordingly,
deaf children perform worse on the Gordon Diagnostic System®, a
continuous performance task which measures the ability to select a
sequence of targets from a stream of items presented in central
vision [14-15]. In accordance with a deficiency hypothesis, deaf
children are rated more distractible than their hearing peers by
parents and educators, although the correlation between these
ratings is often low [16]. Based on these findings, it has been
argued that auditory deprivation results in deficient visual selective
attention, with deaf individuals being unable to differentiate task
relevant from task-irrelevant information [16]. In contrast, as we
explore here, deaf individuals may excel on tasks that require
differentiating task-relevant from task-irrelevant information when
this selection relies on peripheral visual attention.

The performance of deaf and hearing individuals on a
computerized adaptation of the Useful Field of View task (UFOV;
[17-18]) was evaluated. In this task, subjects are required to
identify a central target and localize a concurrent peripheral target
in the presence of distractors. Performance on the UFOV - which
is predictive of complex, real-world performance [19] - provides a
measure of how visual selective attention is distributed across a
scene when attention has to be allocated across ccntral and
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Figure 1. A Schematic of Useful Field of View Task. In the experimental UFOV task, participants were asked to discriminate a briefly presented
face in the center of the display - the cutaways show detail of the 'short hair' and 'long hair' faces - and to indicate the location of a peripheral target
(a five-pointed star in a circle) via a touch screen. B Useful Field of View Thresholds, Experiment 1. Performance (mean threshold is ms) of each
subject group on the experimental UFOV task; error bars indicate:!: 1 SEM.
doi:l0.1371/journal.pone.000S640.g001

peripheral locations and targets selected from within a field of
distractors. If early auditory deprivation enhances visual selective
attention resources in the periphery, rather than simply increasing
peripheral distractibility, then deaf individuals should be better
able to localize a peripheral target embedded in a field of
distractors while simultaneously discriminating the identity of a
target presented centrally at fixation. Alternatively, if auditory
deprivation results in defieient visual selective attention, deaf
individuals' performance on the UFOV task should be impaired
rclative to that of hearing individuals.

The majority of studies reporting enhancement of visual
attention to the periphery have recruited deaf individuals born
deaf to deaf parents who learned American Sign Language (ASL)
as a first language. This leaves open the possibility that
enhancements in attention are restricted to this sub-population
and do not generalize to the deaf population at large. This is of
concern as most studies reporting deficient visual attention have
focused on deaf non-signers. Therefore, in addition to recruiting
deaf native signers, we included deaf individuals who experienced
early auditory deprivation but did not learn a sign language. In
addition, the impact of sign language was further evaluated using
hearing subjects, born to deaf parents, who acquired ASL as a first
language. Some of the studies referenced above have included
hearing native signers, and have suggested that sign language use is
not sufficient to induce enhanced peripheral attention [20-22].
The possibility remains, however, that a combination of early
auditory deprivation and visual-manual language acquisition are
required to bring about the observed changes in peripheral
attention in deaf native signers. The inclusion of both hearing
signers and deaf non-signers allows, for the first time, an
assessment of the e[fects of auditory deprivation and sign language
use independently, as well as their potential interaction.

Materials and Methods

Ethics Statement
This research was approved by the Research Subjects Review

Board at the University of Rochester, NY.
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Design
Each subject was assessed using a modification of the UFOV

paradigm [17-18], which incorporated two training tasks and the
main experimental task (see Figure IA) administered in the
following order: (i) central stimulus identification training: a two
alternative forced choice (2-AFC) identification task at the center
of the visual field - a face icon subtending 2.0 degrees of visual
angle was presented in the center of the screen and participants
had to decide whether it had long (0.27 degrees of visual angle) or
shon (0.16 degrees of visual angle) hair (Movie S I); (ii) divided

.attention training task: the same 2-AFC central identification task
combined with the localization of a peripheral target (again
subtending 2.0 degrees of visual angle) presented in isolation at
20° of visual angle at one of eight possible cardinal/intereardinal
locations (Movie S2); and (iii) the UFOV experimental task, also
termed selective attention task by Ball and collaborators [17-18]:
the 2-AFC central identification task with localization of a
peripheral target always presented at 200 of visual angle at one
of eight possible cardinallintercardinallocations and embedded in
a field of27 distractors each subtending 2.0 degrees of visual angle
(Movie S3). The distractors appeared along each of the eight
possible cardinallintercardinal axes at 6.67, 13.33 and 20 degrees
of visual angle (see Figure IA). The peripheral target was a five
pointed star enclosed within a circle, and the distractors were
white line-drawings of squares isoluminant with the peripheral
target.

All three tasks were presented within a circular gray field
subtending 21 0 of visual angle. Each stimulus display was followed
by a visual noise mask presented on the whole screen and then a
prompt appearing at fiXation. Participants indicated their response
(in speech or sign) for the central task, and the experimenter
manually entered that response. For the peripheral localization
response, participants touched the screen at the location where
they believed the peripheral target to have appeared. Trials were
classified as correct if the subject accurately identified both the
central icon's identity and the location of the peripheral target (in
the first task, only central task performance applied). An adaptive
staircase procedure was employed for all three tasks - after three
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consecutive correct responses, the stimulus duration was reduced
by I frame (1/60 second); one incorrect response resulted in the
stimulus duration being increased by I frame. Each task finished
after twelve reversals, ten consecutive correct trials at ceiling (I
frame), or 72 trials, whichever occurred sooner. A threshold
measure was calculated by averaging the stimulus duration of the
last 10 correct trials. In the divided attention training and the
UFOY tasks - which required both central and peripheral
responses - trials where the central target was incorrcctly idcntified
were ignored (i.e. those trials were not used for computing step
changes in the adaptive staircase procedure).

Apparatus
Stimuli were presented using Matlab software and the

Psychophysics Toolbox installed on a Apple G4 Titanium laptop
computer running OS 9.2.2. The laptop was connected to a 23"
Apple Cinema Display via an Apple ADC-DVI adaptor, with a
60 Hz refresh rate. The display was adapted to function as a touch
screen using pressurc-sensitive resistive (PSR-I ®) technology,
supplied and fitted by Troll Touch Touchscreens (Valencia, CAl.

Procedure
Subjects were testcd in a single expcrimental session lasting

approximately 25-30 minutes. Subjects were in a chin rest,
positioned 40 centimeters from the center of the touch screcn.
Instructions were given in sign or speech and clarified if necessary.
Subjects were given the correct answer on the first 2-3 trials if they
still appeared to be confused.

Results and Discussion

All statistical tests were conducted with an (:J. = .05. Confidence
intervals for differences between group means (CI95dilf) arc
reported a1on~side statistical test results and cstimates of effcct
size (partial 11 ).

Experiment 1: Effects of Deafness and Sign Language
Experience on the Useful Field of View in Adults

Potential adult subjects were asked about their videogame
playing. Those who reported playing action-based videogames
were classified as 'game players'. This classification did not
inOuence enrollment into the study, although data from 'game
players' arc not reported here as it is known that action video
gaming changes performance on the UFOY [23-24]. Subjects
were paid $8 for their participation.

Deaf adult signers (N = 10, MAGE = 26.1, 2 males) were
rccruited at a school in Austin (DC) and at a camp in Madison
(SD), as wcll as from participant pools at RITINTID (NY) and
Gallaudet University (DC). All were deaf native signers who
reported being born with severe-profound auditory deprivation
(hearing loss> 75 dB in the better ear; for 5 deaf signers who knew
their exact level of hearing loss, mean loss in the better car was
107 dB with a range of 75-120 dB) to deaf parents from whom
they learned ASL as a first language. In the absence of a reliable
and easily administered ASL proficiency test, subjects were asked
to rate their ASL comprehension and production proficiency on a
scale from I = perfect to 4 = hardly. All deaf signers gave
themselves a rating of 1.0 in ASL comprehension and 1.0 in
ASL production.

Deaf adult non-signers (N = 10, MAGE = 21.6, 3 males) were
students recruited at the National Technical Institute for the Deaf
(NTID) in Rochester, NY. All reported being born with severe
profound auditory deprivation (>75 DB in the better ear; for 6
deaf non-signers who knew their exact level of hearing loss, mean
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loss in the better ear was 90 dB with a range of 75-110 dB).
Although most r~ported knowing some ASL, their first regular
exposure to ASL had been at NTID where they were recruited for
this study during their first quarter in order to limit that exposure.
Accordingly, they reported an inability to communicate clearly in
ASL (on average rating themselves 3.3 in ASL comprehension and
3.2 in ASL production). All deaf non-signing subjects preferred
testing to be conducted using spoken English.

Hearing adult signers born to deaf parents (N = 10,
MAGE = 22.9, 4 males) were recruited from a summer camp for
KODAs ('kids of deaf adults') in Eagle Bay, NY. All reported
learning ASL from their parents as infants, and expressed
competence in ASL (on average rating themselves 1.8 in ASL
comprehension and 1.8 in ASL production). None reported any
hearing loss, and all testing was conducted in ASL.

Hearing adult non-signers (N = 10, MAGE = 20.4, 2 males) were
rccruited from a participant pool at the University of Rochester,
NY. All reported normal hearing and no knowledge of any sign
language.

Prior to analyzing the UFOY thresholds for the selective
attention task (i.e. the task with distractors) it was important to
establish that the central task was attentionally demanding in this
context, and thus in competition with the peripheral target for
attentional resources. Whilc this task provided no independent,
concurrent measure of central task performance, identification
accuracy was calculated for the last 1/3 of trials for all subjects (sec
Table S I). Due to differences in level of performance - these trials
for deaf subjects were performed at briefer presentation durations
than for hearing subjects -identification accuracies were normal
ized as a function of the presentation duration for those trials to
yield a measure of central task accuracy per millisecond of
presentation duration. Deaf subjects (M = 1.46% per millisecond)
and hearing subjects (M = 1.25% per millisecond) did nOl
significantly differ using this measure. The data therefore suggest
that the central task was attentionally demanding for both deaf
and hearing subjects, and that it was equally demanding for both
groups.

UFOY thresholds (i.e. with distractors present) were entered
into a two-way ANOYA with auditory deprivation (deaf, hearing)
and signing (signer, non-signer) as between subjects factors (sec
Figure IB). This revealed a main effect of auditory deprivation
(F(l ,36) = 11.46, P = .002, partial 11 2 = .24, CI95ditr = 8-30 ms).
Deaf subjects demonstrated a clear advantage over hearing
subjects, requiring less time to concurrently discriminate a central
target and localize a peripheral target embedded within a field of
distractors. An effect of sign language usc was not predicted, and
although a trend can be seen for sign language users to have lower
thresholds than non-signers, the effcct was much smaller and not
statistically significant (F( 1,36) = 3.02, P = .091, partial 112 = .08,
CI95ditr = 2-21 ms). There was no significant interaction between
auditory deprivation and signing (F( 1,36) = 0.18, P = .677, partial
11 2 = .01) confirming the primary role of auditory deprivation in
the advantage noted in the deaf population.

Although the two other tasks (central stimulus identification and
divided attention) werc included for training purposcs, deaf non
signer participants differed from the other groups in a manner
worthy of note (Figure 2A and 2B). On both tasks, all participants
performed near ceiling except for dcaf non-signers (central
identification task: effect of auditory deprivation: F(I ,36) = 12.51,
P = .00 I, partial 11 2 = .26, CI95ditr = 2-6 ms; effect of signing:
F(I,36) = 9.52, p=.004, partial 11 2 =.21, CI95ditr = 1-6 ms; inter
action between auditory deprivation and signing: F(I,36) = 6.94,
P = .012, partial 11 2 = .16; divided attention task: effect of auditory
deprivation: F(l,36) = 41.40, p<.OOI, partial 11 2 = .54, CI95dilf
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Figure 2. Useful Field of View Training Thresholds. Experiment 1. Performance on the central training task (A) and central and abrupt
peripheral onset training task (B) was generally asymptotic, except for deaf adults who did not use a signed language. For this group. the thresholds
on these two tasks were significantly elevated. Error bars indicate ± 1 SEM.
doi:10.1371/journal.pone.000S640.g002

= 3-7 ms; effect ofsigning: (F(l,36) = 31.25, p<.OOI, partial 11 2 = .47,
CI95d;(f= 3-6 ms; interaction between auditory deprivation and
signing: F( 1,36) =33.65, p<.OOI, partial 11 2 =.48). Deaf non-signers
performed significantly worse on both of these tasks, albeit still
requiring less than 33 milliseconds of presentation. This is in accord
with reports from Quittner and colleagues [14-15] that deaf
individuals, or at least children, who do not receive full access to
language at an early age are at risk on tasks that require attention to
the location of fixation.

UFOV thresholds were reanalyzed with each subject's perfor
mancc on these training tasks as covariates. The pattern of findings
did not change, with the main cffect of auditory deprivation
rem~inin~ the sole significant effect (F(1,34) =6.21, P =.018,
parllal11 = .15, CI95d;(f= 4-39 ms).

This first experiment establishes the role of auditory deprivation
in the enhancement of peripheral visual attention noted in the deaf
population. Both deaf signing and deaf non-signing adults excelled
at the UFOV task. This shows that the enhancement is not limited
to the use of isolated targets but generalizes to complex tasks such
as the UFOV, which combines selective visual attention with the
requirements of performing two tasks (one centrally and the other
peripherally). Although deaf non-signers displayed better perfor
mance on the UFOV task than their hearing peers, they showed
worse performance on the central stimulus identification and
divided attention tasks. This result is surprising in the face of their
enhanced performance on the UFOV task. The two training tasks
differ from the main UFOV task along several dimensions
preventing us from drawing [um conclusions. The central
identification task focuses entirely on central processing, rather
than peripheral processing in the context of an additional central
task like in the UFOV task. The divided attention task requires
both peripheral and central processing in the same manner as for
the UFOV task, but it differs from the UFOV task in terms of its
very low attentional load [25]; the divided attention task allows
both the central and peripheral target to automatically capture
attention. In addition both these training tasks differ from the
UFOV task in the brevity of the display duration (stimulus display
durations for the two training tasks were in the range of 17-33 ms,
as compared to 40-80 ms for UFOV task). The reported results
indicate the need for future studies to characterize the relative role
of central processing, attentional load and display duration when
considering the attentional system of deaf non-signers.

'.'@.'. PLoS ONE I www.plosone.org.. 4

There are two alternativc mechanisms that can be ruled out by
the overall pattern of data reported. The first is that any deficits
observed for deaf individuals stem from the need to make
sequential manual responses (sign SHORT or LONG and then
touch the screen) whereas hearing individuals can make a
simultaneous oral-manual response (say "short" or "long" while
touching the screen at the same time). If this were the case, then
there should be a deficit for deaf signers across all tasks requiring
two responses, which is clearly not the case. Despite the need to
execute sequential responses for the two tasks, deaf signers
outperform hearing subjects on the UFOV task, and show
comparable performance on the divided attention task. Indeed,
the deaf non-signers who performed poorly on the divided
attention task made simultaneous oral and manual responses to
the targets. The second alternative is a perceptual enhancement in
the peripheral visual field of deaf individuals. Such an enhance
ment would predict enhanced performance on the divided
attention task for all deaf individuals. To the contrary, deaf non
signers showed impaired performance on the divided attention
task and deaf signers showed similar performance as their hearing
peers. This pattern of finding reinforces the view that peripheral
processing enhancements in deaf individuals result from changes
in selective attention, and not perceptual modifications [26].

In Experiment 2 we ask at what age such a redistribution of
attention becomes apparent in a sample ofdeaf children compared
to a group of hearing peers 7 to 17 years of age. Deaf children
were recruited from a camp and deaf school where ASL was the
primary means of communication. The experimental design,
apparatus and procedure were the same as those employed in
Experiment I. Previous studies suggest that visual selective
attention skills are relatively stable in hearing subjects by 7-10
years of age [27], so no change in the UFOV thresholds was
expected in the hearing children as a function of age. By assessing
the effect of age on UFOV thresholds in deaf children, we aimed
to determine whether the effects of auditory deprivation on visual
selective attention were already in place by the age of 7 years, or
whether the period of development is protracted.

Experiment 2: Effects of Deafness on the Useful Field of
View in Deaf and Hearing Schoolchildren

Written informed consent was obtained from all children and a
parent or legal guardian. AJ] children were rewarded with a $15

May 2009 I Volume 4 I Issue 5 I eS640
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Figure 3. Useful Field of View Thresholds. Experiment 2. In the
main UFOV task the performance of 7-10 year old deaf children was
comparable with that of their hearing peers, whereas older deaf
children were significantly better than their hearing peers. Error bars
indicate:': 1 5EM.
doi:1 0.1371 Ijournal.pone.0005640.g003

gift card. As in Experiment I, action video game players were
tested but their data are not reported here.

Hearing children were recruited from a school district in the
Rochester NY area. Mailings were sent from the school district to
parents of all children aged 7 to 17 years. The response rate was
approximately 15%. All children had normal or corrected-to
normal vision and no known history of neurological or cognitive
impairment. They were screened to ensure none required an
Individualized Educational Program (IEP) indicating the need for
accommodations due to learning or language impairment.
Children were divided into three age categories: 7-10 year old
elementary/primary students (N = 38, MAGE = 9; I, 16 males), 11
13 year old middle school students (N = 16, MAGE = 12;2,5 malcs),
and 14-17 year old high school students (N = 14, MAGE = 15;7, I
male).

Deafchildren were recruited from deaf schools in Rochester NY
and Austin TX, and a camp for deaf children in Madison, SD.
School or camp administrators mailed letters to the parents of all
children aged between 7 and 17 years, resulting in a 10% response
rate. All children had normal or corrected-to-normal vision and no
known history of neurological or cognitive impairment. Although

most of the deaf children had IEPs as a result of their deafness,
none had reported attentional problems or learning disabilities.
The deaf children divided into the same age categories as hearing
children: 7-10 year olds (N = 15, MAGE = 9;3, 10 males), 11-13
year olds (N = 20, MAGE = 12;4, I male), and I 17 year olds
(1 = 14, MAGE = 15;6, 7 males). All had an unaided hearing loss
> 70 dB in their better ear and used ASL on a daily basis as their
primary means of communication. one had undergone cochlear
implant surgery. Sixteen (33%) had hearing parents, although all
of these children had started to learn ASL in pre-K elasses.
Parental hearing status had no effect on the measures used, and is
not considered further. Given their background, this group is more
similar to the native signers adults described above, and differs in
aetiology from the children typically considered in the literature on
deafness, visual attention and cochlear implants [14-16].

A two-way ANOVA on experimental UFOV thresholds with
auditory deprivation (deaf, hearing) and age group (7-10, 11-13,
14-17 years) as between subjects factors revealed significant main
effects of auditory deprivation (F(I,117) = 17.85, p<.OOl, partial
T]2=.14, CI95diff =11-31 ms) and age group (F(2,117)=6.49,
p = .002, partial T]2 = .11), and a signilicant two-way interaction
between auditory deprivation and age group (F(2, 117) = 7.10,
p = .001, partial T]2 = .11). This interaction led us to assess the
effects of age group separately for deaf and hearing children. As
predicted, for hearing children the UFOV thresholds did not vary
as a function of age group (F(2,68) = 0.12, p = .884, partial
T]2<.01), whereas they did for deaf children (F(2,49) = 25,43,
p<.OO 1, partial T] 2= .53). While deaf 7-10 year olds performed
equivalently to hearing 7-10 year olds, older deaf children
demonstrated better thresholds, outperforming their hearing peers
and the youngest deaf children (see Figure 3).

Interestingly, the training tasks indicated worse performance in
the youngest deaf group compared to the other groups (see
Figure 4). Post-hoc analyses for the central stimulus identilication
task showed no m~in effect.of a~e group for h~ar~ng children
(F(2,68) = 2.26, p = .113, partial T] = .07), but a slgnllicant effect
for deaf childrcn (F(2,49) = 11.87, p<.OO I, partial T]2 = .34). Deaf
7-10 year olds had signilicantly worse thresholds than both 11-13
year olds (p<.001, CI95diff =9-22 ms) and 14-17 year olds
(p = .00 I, CI95diff = 6-20 ms). Similarly, post-hoc analyses for the
divided attention task showed no signilicant main effect of age
group for hearing children (F(2,68) = 2.09, p = .132, partial
T] 2 = .06), whereas it did signilicantly affect the performance of
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deaf children (F(2,49) = 7.17, P = .002, partial ,,2 = .24). As
obscrved for the central identification task, deaf 7-10 year olds
had significantly worse thresholds than 11-13 (p =.00 I, CI95
d;rr= 8-30 ms) and 14-17 year olds (p = .004, CI95d;rr= 6-29 ms).
Using performance on the two training tasks as covariates did not
change the qualitative pattern of findings for the experimental
UFOV task.

General Discussion
The UFOV task requires subjects to divide attention between

central and peripheral locations, while also selecting a target from
amongst distractors. It is an attention-dcmanding task, requiring
not only central attention but also attention to the periphery and
visual selection. Deaf adults required 43-58 ms (CI95%) of display
presentation to perform at 79% correct, whereas hearing adults
required significantly more time (CI95% =60-79 ms). This
enhancement reflects early, severe-profound loss of audition rather
than use of a visual-spatial language - the effect was seen in both
deaf signers and non-signers, with little-or-no contribution from
signing.

Although a tendency for more effective visual search in deaf
than in hearing individuals has been reported [28], other studies
have failed to replicate thc effcct [29-30]. Thc prcsent adaptation
of the UFOV task dcparts from these more standard visual search
tasks in several ways. First, while it maintains a requirement for
visual selection, it also has a divided attention component where
attention needs to be maintained centrally while also efficiently
allocated to the periphery. Auditory deprivation may thus enhance
the ability to deploy visual selective attention over a large field.
Second, the target to be selected needs to be localized rather than
identified. The use of a touch screen ensures that localization
information maps naturally onto a motor response, limiting the
need to repackage the information as with a standard response
box. This makes for a very natural "where" task, in line with the
proposal that dorsal visual functions are mostlikeiy to be enhanced
following auditory deprivation [31]. These factors may account for
the sizeable advantage noted in the deaf population, revealed by
both lower thresholds and smaller within-group variance. We
propose that the UFOV task data unambiguously make the case
that auditory deprivation does not necessarily compromise visual
selective attentional functions and can in fact result in enhanced
selection for stimuli presented peripherally.

Data from children revcaled that this attentional enhancement
is not observed until after 7-10 years of age, although the precise
point within this age group could not be determined due to sample
size limitations. Nevertheless, there is the suggestion that a robust
cross-modal enhancement in visual selective attention is not
observed until after several years of auditory loss. Further study is
requircd to identify exactly when and how this delayed
enhancement is brought about. The lack of improvement observed
in hearing children suggests that maturational factors are unlikely
to contribute. Rather, it may be the duration of auditory
deprivation that plays the key role, with over 7-10 years of
auditory deprivation required for effects to be manifested
behaviorally. Alternatively, it may reflect a 'sleeper effect' [32],
with significant ncural changes occurring earlier in development,
but only manifesting themselves behaviorally at a later age.
Another possibility is that the reorganization of visual attention is
trigged by environmental stimuli. For example, the transition to
more formal and structured schooling environments around the
age of 8 years may place additional demands upon the visual
systems of deaf children. Assessment of this possibility will require
disentangling duration of deafness from educational experience; all
of the children included in this study were born deaf and thus
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duration of deafness and level of schooling are confounded. For
now, the data provide evidence for a profound change in visual
selective attention in deaf children and adults, with robust effects
suggesting that the UFOV is a sensitive behavioral assay for
further analysis of the causes and mechanisms of compensatory,
cross-modal plasticity following early auditory deprivation.

Thcre is some cvidence that the youngest deaf children found
the central stimulus identification task to be more difficult than did
their hearing peers, with this difficulty extending to the divided
attention task. Data from dcaf adults suggest that any such deficit
is no longer apparent by adulthood, at least for those who have
early and full access to a first language (deaf native signers). All of
the young deaf children in this study had early language access
through ASL, although the extent of their social and linguistic
interactions with caregivers during early infancy cannot be
assessed post hoc. It is important to note that studies reporting
dcfieiencies in visual attention skills have typically used central
visual field tasks employing rapid stimulus presentations with
young deaf children [14-15], and thosc reporting compensatory
enhancements have uscd peripheral visual field tasks with deaf
adults [2,4, I0-12]. Thus the apparent discrepancy in the litcrature
may be duc to cross-study differences in the age of subjects tested,
language history, and wherc in the visual field stimuli have bccn
presented. For both deaf children under the age of 10 years and
dcaf adults who have had delayed and impaired access to a first
language, the present work highlights poorer performance on the
two training tasks alongside enhanced UFOV performance. The
present design cannot distinguish betwecn a possiblc central
processing disadvantage when attention is not heavily taxed or a
difficulty processing displays with very brief durations. Futurc
research is nceded to tease apart the relative role of central versus
peripheral attentional demands and to evaluate processing of very
brief displays in deaf individuals. This work, however, already
highlights the importance of providing a strong language
environment early in development. By II years of age, the
performance of deaf native signers was equal to or better than
their hearing peers on all tasks, whereas deaf non-signers still
exhibited a complex pattcrn of deficits and enhancements in
adulthood. Finally and most importantly, a robust advantage for
all deaf populations was observed when the peripheral target had
to be sclected from amongst distractors, paralleling findings
reported by others [33]. The addition of distractors changes the
task by requiring coupling of divided attention with efficient visual
selective attention at the target location. It is under these
conditions - visual selective attention in the visual periphery 
that deaf participants are seen to excel.

This work establishes that auditory deprivation is not a causal
factor for attentional difficulties. All deaf individuals tested
performed at least as well and often significantly better than their
hearing peers on the UFOV measure, an attentionally-demanding
task Worse performance in the youngest deaf children and those
deaf adults with limited access to a natural language early in
development was noted under some conditions. While these results
are in line with previous work documenting attentional deficits in
deaf children, the present study makes it clear that such challenges
early in childhood arc not predictive of deficient functioning as
development proceeds.

Supporting Information

Table 81 Central task performance in selective UFOV task. For
the UFOV selective attention task, mean central identification
accuracies and mean stimulus presentation durations were
calculated based upon the last 1/3 of trials for each subject.
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Accuracy levels indicate that the central task is attentionally
demanding for all subject groups. However, accuracy cannot be
compared directly across groups, as presentation durations
dilTered. After normalizing accuracies as a function of presentation
duration, performance did not significantly dilTer as a result of
deafness or sign language use.
Found at: doi: 10.1371 /journal.pone.0005640.s00 I (0.04 ME
DOC)

Movie 51 Two-alternative forced choice (2-AFC) discrimination
task at the center of the visual field - a face icon was presented in
the center of the screen and participants had to decide whether it
had long or short hair.
Found at: doi:10.1371/journal.pone.0005640.s002 (0.42 MB
MOY)

Movie 52 The same 2-AFC central discrimination task as in
Movie S I, combined with the localization of a peripheral target
presented in isolation at 20° of visual angle at one of eight possible
cardinal/intercardinal locations
Found at: doi: 10.1371 /journal.pone.0005640.s003 (0.62 ME
MOY)
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Movie 53 The 2-AFC central discrimination task with localiza
tion of a peripheral target presented at 20° of visual angle at one of
eight possible cardinal/intercardinal locations and embedded in a
field of distractors. The distractors appeared along the eight
possible cardinal/intercardinal axes at 6.67, 13.33 and 20 degrees
of visual angle.
Found at: doi: 10.1371 /journal.pone.0005640.s004 (0.52 ME
MOY)
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