

Toshiyuki Tabata1 , Leonard M. Rubin3 , Petros Kopalidis3, Joris Aubin1, Karim Huet¹, Fulvio Mazzamuto¹, Yoshihiro Mori¹, Antonino La Magna², Hao-Cheng **Tsai3, Dwight Roh3, and Ronald Reece3 1SCREEN-LASSE, 2CNR IMM, 3AxcelisTechnologies**

Introduction

Barriet

- **Experiment Description**
- **Melting & Solidification**
- **Segregation**
- **Activation**
- **Conclusion**

Advanced Nodes Have Reduced Thermal Budgets

- **Allowable thermal budgets have been significantly reduced in recent years**
- **Higher temperatures favor dopant activation over dopant diffusion**
- This has challenged the task of **material modification without degrading the complex structure of advanced devices**

Record Low Contact Resistivity by Melt Laser Anneal (MLA)

Challenges for Extremely Low *p***_C**

At the Schottky barrier, field emission dominates the carrier transport

Introduction

- **Experiment Description**
- **Melting & Solidification**
- **Segregation**
- **Activation**
- **Conclusion**

Axcelis Purion H High Current Implanter Ga Implants

- **Accelerates single charged ions from 500 eV to 100 keV**
- **Beam currents up to 35 mA**
- **Basic operation**
	- **Extract a spot beam and mass filter in AMU**
	- **Desired spot beam focused through resolving aperture (with defines mass resolution)**
	- **Quadrupoles focus beam into scanner**
	- **Scanned spot beam parallelized by s-bend correction magnet**
	- **Angular Energy Filter for energy purity**

SCREEN/LASSE LT3100 UV Excimer Laser Annealing System Nanosecond Anneals

Step & Repeat Process Each die can be annealed only by 1 shot with a good uniformity

Experiment

- **300mm n-type Si(100) prime wafers**
- **66nm thick SiGe 50% layer deposited by CVD**
	- Growth pressure 20 Torr, purified H₂ carrier gas flow
	- 550°C deposition, using SiH₄ + GeH₄
- **Film thicknesses controlled using X-ray reflectivity**
- **The deposited SiGe is partially relaxed**
	- **Macroscopic degree of relaxation is estimated to be 30-40%**
- **Gallium ion-implanted as a dopant (26 keV, ~1x1016 at/cm2)**
	- **Projected range (R_p) ~20nm**
- **Samples were annealed at +20°C using a 308 nm UV excimer with different energy densities (ED)**
	- **Pulse duration 160 ns**
- **Dopant profile before and after MLA was measured by SIMS**
- **Dopant activation was studied by 4-pt. probe and electrochemical capacitance-voltage profiling (ECVP)**

Introduction

- **Experiment Description**
- **Melting & Solidification**
- **Segregation**
- **Activation**
- **Conclusion**

Melting and Solidification in Melt Laser Annealing

- Ga segregation is already observed in partial melt
	- **Dopants are diffused up to the initial α-SiGe bottom (explosive crystallization)**
	- **In the full melt case, the recrystallized SiGe is strained and contains defects**
		- **Dislocations near the relaxed initial epitaxy interface**

Significant Redistribution of Both Ga and Ge During MLA

100mm

Explosive Crystallization Likely Occurring During MLA

ESTE

Self-sustained crystallization

- 1. Latent heat of solidification : I-Si → p-Si
- 2. Heat for melting : a-Si \rightarrow I-Si
- If 1 > 2, the process is self-propagating.

Dopant Precipitation Seen in Surface SEM

- Dopant precipitation forms honeycomb-like pattern on the surface
	- No pattern observed for undoped SiGe₅₀ with full melt
- Solidification velocity is dominated by the irradiated laser pulse **and the thermal conductivity of the semiconductor**

Introduction

- **Experiment Description**
- **Melting & Solidification**
- **Segregation**
- **Activation**
- **Conclusion**

Segregation Coefficient (k)

- **The segregation (or distribution) coefficient is the ratio of the solubility of the dopant in the solid phase to that in the liquid phase**
	- **The smaller the k value, the more segregation occurs**

R. F. Wood, APL 1980

- In-house simulation software for 1D, 2D, 3D
- **Self-consistent finite element approach**

LIAB Results What Changes in SiGe during MLA?

■ Solubility in the liquid needs to be 10X **higher than in the solid to suppress dopant precipitation**

Introduction

- **Experiment Description**
- **Melting & Solidification**
- **Segregation**
- **Activation**
- **Conclusion**

Electrochemical Capacitance-Voltage Profiling (ECVP) Active Dopant Profiling in SiGe

Active dopant concentration at the end of the space charge zone is measured.

The roll-off of $1/C^2$ – V curve comes from deep level defects.

ECVP Indicates LTA Can Activate Ga Over Its Solid Solubility Limit for Shallow Melt Depths

This benefit seems to disappear for deeper melt depths

Activation over the solid solubility limit

Activation is restricted by solid solubility limit

Why Are Some Dopants Inactive?

A large amount of segregated dopant (1E22 minus 2E21 = 8E21) is still inactive

Deep donors with a lifetime of a few seconds exist at the surface. In Si, they are associated to O-related defects.*

*Data in science and technology, Semiconductors, Group IV and III-V, Madelung, (Springer, Berlin, 1991), p. 25

Evidence of Oxygen Knock-On from Ion Implantation

■ Possibility of further activation increases from optimizing the ion implantation steps

axcelis

re e

Introduction

- **Experiment Description**
- **Melting & Solidification**
- **Segregation**
- **Activation**
- **Conclusion**

Conclusions

- **Ga shows promise for lowering** $ρ_c$ **to SiGe**
- **Simulation suggests that Ga solubility in liquid SiGe might be 10X higher than in the solid**
- **Ga surface segregation and activation beyond equilibrium solubility limit were demonstrated for shallow melt depths**
	- **This is despite suspected oxygen incorporation**
- **Not all segregated Ga is active**
	- **Lowering the velocity of the solidification front may improve Ga activation**
- **Reduced oxygen incorporation may further improve the activation**
	- **But it is difficult to reduce oxygen knock-on effects**

